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Abstract

While vision transformers are able to solve a wide variety of computer vision
tasks, no pre-training method has yet demonstrated the same scaling laws as
observed in language models. Autoregressive models show promising results, but
are commonly trained on images that are cropped or transformed into square images,
which distorts or destroys information present in the input. To overcome this
limitation, we propose NARAIM, a vision model pre-trained with an autoregressive
objective that uses images in their native aspect ratio. By maintaining the native
aspect ratio, we preserve the original spatial context, thereby enhancing the model’s
ability to interpret visual information. In our experiments, we show that maintaining
the aspect ratio improves performance on a downstream classification task.

1 Introduction

Recent research has shown that pre-training large transformer models on vast datasets produces
highly capable models, which can be fine-tuned for various tasks [4} |19]]. In language modelling,
this is achieved by training models with billions of parameters on next-token prediction using
datasets with trillions of tokens, as this prediction task scales well with data, compute, and model
size [4} 9 [13 14} |16l [18]. However, in computer vision, no pre-training task has shown similarly
favourable scaling laws [10]]. For example, reconstruction tasks, e.g., masked autoencoders, have been
found lacking when transferred to downstream tasks [1,[11]. Inspired by the success of autoregressive
objectives in language, El-Nouby et al. [10] introduce Autoregressive Image Models (AIM), a class
of vision transformers (ViTs) [8] trained with next patch prediction. These models achieve promising
results, demonstrating similar scaling behaviours to autoregressive language models [10].

While ViTs can efficiently train on images with varying aspect ratios, the common practice remains
to resize images to a square resolution for training, typically using random resized cropping, which
can distort image information while providing regularization [2} 5 10, [17]. However, Dehghani et al.
[6]] suggest that maintaining the native aspect ratio improves classification performance. We further
hypothesize that this distortion is even more critical for generative pre-training objectives, where
resizing could disrupt patterns or structures the model needs to reproduce.
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F1gure 1: NARAIM approach. The input is divided into patches in row-major order, which are then
processed by a vision transformer. The pre-training head utilizes the transformer’s output to predict
the next token based on the preceding ones. Meanwhile, the classification head, implemented with an
attention probe, uses the transformer’s output to predict a class.

Thus, in this paper, we propose Native Aspect Ratio Autoregressive Image Models (NARAIM),
an AIM model that utilizes native aspect ratio inputs [6} [7, [I0]. By preserving the aspect ratio
during pre-training, our approach improves downstream classification accuracy without increasing
computational costs, as the total number of input tokens remains constant. Additionally, since images
with varying aspect ratios require positional embeddings that adapt to different image layouts, we
highlight the advantages of fractional positional embeddings in the pre-training process [6]]. Finally,
we demonstrate that random cropping while preserving the native aspect ratio serves as an effective
regularizer, outperforming the standard random resized crop method in the original AIM models,
particularly on inputs with highly non-square aspect ratios.

2 Autoregressive Image Modeling with Native Aspect Ratios

In this section, we introduce NARAIM: Native Aspect Ratio Autoregressive Image Models, a variant
of Autoregressive Image Models (AIM) that maintains the native aspect ratio of input images. AIM
divides images into patches using a raster (row-major) ordering, which are subsequently processed
by a ViT [8]]. Using a causal attention mask, the objective of the ViT is to predict the next image
patch in pixel space, which results in a strong representation model which can be fine-tuned for
downstream applications. For a consistent shape, AIM resizes and crops images changing their aspect
ratio, thus distorting potentially crucial image structures (see Figure 2). In NARAIM, we remove
these distortions by using an aspect ratio preserving resize, as detailed below.

Native Aspect Ratio Resize. Instead of forcing an image into a square shape of exactly 2242 pixels,
we rescale the input image to an overall pixel number of approximately 2242, while keeping the
aspect ratio unchanged. Next, we take a crop from the top-left such that the height and the width are
some integer multiple of the patch size. After cropping, we split the image into square patches of size
14 using a raster (row-major) ordering, which results in at most 256 patches. The patches are then
processed by the ViT and used to predict the next patch in pre-training, as shown in Figure[T] or other
objectives like classification in downstream tasks later. Figure [2]illustrates the difference between
the traditional pre-processing of inputs in square-sized images and the native aspect ratio resize. As
images of different shapes can still produce small variations in the token number, we add padding
tokens where needed, and mask them in the loss calculation.

Downstream Adaptation. When the pre-training is completed, the model generates a feature
vector for each patch. In order to evaluate the quality of these features, we freeze the ViT backbone
and replace the pre-training head with a trainable attentive classification probe. We chose to use
an attentive probe instead of a linear probe, as El-Nouby et al. [10] found that the attentive probe
performs substantially better. Moreover, we keep the input format to the models consistent, i.e., a
model that was pre-trained on native aspect ratio inputs will also be used to classify native aspect ratio
images. To more easily adapt the model to downstream tasks when causal attention is not needed
anymore we randomly sample a prefix causal attention mask during pre-training, similar to EI-Nouby
et al. [10]. We refer to Appendix [D]for more details.

Augmentations. The original AIM applied a random resized crop augmentation during training,
which crops the image and changes its aspect ratio. While this augmentation helps to reduce
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Figure 2: Native aspect ratio resize. Given a crop, it is common to resize it to a fixed-sized square.
Since the image is going to be patchified and fed to a transformer, and the transformer itself is
agnostic to the spatial organization of the patches, we propose keeping the native aspect ratio. First,
we reshape the image keeping the aspect ratio fixed, ensuring the total number of pixels does not
exceed 2242, Then, we patchify the image, obtaining at most 256 patches.

overfitting, the distortions negatively impact the quality of the representations learned, as we show
in Section[3] To maintain the regularization benefit, we adapt this augmentation to NARAIM by
applying a random crop with the same aspect ratio as the original model, as explained in Figure 2]
In addition, we impose the constraint that the crop needs to contain at least 2242 pixels to prevent
crops that would require severe upsampling. Additionally, we apply a random horizontal flip during
training. During inference and downstream evaluation, we just take a native aspect ratio crop for
NARAIM. For AIM, we follow El-Nouby et al. and first resize the image so that the shortest
side is 256 pixels, and then we take a center crop with a side length of 224 pixels.

Positional Embeddings. Positional embeddings play a significant role in helping the model
understand the spatial location of the patches. We experiment with two different ways of calculating
the positional embeddings: absolute and fractional [6]]. The key difference is that absolute positional
embeddings use the index of the patch along the horizontal and vertical axes, whereas fractional
positional embeddings use the proportion, that is, the index divided by the number of patches along
that direction. For the absolute positional embedding, we take the height and width indices, encode
them using the fixed transformation from Vaswani et al. [19], and concatenate both representations.
For the fractional variant, we get the height and width proportions, encode them using a learned
dense layer, and sum them as in Dehghani et al. [6]. A mathematical formulation of how to compute
these two positional embeddings can be found in Appendix [C}

We anticipate that absolute positional embeddings may cause problems when tested on images whose
aspect ratio is out-of-distribution, whereas fractional positional embeddings are likely to generalize
more easily. Moreover, fractional positional embeddings enable the model to recognize when a patch
is near the edge (since the proportion will approach 1), whereas absolute positional embeddings do
not provide this information, as the total number of patches is unknown.

Loss Functions. We use two different loss functions for the pre-training head: with and without
patch normalization. Let x; € R3F * be the ith patch, where P is the height and width of a patch.
Then, with normalization, as proposed by He et al. [11]], the i prediction target y; € R3” *is
Vi = (Xit+1 — (Xi41))/0(Xi41). Without normalization, the prediction target is simply y; = X;11.

The loss function is the mean-squared error (MSE) between the predicted and ground-truth input: we
sum up the squared differences per subpixel and divide by the total number of subpixels in the patch.
For fine-tuning on the classification task, we use a standard cross-entropy loss function.

3 Results and Discussion

To demonstrate the benefits of native aspect ratios in NARAIM, we compare NARAIM to AIM
on ImageNet-1k [[7]], used for both the pre-training and the downstream tasks as in the small-scale
studies of El-Nouby et al. [10]]. Our model is implemented in JAX/Flax [3}[12] and trained on a single



Table 1: Validation MSE and accuracy of the pre-training and classification heads on ImageNet-1k
with a ViT-B/14 backbone. The fine-tuning was repeated with four different seeds, and we report
the mean and standard deviation. Using native aspect ratios in NARAIM improves the downstream
classification accuracy over the original AIM [10] model. The results also highlight the importance
of fractional embeddings, random crop augmentations, and normalization. In the first column, plus
and minus signs are relative to the original NARAIM model (Appendix [B).

Model Next-Token MSE Class Accuracy
AIM 0.340 54.7+0.6
NARAIM (ours) 0.357 55.4£0.1

+ Fractional embedding 0.354 56.0 £ 0.1

+ RandomCrop 0.354 56.8 £0.1

- Normalization 0.010 52.6 +£0.1

40GB Nvidia A100 GPU. Due to limited resources, our backbone is a ViT-B/14 with roughly 86M
parameters and hence a scaled-down implementation of the original AIM model which had more than
600M parameters. Prior research [6] has shown that scaling models trained on native aspect ratio
results in improved performance. We plan to verify that this scaling law extends also to our results in
future work. Appendix [B|details the hyperparameters, and we make our code publicly availableﬂ

The results in Table[T] demonstrate that NARAIM outperforms AIM in downstream performance.
The best NARAIM model achieves a validation accuracy of 56.8 £ 0.1, surpassing AIM by more
than two percentage points. While the pre-training validation MSE is lower for the AIM model, the
ultimate goal of these models is to create useful representations for downstream tasks. To measure
the usefulness of representations for downstream tasks, the downstream validation accuracy is a more
useful proxy than the pre-training validation MSE. In Appendix [El we visualize the MSE across
different patch locations in the image. Both methods show similar MSE patterns, with the borders
being most difficult due to the patch discontinuity.

Ablations. As for the ablation studies, we find that using fractional embeddings provides a small
accuracy increase over absolute embeddings, likely due to the model with fractional embeddings
being slightly better at classifying images whose aspect ratio is out-of-distribution. Using random
crops substantially increases the downstream validation accuracy, which is explained by the fact that
the base NARAIM model overfits during pre-training: thus, random crops alleviate this issue. Finally,
looking at patch-wise normalization, we note that the pre-training MSE is on a different scale, and
therefore cannot be compared. As for the downstream validation accuracy, we note that patch-wise
normalization is very important. One intuitive explanation is this: if patches are not normalized, the
pre-trained model will be geared towards detecting global patterns. Hence, the classifier may develop
shortcuts such as predicting “boat” whenever it detects a blue patch, decreasing the accuracy.

Effect of Aspect Ratio. To gain further insights into the 2
improved performance, we group images by their aspect =4 AM 0
ratios and visualize the classification accuracy per group 1 _2_ miﬁ%”mﬁm,
in Figure [3| First, we note that results on the bins with —d— NARAIM + RandomCrop
aspect ratio (0,1/2) and (2, inf) are slightly noisy due to

only containing several hundred images (see Appendix [A]
for more information). Nonetheless, we observe that the
accuracies for the NARAIM models are higher than that
of the AIM model for every bin. We also note that the
performance of the AIM model decreases when the model S Uaw DA @sa e
is applied to inputs with non-square aspect ratios, showing Aspect ratio (W/H)

its focus on square-shaped images. The “NARAIM" and
“NARAIM + Fractional" models showcase slightly noisy
behavior over the bins, which may be attributed to the
earlier observation that they overfit on the training set due
to a lack of data augmentation.
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Figure 3: The classification accuracy
over image aspect ratios. NARAIM im-
proves across all aspect ratios.

In comparison, the performance for “NARAIM + RandomCrop" model is remarkably stable in
the middle three bins. Furthermore, we find a significant performance improvement for strongly

https://github.com/daniel-gallo/naraim
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horizontal images, though the precise gap may be noisy due to limited samples in this bin. Overall, we
conclude that our “NARAIM + RandomCrop" model is better at dealing with images with non-square
aspect ratios than the “AIM" model.

Conclusion. In this paper, we have introduced NARAIM, a vision transformer model pre-trained
with an autoregressive objective that uses images in their native aspect ratio. We showed that using
native aspect ratios improves the downstream classification performance, in particular for non-square
images, emphasizing the importance of modeling images in their original aspect ratio in autoregressive
image models. In future work, we plan to scale our model to 600 million parameters to benchmark
it against the original AIM and validate its benefits at scale, as well as extending the downstream
evaluation to more tasks.

References

[1] Randall Balestriero and Yann LeCun. 2024. How Learning by Reconstruction Produces Uninfor-
mative Features For Perception. In Forty-first International Conference on Machine Learning.

[2] Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
Assran, and Nicolas Ballas. 2024. Revisiting Feature Prediction for Learning Visual Represen-
tations from Video. Transactions on Machine Learning Research. Featured Certification.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. 2018.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners. In Advances in
Neural Information Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc.

[5] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos
Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van
Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine
Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader
Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran,
Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil
Houlsby. 2023. Scaling Vision Transformers to 22 Billion Parameters. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 7480-7512. PMLR.

[6] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, Avital
Oliver, Piotr Padlewski, Alexey Gritsenko, Mario Lucic, and Neil Houlsby. 2023. Patch n’ Pack:
NaViT, a Vision Transformer for any Aspect Ratio and Resolution. In Advances in Neural
Information Processing Systems, volume 36, pages 2252-2274. Curran Associates, Inc.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248-255.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In International Conference on Learning Representations.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The LLaMA
3 Herd of Models. arXiv preprint arXiv:2407.21783.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Vaishaal Shankar,
Alexander T Toshev, Joshua M. Susskind, and Armand Joulin. 2024. Scalable Pre-training
of Large Autoregressive Image Models. In Forty-first International Conference on Machine
Learning.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. 2022.
Masked Autoencoders Are Scalable Vision Learners. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 15979-15988.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX. 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent
Sifre. 2022. Training compute-optimal large language models. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS 22, Red Hook, NY,
USA. Curran Associates Inc.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for Neural
Language Models. arXiv preprint arXiv:2001.08361.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1-67.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
2024. Gemini 1.5: Unlocking Multimodal Understanding Across Millions of Tokens of Context.
arXiv preprint arXiv:2403.05530.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with
convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1-9.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. LLaMA:
Open and Efficient Foundation Language Models. arXiv preprint arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.



17,500

15,000

12,500

10,000

Count

7,500

5,000

2,500

0.4 0.6 0.8 1.0 1

2 14 1.6 1.8 20
Width / Height

Figure 4: Aspect ratio distribution. This histogram shows the aspect ratios of the ImageNet-1k
validation set. Most of the images are in landscape orientation, but we can observe three modes
corresponding to portrait, square, and landscape images.

A Aspect ratio distribution

We use ImageNet-1k to train our models, both during pre-training and downstream classification.
Figure[]illustrates the aspect ratio of the images in the validation set.

B NARAIM specifications

The baseline NARAIM model uses absolute positional embeddings, patch-wise normalization, and
no random cropping. In Table 2] we show the hyperparameters of the backbone and in Table 3] we
show the training parameters.

Table 2: Hyperparameters of the backbone (ViT-B/14).

Name Value
Patch size 14
Number of layers 12
Number of heads 12
Embedding dimension 768
Hidden dimension 3,072

Table 3: Training parameters (very similar to EI-Nouby et al. [[10]).

Parameter Pre-training value | Fine-tuning value
Optimizer AdamW AdamW
Optimizer momentum B1=0.9,8 =098 | 81 =0.9, 3, = 0.999
Peak learning rate le~3 le=3

Minimum learning rate 0 le=®

Weight decay 0.01 0.1

Batch size 512 512

Patch size 14 x 14 14 x 14

Gradient clipping 1.0 3.0

Decay rate (for Ir scheduler) | 0.1 -

Warmup iterations 5,000 500

Cooldown iterations 10,000 -

Total iterations 500,000 50,000

Learning rate schedule exponential cosine decay




C Positional embeddings

To calculate the fractional embedding for a patch x;, let h;, w; be the vertical and horizontal indices
of the patch x; in the input, with H, W the total number of vertical and horizontal patches in the
input. Then, the fractional embedding for the patch is f(h;/H) + g(w; /W), where f and g are
learnable one-layer perceptrons.

Regarding the absolute embeddings, let h;, w; again be the vertical and horizontal indices, and let ¢
be the function introduced in the original Transformer paper [19]:

d(pos, 2i) = sin(pos/10000%/%),

and ‘
¢(pos, 2i + 1) = cos(pos/10000%/4),

where d = %. The complete positional embedding is then:
¢(hla1 d) EBd)(wZal d)7

where & denotes concatenation.

D Prefix causal attention

Adapting a model trained with causal attention to downstream tasks may cause issues: due to the
attention mask, the model only learns to create representations using causal attention. This means
that for a token x;, only the information from tokens {x, ..., x;_1 } will be incorporated. However,
in downstream tasks, every token should be able to attend to every other token.

Prefix causal attention addresses this issue by selecting a random integer n between 1 and N — 1,
where N is the number of tokens in an input [15]. Then, for tokens {x1, ..., X, }, the causal attention
mask is dropped, and every token in this set can attend to every other token in the set. For the
remaining tokens, {X,, 11, ..., Xn }, we use the standard causal attention mask. Predictions for tokens
{X1,...,Xp} are not included in the loss calculation, as the tokens could be trivially predicted. Figure
[]displays the prefix causal attention for pre-training and fine-tuning.

El-Nouby et al. [10] trained networks with both prefix causal attention and regular causal attention,
and found that prefix causal attention substantially improved the performance on downstream tasks.

Figure 5: Prefix causal attention. For pre-training (left), we uniformly sample a prefix length n
during pre-training (e.g., n = 3). The attention for the first n patches is set to be bidirectional and
no loss will be computed for them. The rest of the patches adopt a causal mask and their loss is
calculated. During fine-tuning to a downstream task (right), the mask is discarded. The gray patches
represent the padding, which are added for reasons explained in Section@

E Raster patterns across patches

While El-Nouby et al. [10] reports the validation MSE per-row, we report it per-patch in Figure 6]
This is easy to compute for AIM, that always has 256 patches. The first one is never predicted, which
is why it is white on Figure [6a]
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Figure 6: Per-patch validation MSE. In both models we see that predicting the first row and the first
column is harder. Predicting the first row is hard because there is no information about the previous
line. Predicting the first column is challenging because these patches are not correlated with the

previous ones due to the carriage return.

For NARAIM, we first map the patch index to the interval [0, 1], and then we discretize this into 16
bins. The first patch is never predicted, but the second patch can lie in the first bin if the image was
horizontal. Hence, the white square of Figure [6a)is not present in Figure [6b]
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