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Abstract

Learning domain-invariant representations is im-
portant to train a model that can generalize well to
unseen domains. To this end, we propose a novel
approach that leverages the semantic structures
inherent in text descriptions as effective pivot
embeddings for domain generalization. Specifi-
cally, we utilize graph representations of images
and their associated textual descriptions to obtain
domain-invariant pivot embeddings that capture
the underlying semantic relationships between lo-
cal images and text descriptors. Our approach
involves a clustering-based graph-matching algo-
rithm that matches graph-based image node fea-
tures into textual graphs. Experimental results
show the efficacy of our proposed method in en-
hancing the generalization ability of the model.

1. Introduction
Domain generalization aims at improving a model’s general-
ization ability for unseen domains. Existing domain general-
ization approaches involve a range of techniques, including
reducing domain discrepancies (Sun & Saenko, 2016) and
implementing data augmentation (Yan et al., 2020). Other
studies have explored using auxiliary semantic cues to learn
domain-invariant features (Cha et al., 2022). A recent ap-
proach (Min et al., 2022) utilizes text descriptions as auxil-
iary cues to obtain domain-invariant features.

In this paper, we suggest using multimodal graph represen-
tations to get effective domain-invariant pivot embeddings
for domain generalization problems. Our method repre-
sents text descriptions and images in their respective graphs
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Figure 1. Our model uses clustering-based graph modeling for
visual and textual features to match clusters, yielding domain-
invariant features for better generalization in unseen domains.

and aligns their embeddings by matching the graphs. By
grounding image features into textual graphs, which cap-
ture human reasoning, we can learn robust domain-invariant
features. Our approach facilitates multilevel semantic align-
ment by clustering node features and matching multimodal
graphs. Our method achieves state-of-the-art or superior per-
formance on two benchmark datasets, CUB-DG (Min et al.,
2022) and DomainBed (Gulrajani & Lopez-Paz, 2020).

Our contributions can be summarized as follows.
• We propose a novel approach that utilizes graph repre-

sentations for both image and text inputs for domain
generalization problem.

• We introduce a method that aligns multimodal graphs
using a graph neural network, clustering and matching
node features.

• Our approach achieves state-of-the-art performance on
the CUB-DG benchmark dataset.

2. Method
Given a distribution over multiple (or single) source domains
{S1,S2, . . . } ∈ S, the domain generalization problem con-
siders the following classical stochastic optimization, in
which we minimize the data-dependent generalization upper
bound of the expected task loss (Sinha et al., 2017):

minimize
θ

sup
T :D(S,T )≤ρ

ET
[
L(θ;S)

]
(1)
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Figure 2. An overview of our proposed method.

where we consider unseen target domains T =
{T1, T2, . . . } and the discrepancy between S and T is
bounded by an arbitrary bound ρ. In this paper, we con-
sider image classification scenarios.

Inspired by recent work (Min et al., 2022), but unlike this,
our proposed model learns to extract visual representations
that align not only globally but also locally with explicitly
verbalized knowledge from human reasoning.

Our model consists of three main parts: (i) a Graph-based
Visual Encoder, (ii) a Graph-based Textual Encoder, and (iii)
Local and Global Alignment between Visual and Textual
Graphs. Our approach is shown in Figure 2.

Following standards in the domain generalization task, we
use the backbone ResNet50 (He et al., 2016b) to take images
I as an input, outputting a d-dimensional global visual
representation xg ∈ Rd. This global representation xg is
trained to predict its classification label ŷ with a linear layer.
Our backbone and a classifier are trained by a standard
cross-entropy loss Lc.

2.1. Graph-based Visual Encoder
We construct a graph with visual representations to enhance
the model’s generalizability to unseen domain. Given M
number of d-dimensional local visual representations xl ∈
{xl,1, xl,2, . . . , xl,M} extracted from intermediate layers of
the backbone, we consider these representations as a set of
unordered nodes. Inspired by recent work (Han et al., 2022),
we construct a visual graph Gv with M nodes, and connect
each node to its Kv nearest neighbors by using L2 distance.

Given the visual graph Gv, we further apply two layers of
graph convolution network (GCN) (Kipf & Welling, 2016)
followed by a linear and a BatchNorm (Ioffe & Szegedy,
2015) layers to learn relational knowledge between local
visual representations. This results in gv ∈ Rdg , the final
locally-aware visual graph representation. Note that, we
also add an additional classifier that takes the gv as an input
to create a graph that better captures the characteristics of
the class. We provide detailed explanations in the Appendix.

2.2. Graph-based Textual Encoder
We build a textual graph from a natural language description
of each class, followed by aligning both visual and textual
graphs to learn domain-invariant visual representations.

A sequence of L (at maximum) words is tokenized and
encoded with a standard word-level (learnable) embedding
layer, producing dt-dimensional embedding vectors t ∈
{t1, t2, . . . , tL} where ti ∈ Rdt . The Textual Graph Gt is
constructed similarly to the Visual Graph, connecting each
node ti to its Kt nearest neighbors based on the smallest
L2 distance. We then apply a GCN network, which has the
same architecture described in Section D, on Gt to obtain a
textual graph representation gt ∈ Rdg .

2.3. Local and Global Alignment between Visual and
Textual Graphs

We apply the following two graph-matching approaches:
(i) Global Graph Matching and (ii) Clustering-based Fine-
grained Graph Matching.

Global Graph Matching. A standard approach to match-
ing two different graph representations is minimizing the
Euclidean distance as follows:

Lglobal = ||fproj,x(xg)− fproj,v(gv)||2
+||fproj,x(xg)− fproj,t(gt)||2

(2)

where we use a linear layer to project each feature (i.e.
xg, gv, and gt) such that these three projected features are
pulled together. Note that fproj,x, fproj,v , and fproj,t represent
the respective projection layers. To avoid representation
collapse while pulling latent representations together, we
add an auxiliary classifier that takes fproj,x(xg) as input and
outputs per-class probabilities. It is trained with standard
cross-entropy loss.

Clustering Graph Nodes. We also use local graph match-
ing to align node-level features of the image and text graphs
based on similar semantic cues. To ensure the two graphs
have the same level of semantic representation despite dif-
ferent node representations, we apply a graph clustering al-
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gorithm. Our method defines user-specified parameters Nv

and Nt for the number of clusters in the visual and textual
graphs respectively. Note that we set Nv ≥ Nt since images
may contain visual contents (e.g. backgrounds) that are not
generally described in the text. We use a modularity-based
graph clustering method (Tsitsulin et al., 2020) to reflect the
semantic structure of the graph, which is constructed based
on node similarity.

Graph Cluster Matching. We use the set-based loss, i.e.
bipartite matching loss, between two disjoint sets of clusters:
(i) a set of clusters Cv ∈ {C1

v , C2
v , . . . , CNv

v } of the visual
graph G′

v and (ii) a set of clusters Ct ∈ {C1
t , C2

t , . . . , C
Nt
t }

from the textual graph G′
t. We minimize the following pair-

wise matching loss:

Lp =
1

Nt

Nt∑
i=1

||Cµi
v − Ci

t ||2 (3)

where µi ∈ {1, 2, . . . , Nv} is the node index of the cluster
in Cv which matches to i in Ct, producing the smallest total
Euclidean distance by bipartite matching.

To prevent representation collapse, we use a hinge loss
based on negative pairs formed by cluster representations
Ci
v and C′j

t from different input images. The matched closest
distance ||Cµi

v −Ci
t ||2 should be smaller than any other pairs

between Cj
v and C′i

t (or C′j
v and Ci

t).

Lh = max(0,Lp − MinDist(C′
v, Ct) + ϵ)

+max(0,Lp − MinDist(Cv, C′
t) + ϵ)

(4)

where MinDist(C′
v, Ct) represents the minimum pair-wise

matching loss similar to Lp, but is applied to different inputs
within a mini-batch. We compute it over all pairs of samples
in a mini-batch and use the average as the final loss value:

Llocal =
1

B

∑
b

(λpLp + λhLh + λdLd) (5)

where Ld is clustering loss which is defined in (Tsitsulin
et al., 2020). Note that λp, λh, and λd are hyper-parameters
that control the weight of each loss term. We set the size
of a mini-batch to B. We also add an auxiliary classi-
fier that takes the average-pooled cluster representation
1
Nt

∑Nt

i=1 Cµi
v as an input and outputs the per-class softmax

probability, trained with the standard cross-entropy loss.

Loss Function. Ultimately, we train our model end-to-end
by minimizing the following loss L:

L = Lc + λglobalLglobal + λlocalLlocal (6)

where λglobal, and λlocal are hyper-parameters to control the
strength of each loss term.

3. Experiments
3.1. Datasets
We use CUB-DG, an extension of the CUB dataset (Welin-
der et al., 2010) with up to 10 text descriptions per image,

Table 1. Results (in %) on CUB-DG dataset with multi-source DG
setting. Abbr. I: Image, T: Text.

Algorithm Modality
Target Domain

Avg.
Photo Cartoon Art Paint

Ours I+T 75.4 65.5 54.0 41.4 59.1
GVRT (PTE) (Min et al., 2022) I+T 74.6 64.2 52.2 37.0 57.0

CORAL (Sun & Saenko, 2016) I 72.2 63.5 50.3 35.8 55.4
SD (Pezeshki et al., 2020) I 71.3 62.2 50.8 34.8 54.7
SagNet (Nam et al., 2021) I 67.4 60.7 44.0 34.2 51.6
Mixup (Yan et al., 2020) I 67.1 55.9 51.1 27.2 50.3
DANN (Ganin et al., 2016) I 67.5 57.0 42.8 30.6 49.5
VREx (Krueger et al., 2020) I 63.9 54.9 38.6 30.1 46.9
ERM (Vapnik, 1999) I 62.5 53.2 37.4 29.0 45.5

Table 2. Results (in %) on the Domainbed with multi-source DG
setting.

Algorithm
Dataset

Avg.
VLCS PACS OfficeHome TerraIncognita

Ours 78.3 ± 0.4 85.7 ± 0.1 70.1 ± 0.1 49.5 ± 0.9 70.9

GVRT (PTE) (Min et al., 2022) 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 70.6

MIRO (Cha et al., 2022) 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 71.3

CORAL (Sun & Saenko, 2016) 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 70.3

SagNet (Nam et al., 2021) 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 70.2

SelfReg (Kim et al., 2021) 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 69.6

Mixup (Yan et al., 2020) 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 69.5

ERM (Vapnik, 1999) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 68.9

for domain generalization task. The dataset is split into
four domains: Photo, Cartoon, Art, and Painting. We fol-
low the common experimental protocol and use the official
split. We also evaluate our model on four datasets from
DomainBed (Gulrajani & Lopez-Paz, 2020). Especially
on the following four datasets: VLCS (Fang et al., 2013),
PACS (Venkateswara et al., 2017), OfficeHome (Li et al.,
2017) and TerraIncognita (Beery et al., 2018). We use the
class definitions from Oxford dictionary for text inputs as in
GVRT.

3.2. Results
We evaluate our model by using a single domain as the target
and the others as sources. Our model is evaluated on CUB-
DG and compared with 13 other DG algorithms, as shown
in Table 1. The complete table is in the Appendix G. Our
proposed method clearly outperforms the other domain gen-
eralization techniques in all target domains with a significant
gain. In terms of the average image classification accuracy,
ours show 59.1%, which is 2.1% higher than GVRT (which
uses the same image and text inputs) and 3.7%-14.3% higher
than other image-only approaches.

In Table 2, our method ranks 2nd in average performance
among the top 11 algorithms among the top 11 algorithms.
The complete table is also in the Appendix G. However, we
believe that there is still room for improvement, as textual
definitions often include non-visual descriptions that limit
the benefits of using a multi-modal dataset.

Figure 3 shows image regions and sets of words that are
matched by our model, such as matching a bird’s eye re-
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(a) This bird has wings that are black and has orange eyes.
(b) This bird has a white head and chest that

slowly turns in to a peach color near his feet,
and has extremely long tail feathers that are longer than his body. 

(c) This bird has wings that are black and has a long neck.

(a) (b) (c)

Figure 3. Examples of the image region in visual graph clusters
matched with texts in textual graph clusters.

gion with the words “orange eyes”. Our model effectively
matches image features with class-discriminative texts.

Ablation studies and more analyses are in Appendix. Fur-
thermore, robust qualitative visualizations in Appendix sug-
gest that our model learns domain-invariant features.

4. Conclusion
We propose a novel method, which utilizes textual de-
scriptions by aligning them with a clustering-based graph-
matching algorithm to train domain-invariant visual rep-
resentations. We evaluate our model with state-of-the-art
domain generalization approaches on CUB-DG and Do-
mainBed datasets, achieving higher or matched scores than
baselines.

Acknowledgements. This work was supported by the
National Research Foundation of Korea grant (NRF-
2021R1C1C1009608, 10%), Basic Science Research Pro-
gram (NRF-2021R1A6A1A13044830, 10%) and by Insti-
tute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) (2022-0-00264 (45%) and 2022-0-00043
(25%)). S. Kim is partially supported by Culture, Sports,
and Tourism R&D Program through the Korea Creative Con-
tent Agency grant funded by the Ministry of Culture, Sports
and Tourism in 2023 (Project Name: 4D Content Genera-
tion and Copyright Protection with Artificial Intelligence,
Project Number: R2022020068, 10%).

References
Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. Invariant risk minimization. arXiv

preprint arXiv:1907.02893, 2019.
Beery, S., Van Horn, G., and Perona, P. Recognition in terra incognita. In Proceedings of the

European conference on computer vision (ECCV), pp. 456–473, 2018.
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A. Overview
This appendix contains supplementary information that couldn’t be included in the main manuscript due to page constraints.
Section B provides an overview of the related works, and Section C covers implementation details. Additionally, Section D
offers detailed information on the graph-based visual representation. Furthermore, this appendix includes elaborate analyses
in Sections E and F. Finally, Section H presents the detailed results of the Domainbed experiments.

B. Related Works
B.1. Domain Generalization.

Domain generalization refers to the task of improving a model’s generalization performance on unseen target domains where
data distribution differs from the source domains. The main idea of domain generalization is to learn domain-invariant
features from multiple source domains. Various methods have been proposed to resolve this problem by (i) reducing domain
discrepancies in the feature space (Sun & Saenko, 2016; Ganin et al., 2016), (ii) by implementing data augmentation (Yan
et al., 2020). (iii) Other studies have proposed using auxiliary semantic cues to facilitate learning domain-invariant
features (Cha et al., 2022).

Recently, GVRT (Min et al., 2022) successfully leverages textual descriptions for models to learn domain-invariant visual
representations by aligning them with verbalized (domain-invariant and class-discriminative) knowledge from humans’
typical reasoning (e.g., given a text “this bird is black with an orange spot on its wing”). Following the similar line of
GVRT (Min et al., 2022), we also want to improve the model’s generalization power by leveraging visual and textual inputs
together. However, we focus more on aligning locally-aware high-order semantic relations via graph structures instead of
simply matching global representations.

B.2. Graph Neural Network.

Along with the huge success of neural networks in computer vision and natural language processing domains, new
methodologies to deal with irregular structural inputs have been recently suggested. To learn the representations from the
structural inputs, such as molecular graphs, social networks, and meshes, various types of graph-based neural network
algorithms are suggested. According to the ways of representing graph data, convolution-based methods(GCN (Kipf &
Welling, 2016)), attention-based methods(GAT (Veličković et al., 2017)), and message-passing methods(MPNN (Gilmer
et al., 2017)) can be applied to graph representation learning. Recently, the applications of graph neural networks have been
extended to image and text domains (Liu et al., 2020). By representing the image and text inputs as graphs, it becomes
possible to consider the irregular and high-order correlations between tokens. In this paper, we suggest representing the
multimodal inputs as graphs and matching the semantic correspondences between the multimodal inputs using graph neural
networks to get the domain-invariant features.

C. Implementation Details
Same as previous domain generalization approaches, we also use ImageNet (Deng et al., 2009) pre-trained ResNet-50 (He
et al., 2016a) as our backbone, yielding a 2,048-dimensional visual representation from the last layer. Our model is trained
end-to-end for 5,000 training steps using Adam optimizer with a learning rate of 5e-5. We use the value of 0.1, 0.1, and
1 for λp, λh and λd. For training, we use standard image augmentations techniques such as random cropping, horizontal
flipping, color jittering, grayscale conversion, and normalization. Our implementation is based on DomainBed (Gulrajani &
Lopez-Paz, 2020), which is a unified domain generalization testbed. For hyperparameters, we set a batch size to 32 for each
source domain, and we use both 1 for λglobal and λlocal, respectively.

D. Locally-aware Visual Graph Construction
In this section, we describe more detailed process of constructing the locally-aware visual graph. First, our backbone
(ResNet50 (He et al., 2016b)) produces features of size m′ ×m′ × d. The features are then transformed through average
pooling to obtain a size of m×m× d, where m×m corresponds to M . This pooling operation is equivalent to dividing
the image I into M grids (refer to Figure 4 (a)). Each grid corresponds to a node in the visual graph, and possesses a
d-dimensional feature. In our experiments, we set m and M to 14 and 196, respectively. Next, we compute the L2 distance
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between each node and all other nodes in the graph, and sort them in ascending order. Subsequently, we select the Kv

nearest nodes to each node. Figure 4 (b) shows the process of ranking nodes based on their L2 distance from each node,
with only the top two nodes selected. Finally, we can build the locally-aware visual graph, which has M nodes with Kv

neighboring nodes.

(a)

…

selected selected

(b) (c)

Figure 4. 3 Steps to construct Locally-aware Visual Graph

E. Ablation Study

Table 3. Out-of-distribution test accuracies (in %) on the CUB-DG dataset. We compare variants of our model with and without (i) Visual
Graph and (ii) Textual Graph.

Visual
Graph

Textual
Graph

Target Domain Avg.
Photo Cartoon Art Paint

- - 68.5 59.0 38.6 32.5 49.6
✓ - 70.3 57.0 48.1 33.5 52.2
- ✓ 75.0 64.4 53.0 34.7 56.8
✓ ✓ 75.4 65.5 54.0 41.5 59.1

Table 4. Out-of-distribution test accuracies (in %) on the CUB-DG dataset. We compare variants of our model with and without (i) global
graph alignment (i.e. graph-level feature matching) and (ii) local graph alignment (i.e. clustering-based graph node matching).

Global
Alignment
Lglobal

Local
Alignment

Llocal

Target Domain Avg.
Photo Cartoon Art Paint

- - 65.1 52.5 38.2 29.0 46.2
- ✓ 71.4 61.3 49.4 34.5 57.2
✓ ✓ 75.4 65.5 54.0 41.5 59.1

E.1. Two types of Graphs

We analyze the effect of graph-based visual and textual encoders regarding the out-of-distribution test accuracies. Table 3
shows that either using visual or textual graph alone improves model generalization, but the gain is marginal with the visual
graph alone. Also, the gain is maximized by using both graphs. This indicates that building a graph structure effectively
transfers text knowledge to train a generalizable visual encoder.

E.2. Two types of Alignment Losses

We also perform an ablation study to verify the effect of our proposed global and local alignments. As shown in Table 4,
using a global alignment, which aligns graph-level features together, is effective in improving accuracies, especially in
photo, cartoon, and art domains. Adding local alignment, which aligns graphs via the clustering-based matching algorithm,
improves all domains, especially a large gain in the Paint domain is observed. Overall, a model using global and local
alignments generally outperforms the alternatives, showing 59.1% in average accuracy.
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Table 5. Out-of-distribution test accuracies (in %) on the CUB-DG dataset. We compare our model with and without graph-based visual
representation classification.

Classification
for gv

Target Domain Avg.
Photo Cartoon Art Paint

- 74.7 62.3 52.3 35.7 56.2
✓ 75.4 65.5 54.0 41.5 59.1

E.3. Graph-based Visual Representation Classification

As described in the paper, we introduced an additional classifier that takes gv as an input to effectively capture the class-
discriminative features. This classifier is a linear layer trained by the standard cross-entropy loss. Analysis of the results
presented in Table 5 shows the inferior performance when the aforementioned classifier is not trained, demonstrating that
the classifier is crucial to performance.

F. Visualization
F.1. GradCAM Visualizations

(a) GVRT (b) GDG

Figure 5. GradCAM (Selvaraju et al., 2017) visualizations to evaluate where the model sees for (a) GVRT (Min et al., 2022) and (b) Ours.

In Figure 5, we use Grad-CAM (Selvaraju et al., 2017) to visualize image regions where the model focuses on for the final
verdict. We observe that our model generally focuses on multiple class-discriminative features, giving the benefits of more
robust and generalizable recognition performance.

F.2. t-SNE

Overall t-SNE. Figure 6 exhibits a visualization of the embedding space using t-SNE (Van der Maaten & Hinton, 2008).
The t-SNE visualizes embeddings in a lower-dimensional space by aligning KL divergence with pairwise similarities in the
latent space. To differentiate between target domains, we employ distinct marker styles, and for class separation, we employ
different colors.

Figure 6 exhibits a visualization of the embedding space using t-SNE (Van der Maaten & Hinton, 2008). The t-SNE
visualizes embeddings in a lower-dimensional space by aligning KL divergence with pairwise similarities in the latent space.
To differentiate between target domains, we employ distinct marker styles, and for class separation, we employ different
colors.

An ideal generalizable model would demonstrate that visual features belonging to the same class regardless domains are
gathered together. This would indicate that the model relies on more domain-invariant features. From this perspective, both
GVRT and our method clearly outperform ERM. ERM exhibits scattered points per domain, while both GVRT and our
method display better clustering of features from the same class but different domains. Notably, in the case of our method,
features on the paint domain are closely located within the red boxes, suggesting a potential degradation in generalization
performance in that particular domain.

In addition, Figure 6 (d) presents box-plots for GVRT and our method, highlighting a significant observation. Our model
demonstrates lower inter-domain distances between instances of the same class compared to GVRT.
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Figure 6. Visualizations by t-SNE for (a) ERM (Vapnik, 1999), (b) GVRT (Min et al., 2022), and (c) Ours. (d) We also compare
inter-domain same-class distances.

Matched t-SNE. In Figure 7, we provide a detailed t-SNE (Van der Maaten & Hinton, 2008) visualization of GVRT (Min
et al., 2022) and ours with matched image samples. Note that we mark diffrent shapes to represent target domains and
different colors to represent classes.

In Figure 7 (a), images that belong to the same domain (ie. paint style) but diffrent classes are gathered together in the
GVRT feature space. Examining the corresponding images, they have their own class discriminative characteristics like the
color of beak and pattern of feather, except that they share a common domain style. In other words, the features of images
can be located far away if the class discriminative characteristic is captured. Therefore, it can be inferred that the GVRT
model relies more on the domain-specific features rather than domain-invaraint features for the images, limiting the ability
of generalization.

Figure 7 (b) shows the distribution of images that belong to the same class but different domains. In our model, the features
of same classes are located close each other unlike GVRT where the features of paint domain are located far away. In fact,
our inter-domain distance is lower than GVRT. Thus, we can infer that ours captures more domain-invaraint features than
GVRT for the images.

G. Complete Table Versions of Table 1, Table 2
Table 6 is the complete version of tha Table 1 in paper and Table 7 is the complete version of the Table 2.

H. Per-domain Results on Domainbed
In Table 8–11, we report per-domain results on each of the four multi-domain datasets from the large-scale DomainBed
(Gulrajani & Lopez-Paz, 2020) experiments. We provide the averaged results from three independent trials. In each of the
three trials, all choices, such as the dataset split, hyperparameter search, and weight initialization are selected randomly. For
model selection, we used the validation set from the source domains. The reported numbers for SelfReg (Kim et al., 2021),
and mDSI (Bui et al., 2021) were obtained from their respective papers, and the numbers for the remaining results were
reported in the Domainbed (Gulrajani & Lopez-Paz, 2020). Note that GVRT (Min et al., 2022) and ours use multi-modal
inputs (images and texts), while others only use images.
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GVRT

Ours

(b) Same class, different domains

(a) Same domain, different classes

Photo ArtCartoon Paint

Photo ArtCartoon Paint

Inter domain distance 

GVRT : 19.65  >  Ours : 15.11

Inter domain distance 

GVRT : 19.34  >  Ours : 14.74

§ Domain : Paint

§ Class : Horned Puffin

Photo Cartoon Art Paint

§ Class : Bobolink

Photo Cartoon Art Paint

Figure 7. Visualization by t-SNE for GVRT and Ours with matched image samples.
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Table 6. We assess the accuracies of out-of-distribution samples (in %) on the CUB-DG dataset using a multi-source DG task setup. In
this setup, one domain serves as the test domain while the others act as source domains. We compare our approach with 13 existing DG
methods. Note that our approach, as well as GVRT (Min et al., 2022), utilize multi-modal inputs (images and texts), whereas the other
methods solely rely on images. Abbr. I: Image, T: Text.

Algorithm Modality
Target Domain

Avg.
Photo Cartoon Art Paint

Ours I+T 75.4 65.5 54.0 41.4 59.1
GVRT (PTE) (Min et al., 2022) I+T 74.6 64.2 52.2 37.0 57.0

CORAL (Sun & Saenko, 2016) I 72.2 63.5 50.3 35.8 55.4
SD (Pezeshki et al., 2020) I 71.3 62.2 50.8 34.8 54.7
SagNet (Nam et al., 2021) I 67.4 60.7 44.0 34.2 51.6

MixStyle (Zhou et al., 2020) I 59.0 56.7 50.3 35.8 50.4
Mixup (Yan et al., 2020) I 67.1 55.9 51.1 27.2 50.3

DANN (Ganin et al., 2016) I 67.5 57.0 42.8 30.6 49.5
CDANN (Li et al., 2018c) I 65.3 55.2 43.2 30.5 48.6

VREx (Krueger et al., 2020) I 63.9 54.9 38.6 30.1 46.9
ERM (Vapnik, 1999) I 62.5 53.2 37.4 29.0 45.5

ARM (Zhang et al., 2020) I 62.3 51.2 38.2 28.4 45.0
GroupDRO (Sagawa et al., 2019) I 60.9 54.8 36.5 27.0 44.8

IRM (Arjovsky et al., 2019) I 60.6 51.6 36.5 30.3 44.8

Table 7. The test accuracies (in %) on the DomainBed dataset (VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara
et al., 2017) and TerraIncognita (Beery et al., 2018)) in the multi-source DG task setting. We compare ours with the existing 19 other DG
approaches. The reported numbers for MIRO, Fish, SelfReg, and mDSI were obtained from their respective papers, and the numbers for
the remaining results were reported in the Domainbed. Note that GVRT (Min et al., 2022) and ours use multi-modal inputs (images and
texts), while others only use images. Abbr. I: Image, T: Text

Algorithm Modality
Dataset

Avg.
VLCS PACS OfficeHome TerraIncognita

Ours I+T 78.3 ± 0.4 85.7 ± 0.1 70.1 ± 0.1 49.5 ± 0.9 70.9
GVRT (PTE) (Min et al., 2022) I+T 79.0 ± 0.2 85.1 ± 0.3 70.1 ± 0.1 48.0 ± 0.2 70.6

MIRO (Cha et al., 2022) I 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 71.3
mDSDI (Bui et al., 2021) I 79.0 ± 0.3 86.2 ± 0.2 69.2 ± 0.4 48.1 ± 1.4 70.6

CORAL (Sun & Saenko, 2016) I 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 70.3
SagNet (Nam et al., 2021) I 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 70.2
SelfReg (Kim et al., 2021) I 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 69.6
Mixup (Yan et al., 2020) I 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 69.5

Fish (Shi et al., 2021) I 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 69.3
MLDG (Li et al., 2018a) I 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 69.2

VREx (Krueger et al., 2020) I 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 69.0
ERM (Vapnik, 1999) I 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 68.9

DANN (Ganin et al., 2016) I 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 68.7
RSC (Huang et al., 2020) I 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 68.6

IRM (Arjovsky et al., 2019) I 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 68.5
MTL (Blanchard et al., 2021) I 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 68.5

ARM (Zhang et al., 2020) I 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 68.3
CDANN (Li et al., 2018c) I 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 67.9
MMD (Li et al., 2018b) I 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 67.6

GroupDRO (Sagawa et al., 2019) I 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 67.6
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Table 8. Per-domain out-of-distribution test accuracies on the PACS (Li et al., 2017) dataset. Abbr. I: Image, T: Text

Algorithm Modality Art Painting Cartoon Photo Sketch Avg.

Ours I+T 87.1 ± 0.5 79.8 ± 0.4 97.7 ± 0.1 78.3 ± 0.7 85.7
GVRT (PTE) (Min et al., 2022) I+T 87.9 ± 0.3 78.4 ± 1.0 98.2 ± 0.1 75.7 ± 0.4 85.1

SagNet (Nam et al., 2021) I 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
mDSDI (Bui et al., 2021) I 87.7 ± 0.4 80.4 ± 0.7 98.1 ± 0.3 78.4 ± 1.2 86.2

CORAL (Sun & Saenko, 2016) I 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
SelfReg (Kim et al., 2021) I 87.9 ± 1.0 79.4 ± 1.4 96.8 ± 0.7 78.3 ± 1.2 85.6

ERM (Vapnik, 1999) I 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
Fish (Shi et al., 2021) I - - - - 85.5

MIRO (Cha et al., 2022) I - - - - 85.4
RSC (Huang et al., 2020) I 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
ARM (Zhang et al., 2020) I 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1

VREx (Krueger et al., 2020) I 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
MLDG (Li et al., 2018a) I 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
MMD (Li et al., 2018b) I 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6

MTL (Blanchard et al., 2021) I 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
Mixup (Yan et al., 2020) I 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6

GroupDRO (Sagawa et al., 2019) I 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
DANN (Ganin et al., 2016) I 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
IRM (Arjovsky et al., 2019) I 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
CDANN (Li et al., 2018c) I 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6

Table 9. Per-domain out-of-distribution test accuracies on the OfficeHome (Venkateswara et al., 2017) dataset. Abbr. I: Image, T: Text

Algorithm Modality Art Clipart Product Real-world Avg.

Ours I+T 66.7 ± 1.0 55.4 ± 0.4 78.2 ± 0.4 80.0 ± 0.3 70.1
GVRT (PTE) (Min et al., 2022) I+T 66.3 ± 0.1 55.8 ± 0.4 78.2 ± 0.4 80.4 ± 0.2 70.1

MIRO (Cha et al., 2022) I - - - - 70.5
mDSDI (Bui et al., 2021) I 68.1 ± 0.3 52.1 ± 0.4 76.0 ± 0.2 80.4 ± 0.2 69.2

CORAL (Sun & Saenko, 2016) I 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
Fish (Shi et al., 2021) I - - - - 68.6

Mixup (Yan et al., 2020) I 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
SagNet (Nam et al., 2021) I 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
SelfReg (Kim et al., 2021) I 63.6 ± 1.4 53.1 ± 1.0 76.9 ± 0.4 78.1 ± 0.4 67.9
MLDG (Li et al., 2018a) I 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8

ERM (Vapnik, 1999) I 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
MTL (Blanchard et al., 2021) I 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx (Krueger et al., 2020) I 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4

MMD (Li et al., 2018b) I 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
GroupDRO (Sagawa et al., 2019) I 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0

DANN (Ganin et al., 2016) I 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN (Li et al., 2018c) I 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
RSC (Huang et al., 2020) I 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
ARM (Zhang et al., 2020) I 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8

IRM (Arjovsky et al., 2019) I 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
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Table 10. Per-domain out-of-distribution test accuracies on the TerraIncognita (Beery et al., 2018) dataset. Abbr. I: Image, T: Text

Algorithm Modality L100 L38 L43 L46 Avg.

Ours I+T 56.9 ± 3.0 45.5 ± 0.7 57.7 ± 1.4 37.8 ± 0.8 49.5
GVRT (PTE) (Min et al., 2022) I+T 53.9 ± 1.3 41.8 ± 1.2 58.2 ± 0.9 38.0 ± 0.6 48.0

MIRO (Cha et al., 2022) I - - - - 50.4
SagNet (Nam et al., 2021) I 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
mDSDI (Bui et al., 2021) I 53.2 ± 3.0 43.3 ± 1.0 56.7 ± 0.5 39.2 ± 1.3 48.1
Mixup (Yan et al., 2020) I 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG (Li et al., 2018a) I 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7

IRM (Arjovsky et al., 2019) I 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
CORAL (Sun & Saenko, 2016) I 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6

SelfReg (Kim et al., 2021) I 48.8 ± 0.9 41.3 ± 1.8 57.3 ± 0.7 40.6 ± 0.9 47.0
DANN (Ganin et al., 2016) I 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
RSC (Huang et al., 2020) I 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

VREx (Krueger et al., 2020) I 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
ERM (Vapnik, 1999) I 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1

CDANN (Li et al., 2018c) I 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL (Blanchard et al., 2021) I 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6

ARM (Zhang et al., 2020) I 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
Fish (Shi et al., 2021) I - - - - 45.1

GroupDRO (Sagawa et al., 2019) I 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
MMD (Li et al., 2018b) I 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2

Table 11. Per-domain out-of-distribution test accuracies on the VLCS (Fang et al., 2013) dataset. Abbr. I: Image, T: Text

Algorithm Modality Caltech LabelMe SUN09 VOC2007 Avg.

Ours I+T 98.3 ± 0.3 64.6 ± 0.7 73.6 ± 2.2 76.6 ± 0.8 78.3
GVRT (PTE) (Min et al., 2022) I+T 98.8 ± 0.1 64.0 ± 0.3 75.2 ± 0.5 77.9 ± 1.0 79.0

MIRO (Cha et al., 2022) I - - - - 79.0
mDSDI (Bui et al., 2021) I 97.6 ± 0.1 66.5 ± 0.4 74.0 ± 0.6 77.8 ± 0.7 79.0

CORAL (Sun & Saenko, 2016) I 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
DANN (Ganin et al., 2016) I 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
IRM (Arjovsky et al., 2019) I 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
VREx (Krueger et al., 2020) I 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
SelfReg (Kim et al., 2021) I 96.7 ± 0.4 65.2 ± 1.2 73.1 ± 1.3 76.2 ± 0.7 77.8
SagNet (Nam et al., 2021) I 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8

Fish (Shi et al., 2021) I - - - - 77.8
ARM (Zhang et al., 2020) I 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
MMD (Li et al., 2018b) I 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5

CDANN (Li et al., 2018c) I 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
ERM (Vapnik, 1999) I 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5

Mixup (Yan et al., 2020) I 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MTL (Blanchard et al., 2021) I 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2

MLDG (Li et al., 2018a) I 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
RSC (Huang et al., 2020) I 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

GroupDRO (Sagawa et al., 2019) I 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7


