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ABSTRACT

Q-learning played a foundational role in the field reinforcement learning (RL).
However, TD algorithms with off-policy data, such as Q-learning, or nonlinear func-
tion approximation like deep neural networks require several additional tricks to
stabilise training, primarily a large replay buffer and target networks. Unfortunately,
the delayed updating of frozen network parameters in the target network harms the
sample efficiency and, similarly, the large replay buffer introduces memory and
implementation overheads. In this paper, we investigate whether it is possible to
accelerate and simplify off-policy TD training while maintaining its stability. Our
key theoretical result demonstrates for the first time that regularisation techniques
such as LayerNorm can yield provably convergent TD algorithms without the need
for a target network or replay buffer, even with off-policy data. Empirically, we find
that online, parallelised sampling enabled by vectorised environments stabilises
training without the need for a large replay buffer. Motivated by these findings,
we propose PQN, our simplified deep online Q-Learning algorithm. Surprisingly,
this simple algorithm is competitive with more complex methods like: Rainbow
in Atari, PPO-RNN in Craftax, QMix in Smax, and can be up to 50x faster than
traditional DQN without sacrificing sample efficiency. In an era where PPO has
become the go-to RL algorithm, PQN reestablishes off-policy Q-learning as a
viable alternative. We open-source our code at: https://github.com/mttga/purejaxql.

1 INTRODUCTION

In reinforcement learning (RL), the challenge of developing simple, efficient and stable algorithms
remains open. Temporal difference (TD) methods have the potential to be simple and efficient,
but are notoriously unstable when combined with either off-policy sampling or nonlinear function
approximation (Tsitsiklis & Van Roy, 1997). Starting with the introduction of the seminal deep
Q-network (DQN)(Mnih et al., 2013), many tricks have been developed to stabilise TD for use with
deep neural network function approximators, most notably: the introduction of batched learning
through a replay buffer (Mnih et al., 2013), target networks (Mnih et al., 2015), trust region based
methods (Schulman et al., 2015), double Q-networks (Wang & Blei, 2017; Fujimoto et al., 2018),
maximum entropy methods (Haarnoja et al., 2017; 2018) and ensembling (Chen et al., 2021). Out of
this myriad of algorithmic combinations, proximal policy optimisation (PPO) (Schulman et al., 2017)
has emerged as the de facto choice for RL practitioners, proving to be a strong and efficient baseline
across popular RL domains. Unfortunately, PPO is far from stable and simple: PPO does not have
provable convergence properties for nonlinear function approximation and requires extensive tuning
and additional tricks to implement effectively (Huang et al., 2022a; Engstrom et al., 2020).

Recent empirical studies (Lyle et al., 2023; 2024; Bhatt et al., 2024) provide evidence that TD can be
stabilised without target networks by introducing regularisation such as BatchNorm (Ioffe & Szegedy,
2015) and LayerNorm (Ba et al., 2016; Nauman et al., 2024) into the Q-function approximator. Little
is known about why these techniques work or whether they have unintended side-effects. Motivated
by these findings, we ask: are regularisation techniques such as BatchNorm and LayerNorm the
key to unlocking simple, efficient and stable RL algorithms? To answer this question, we provide a
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rigorous analysis of regularised TD. We summarise our core theoretical contributions as: I) Introduce
a highly general and widely applicable analysis of TD stability; II) we show introducing LayerNorm
and ℓ2 regularisation into the Q-function approximator leads to provable convergence, stabilising
nonlinear and/or off-policy TD without the need for target networks or replay buffers.

Many applications in RL allow for multiple actions to be taken in an environment at once, solving a
parallel world problem. Guided by our theoretical insights, we develop a modern off-policy value-
based TD method which we call a parallelised Q-network (PQN): for simplicity, we revisit the original
Q-learning algorithm (Watkins, 1989), which updates a Q-function approximator without a target
network. A recent breakthrough in RL has been running the environment and agent jointly on the
GPU (Makoviychuk et al., 2021; Gu et al., 2023; Lu et al., 2022; Matthews et al., 2024b; Rutherford
et al., 2023; Lange, 2022). However, the replay buffer’s large memory footprint makes pure-GPU
training impractical with traditional DQN. With the goal of enabling Q-learning in pure-GPU setting,
we propose replacing a large replay buffer with a synchronous update across a large number of
parallel environments, reducing memory requirements. For stability, we integrate our theoretical
findings in the form of a regularised deep Q network. We provide a schematic of our proposed PQN
algorithm in Fig. 1d.
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Figure 1: Classical Q-Learning directly interacts with the environment and updates the learned Q-values at each
transition. In contrast, DQN stores experiences in a replay buffer and trains a Q-network using minibatches
sampled from this buffer. Distributed DQN enhances this approach by collecting experiences in parallel threads,
while a separate process continually trains the network (i.e. a learner module and multiple actors modules run
concurrently and independently). Similar to online Q-Learning, PQN trains a Q-network with the experiences
as they are collected in the same process, but conducts interactions and learning in batches.

To validate our theoretical results, we evaluated PQN in Baird’s counterexample, a challenging
domain that is provably divergent for off-policy methods (Baird, 1995). Our results show that PQN
can converge where non-regularised variants fails. We provide an extensive empirical evaluation
to test the performance of PQN in single-agent and multi-agent settings. Despite its simplicity, our
algorithm is competitive in a range of tasks; notably, PQN achieves high performances in just a few
hours in many games of the Arcade Learning Environment (ALE) (Bellemare et al., 2013), competes
effectively with PPO on the open-ended Craftax task (Matthews et al., 2024a), and stands alongside
state-of-the-art Multi-Agent RL (MARL) algorithms, such as MAPPO in Overcooked (Carroll et al.,
2019) and Hanabi (Bard et al., 2020) and Qmix in Smax (Rutherford et al., 2023). Despite not
sampling from a large buffer of historic data, the faster convergence of PQN demonstrates that the
sample efficiency loss can be minimal. This positions PQN as a strong method for efficient and stable
RL in the age of deep vectorised Reinforcement Learning (DVRL).

We summarise our empirical contributions: I) we propose PQN, a simplified, parallelised, and
normalised version of DQN which eliminates the use of both large replay buffers and the target
network; II) we demonstrate that PQN is fast, stable, simple to implement, uses few hyperparameters,
and is compatible with pure-GPU training and temporal-based networks such as RNNs, and III)
our extensive empirical study demonstrates PQN achieves competitive results in significantly less
wall-clock time than existing state-of-the-art methods.

2 PRELIMINARIES

Let ∥·∥ denote the ℓ2-norm and P(X ) the set of all probability distributions over a set X .

2.1 REINFORCEMENT LEARNING

In this paper, we consider the infinite horizon discounted RL setting, formalised as a Markov Decision
Process (MDP) (Bellman, 1957; Puterman, 2014): M := ⟨S,A, PS , P0, PR, γ⟩ with bounded
state space S, bounded action space A, transition distribution PS : S × A → P(S), initial state
distribution P0 ∈ P(S), bounded stochastic reward distribution PR : S ×A → P([−rmax, rmax])
where rmax ∈ R < ∞ and scalar discount factor γ ∈ [0, 1). An agent in state st ∈ S taking action
at ∈ A observes a reward rt ∼ PR(st, at). The agent’s behaviour is determined by a policy that
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maps a state to a distribution over actions: π : S → P(A) and the agent transitions to a new state
st+1 ∼ PS(st, at). As the agent interacts with the environment through a policy π, it follows a
trajectory τt := (s0, a0, r0, s1, a1, r1, . . . st−1, at−1, rt−1, st) with distribution Pπ

t . For simplicity,
we denote state-action pair xt := (st, at) ∈ X where X := S ×A. The state-action pair transitions
under policy π according to the distribution Pπ

X(x) : X → P(X ).

The agent’s goal is to learn an optimal policy of behaviour π⋆ ∈ Π⋆ by optimising the expected
discounted sum of rewards over all possible trajectories Jπ, where: Π⋆ := argmaxπ J

π is the
set of optimal policies for the objective Jπ := Eτ∞∼Pπ

∞
[
∑∞

t=0 γ
trt]. The expected discounted

reward for an agent in state st for taking action at is characterised by a Q-function, which is defined
recursively through the Bellman equation: Qπ(xt) = Bπ[Qπ](xt), where the Bellman operator
Bπ projects functions forwards by one step through the dynamics of the MDP: Bπ[Qπ](xt) :=
Ext+1∼Pπ

X(xt),rt∼PR(xt) [rt + γQπ(xt+1)]. Of special interest is the Q-function for an optimal
policy π⋆, which we denote as Q⋆(xt) := Qπ⋆(xt). The optimal Q-function satisfies the optimal
Bellman equation Q⋆(xt) = B⋆[Q⋆](xt), where B⋆ is the optimal Bellman operator: B⋆[Q⋆](xt) :=
Est+1∼PS(xt),rt∼PR(xt) [rt + γmaxa′ Q⋆(st+1, a

′)].

2.2 TEMPORAL DIFFERENCE METHODS

Many RL algorithms employ TD learning for policy evaluation, which combines bootstrapping, state
samples and sampled rewards to estimate the expectation in the Bellman operator (Sutton, 1988). We
introduce a Q-function approximation Qϕ : X → R parametrised by ϕ ∈ Φ to represent the space of
Q-functions. We assume that Qϕ is initialised from a distribution ϕ0 ∼ PΦ. In their simplest form,
TD methods estimate the application of a Bellman operator by updating the Q-function approximator
parameters according to:

ϕi+1 = ϕi + αi (r + γQϕi(x
′)−Qϕi(x))∇ϕQϕi(x), (1)

where x ∼ dµ, r ∼ PR(x), x
′ ∼ Pπ

X(x) and αi is a sequence of stepsizes satisfying the standard
Robbins-Munro conditions (Robbins & Monro, 1951):
Assumption 1 (RM Conditions). We assume αi > 0 with

∑∞
i=0 αi = ∞ and

∑∞
i=0 α

2
i < ∞.

Here dµ ∈ P(X ) is a sampling distribution, and µ is a sampling policy that may be different from
the target policy π. Methods for which the sampling policy differs from the target policy are known
as off-policy methods. In this paper, we will study the Q-learning (Watkins, 1989; Dayan, 1992)
TD update: ϕi+1 = ϕi + αi(r + γ supa′ Qϕi

(s′, a′)−Qϕi
(x))∇ϕQϕi

(x), which aims to learn an
optimal Q-function by estimating the optimal Bellman operator. As data in Q-learning is gathered
from an exploratory policy µ that is not optimal, Q-learning is an inherently off-policy algorithm.
For simplicity of notation we define the tuple ς := (x, r, x′) with distribution Pς and the TD-error
vector as:

δ(ϕ, ς) := (r + γQϕ(x
′)−Qϕ(x))∇ϕQϕ(x), (2)

allowing us to write the TD parameter update as: ϕi+1 = ϕi + αiδ(ϕi, ς). Typically, dµ is the
stationary state-action distribution of an ergodic Markov chain but may be another offline distribution
such as a distribution induced by a replay buffer. We introduce the following mild regularity
assumptions for our analysis.
Assumption 2 (Regularity Assumptions). Assume that Φ ⊂ Rd is compact and convex and δ(ϕ, ς) is
Lipschitz in ϕ, ς . When updating TD, x ∼ dµ is either sampled i.i.d. from a distribution with support
over X or is sampled from a geometrically ergodic Markov chain with stationary distribution dµ.

The condition of Φ ⊂ Rd being compact is ubiquitous in TD theory and stochastic approximation
(Papavassiliou & Russell, 1999; Nemirovski et al., 2009; Maei et al., 2010; Kushner, 2010; Lacoste-
Julien et al., 2012; Bhandari et al., 2018; Wang et al., 2020; Yang et al., 2019; Zhang et al., 2021) and
can be achieved by projecting any ϕ /∈ Φ back into Φ using the projection PΦ(ϕ

′) := argminϕ∈Φ∥ϕ−
ϕ′∥. Projection is a mathematical formality and should not be required in practice as Φ can be made
large enough to contain all updates when TD is stable and a suitable stepsize regime is chosen. Finally,
geometric ergodicity extends traditional notions of aperiodicity and irreducibility in discrete MDPs
to the more general continuous state-action space formulations (see Roberts & Rosenthal (2004) for
details). It is one of the weakest ergodicity assumptions.

We denote the expected TD-error vector as: δ(ϕ) := Eς∼Pς [δ(ϕ, ς)], and define the set of TD fixed
points as: ϕ⋆ ∈ {ϕ|δ(ϕ) = 0}. If a TD algorithm converges, it must converge to a TD fixed point as
the expected parameter update is zero for all ϕ⋆. We remark that convergence to a TD fixed point
does not imply a value error of zero between the approximate and true Q-function (Kolter, 2011).
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2.3 VECTORISED ENVIRONMENTS

Parallelising the interactions between an RL agent and a learning environment is a standard method for
speeding up training. In classical frameworks like Gymnasium (Towers et al., 2023), this is achieved
by processing multiple environments via multi-threading. In more recent GPU-based frameworks like
IsaacGym (Makoviychuk et al., 2021), ManiSkill2 (Gu et al., 2023), Jumanji (Bonnet et al., 2024),
Craftax (Matthews et al., 2024b), JaxMARL (Rutherford et al., 2023) the environments’ operations
are vectorised, meaning that they are performed together using batched tensors. This allows an
agent to easily interact with thousands of environments, and it enables the compilation of end-to-end
GPU learning pipelines, which can accelerate the training of on-policy agents like PPO and A2C
by orders of magnitude (Makoviychuk et al., 2021; Weng et al., 2022; Gu et al., 2023; Lu et al.,
2022). Unfortunately, end-to-end single-GPU training is not compatible with traditional off-policy
methods like DQN for two reasons: firstly, maintaining a replay buffer in GPU is not feasible in
complex environments, as it would occupy most of the GPU memory; and secondly, the convergence
of off-policy methods demands a very high number of updates in relation to the sampled experiences
(DQN traditionally performs one gradient step per environment step). Commonly, parallelisation
of Q-Learning (like in Ape-X (Horgan et al., 2018), R2D2 (Kapturowski et al., 2018) and a recent
method presented in Li et al. (2023)) is achieved by continuously training the Q-network in a separate
process in order to keep up with the fast sampling (see Fig. 1c), a setup that is not feasible in a
single pure-GPU setting. For this reason, all referenced frameworks primarily provide PPO or A2C
baselines, i.e. vectorised RL lacks a off-policy Q-learning baseline.

2.4 RELATED WORK

Our paper makes several significant contributions across a range of interconnected threads in RL
research. We provide an extensive discussion of all related work in Appendix A.

3 ANALYSIS OF REGULARISED TD

ϕ⋆

αtδ(ϕt)

ϕt+1

ϕt

ϕt − ϕ⋆

Figure 2: Geometric interpre-
tation of TD stability crite-
rion. Expected updates in the
shaded ball ensure contrac-
tion mapping.

Proofs for all theorems and corollaries can be found in Appendix B
Building on (Bhandari et al., 2018; Fellows et al., 2023), we now develop
a powerful and general Jacobian analysis tool to characterise stability
of TD approaches used in practice (Section 3.1). We then apply this
analysis to regularised TD, confirming our theoretical hypothesis that
careful application of LayerNorm and ℓ2 regularisation can stabilise TD
(Section 3.2). Finally, we compare LayerNorm to BatchNorm regularisa-
tion techniques in Section 3.3, explaining our preference for LayerNorm.
Recalling that x = (s, a), we remark that our results can be derived for
value functions by setting x = s in our analysis.

3.1 STABILITY OF TD

As TD updates aren’t a gradient of any objective, they fall under the more general class of algorithms
known as stochastic approximation (Robbins & Monro, 1951; Borkar, 2008). Stability is not
guaranteed in the general case and convergence of TD methods has been studied extensively (Watkins
& Dayan, 1992; Tsitsiklis & Van Roy, 1997; Dalal et al., 2017; Bhandari et al., 2018; Srikant &
Ying, 2019). We now extend the methods of Fellows et al. (2023) to study general nonlinear TD
in a Markov chain, meaning our analysis applies exactly to TD methods used in practice. Key to
determining stability of the TD updates is establishing that the Jacobian is negative definite:

TD Stability Criterion: Define the TD Jacobian as J(ϕ) := ∇ϕδ(ϕ). The TD stability
criterion holds if the Jacobian is negative definite, that is: v⊤J(ϕ)v < 0 for any test vector
v ̸= 0 and ϕ ∈ Φ, except possibly on a set of measure 0.

Intuitively, the Jacobian replaces the Hessian from classical optimisation theory (Boyd & Vanden-
berghe, 2004), which measures curvature of the underlying objective, thereby ensuring convexity.
As TD methods are not a gradient of any objective, the TD stability condition instead implies
δ(ϕt)

⊤(ϕt−ϕ⋆) < 0 for all ϕt, ensuring the expected update vector will always move the parameters
closer to a fixed point with a sufficiently small stepsize. We sketch a geometric interpretation in
Fig. 2. Mathematically, if the TD stability criterion holds, then as stepsizes approach zero in the limit
limi→∞ αi = 0, there exists some t such that for every i > t each update is a contraction mapping:
E [∥ϕi+1 − ϕ⋆∥] < E [∥ϕi − ϕ⋆∥]. This key condition allows us to prove convergence of TD:
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Theorem 1 (TD Stability). Let Assumptions 1 and 2 hold. If the TD criterion holds then the TD
updates in Eq. (1) converge with: limi→∞ E

[
∥ϕi − ϕ⋆∥2

]
= 0.

We can split the TD Jacobian condition into two separate off-policy and nonlinear components:
v⊤J(ϕ)v = COffPolicy(Qϕ, d

µ) + CNonlinear(Qϕ), whose negativity ensure the overall TD stability
criterion is satisfied (see Appendix B.1). This naturally yields two forms of TD instability:

Off-policy Instability: The TD stability criterion can be violated if:

COffPolicy(Qϕ, d
µ) := γEς∼Pς

[
v⊤∇ϕQϕ(x

′)v⊤∇ϕQϕ(x)
]
− Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
< 0, (3)

does not hold for any test vector v. To better understand the off-policy component, we invoke the
Cauchy-Schwarz inequality to show Eς∼Pς

[(
v⊤∇ϕQϕ(x

′)
)2] ≤ Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
is key

to proving COffPolicy(Qϕ, d
µ) < 0 (see Appendix B.1 for a derivation). Unfortunately, ergodic theory

reveals this condition only holds in the on-policy sampling regime, i.e. when dµ = dπ , for both i.i.d.
or Markov chain sampling. For off-policy sampling, the distributional shift between the target policy
π and the sampling policy µ can cause the expectation Eς∼Pς

[(
v⊤∇ϕQϕ(x

′)
)2]

to be arbitrarily
large. We conclude that COffPolicy(Qϕ, d

µ) characterises the degree of distributional shift that TD
can tolerate before becoming unstable and off-policy sampling is a key source of instability in TD,
especially in algorithms such as Q-learning.

Nonlinear Instability: The TD stability criterion can be violated if:
CNonlinear(Qϕ) := Eς∼Pς

[
(r + γQϕ(x

′)−Qϕ(x))v
⊤∇2

ϕQϕ(x)v
]
< 0, (4)

does not hold for any test vector v. This condition does not apply in the linear case as second order
derivatives are zero: ∇2

ϕQϕ(x) = 0. In the nonlinear case, the left hand side of the inequality can be
arbitrarily positive depending upon the specific MDP and choice of function approximator. Hence
nonlinearity is a key source of instability in TD which is characterised by CNonlinear(Qϕ). Together
both off-policy and nonlinear instability formalise the deadly triad (Sutton & Barto, 2018a; van
Hasselt et al., 2018) and TD can be unstable if either Conditions 3 or 4 are not satisfied. We now
investigate how LayerNorm with ℓ2 regularisation can tackle these sources of instability.

3.2 STABILISING TD WITH LAYERNORM + ℓ2 REGULARISATION

To understand how LayerNorm with ℓ2 regularisation stabilises TD, we study the following Q-
function approximator:

Qk
ϕ(x) = w⊤σPost ◦ LayerNormk [σPre ◦Mx] . (5)

Here ϕ = [w⊤,Vec(M)⊤] is the parameter vector where M ∈ Rk×d is a k × d matrix where each
row ∥mi∥ is bounded, w ∈ Rk is a vector of final layer weights where ∥w∥ is bounded and σPre and
σPost are element-wise C2 continuous activations with bounded 2nd order derivatives. We assume
the final activation σPost is LPost-Lipschitz with σPost(0) = 0 (e.g. tanh, identity, GELU, ELU...).
LayerNorm (Ba et al., 2016) is defined element-wise as:

LayerNormk
i [f(x)] :=

1√
k
·

fi(x)− 1
k

∑k−1
j=0 fj(x)√

1
k

∑k−1
i=0 (fi(x)−

1
k

∑k−1
j=0 fj(x))

2 + ϵ
, (6)

where ϵ > 0 is a small constant introduced for numerical stability. Deeper networks with more
LayerNorm layers may be used in practice, however our analysis reveals that only the final layer
weights affect the stability of TD with wide LayerNorm neural networks. We observe that adding
LayerNorm does not affect the representational capacity of the network as it merely rescales the
input according to a standard Gaussian. The output is then rescaled due to the final linear layer. As k
increases, the empirical mean and standard deviations in Eq. (6) approach their true expectations,
thereby increasing the degree of normalisation provided. Using the LayerNorm Q-function, we can
bound the off-policy and nonlinear components of the TD stability condition:
Lemma 2. Let Assumption 2 apply. Let vw be the first k components of the test vector v = [v⊤w , v

⊤
M ]⊤,

associated with final layer parameters w, and vM be the remaining components, associated with the
matrix parameters Vec(M). Using the LayerNorm Q-function defined in Eq. (5):

Off-Policy Bound: COffPolicy(Q
k
ϕ, d

µ) ≤ ∥vw · γLPost/2∥2 +O
(
∥vM∥2

/k
)
, (7)

Nonlinear Bound: CNonlinear(Q
k
ϕ) = O

(
∥v∥2

/
√
k
)
, (8)

almost surely for any test vector v and any state-action transition pair x, x′ ∈ X .
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Analysis in Eq. (7) and Eq. (8) of Lemma 2 reveals that as the degree of regularisation increases,
that is in the limit k → ∞, all nonlinear instability can be mitigated: limk→∞ CNonlinear(Q

k
ϕ) = 0

and a residual term is left in the off-policy bound: limk→∞ COffPolicy(Q
k
ϕ, d

µ) ≤ ∥vw · γLPost/2∥2. The
nonlinear bound in Eq. (8) can be explained using established theory of wide neural networks; as
layer width increases, second order derivative terms tend to zero (Liu et al., 2020). Our proof extends
this theory, showing that LayerNorm preserves this property.

As linear function approximators still stuffer from off-policy instability due the distributional shift
between π and µ, linearisation of wide networks cannot explain the bound in Eq. (7). Instead, our
proof for Lemma 2 reveals this bound is due to the normalising property of LayerNorm, which
upper bounds the expected norm: Ex∼dµ

[∥∥LayerNormk[Mx]
∥∥] ≤ 1 regardless of the sampling

distribution dµ or magnitude of M . This yields a bound with a residual term of ∥vw · γLPost/2∥2 that is
independent of π and µ, overcoming the distributional shift issue responsible for off-policy instability.
We tackle it by targeting ϕ with ℓ2 regularisation using the following TD update vector:

δkreg(ϕ, ς) := δk(ϕ, ς)−
(
η (γLPost/2)

2

[
w
0

]
+ (η − 1)

[
0

Vec(M)

])
, (9)

for any η > 1 where δk(ϕ, ς) is the TD update vector from Eq. (2) using the LayerNorm critic from
Eq. (5) respectively. Eq. (9) yields a bound:

COffPolicy(Q
k
ϕ, d

µ) ≤ (1− η)
(
∥vw · γLPost/2∥2 + ∥vM∥2

)
+O (1/k) ,

which implies COffPolicy(Q
k
ϕ, d

µ) < 0 with sufficiently large k, meaning the TD stability criterion will
be satisfied. We now formally confirm now this intuition:
Theorem 2. Let Assumption 2 apply. Using the LayerNorm regularised TD update δkreg(ϕ, ς) in
Eq. (9), there exists some finite k′ such that the TD stability criterion holds for all k > k′.
In Section 5.1 we test our theoretical claim in Theorem 2 empirically, demonstrating that LayerNorm
+ ℓ2 regularisation can stabilise Baird’s counterexample, an MDP intentionally designed to cause
TD to diverge (Baird, 1995). We remark that whilst adding an ℓ2 regularisation term −ηϕ to all
parameters can stabilise TD alone, large η recovers a quadratic optimisation problem with minimum
at ϕ = 0, pulling the TD fixed points towards 0. Hence, we suggest ℓ2-regularisation should be used
sparingly; only when LayerNorm alone cannot stabilise the environment and initially only over the
final layer weights. Aside from Baird’s counterexample, we find LayerNorm without ℓ2 regularisation
can stabilise all environments in our extensive empirical evaluation in Section 5.

3.3 LAYERNORM AND BATCHNORM TD
We have seen from Theorem 2 that LayerNorm + ℓ2 regularised TD can stabilise TD by mitigating
the effects of nonlinearity and off-policy sampling. Empirical evidence suggests that BatchNorm
(Ioffe & Szegedy, 2015) regularisation, which is essential for stabilising algorithms such as CrossQ
(Bhatt et al., 2024), may also possess similar properties to LayerNorm. It is natural to ask: ‘what are
the potential benefits of LayerNorm over BatchNorm methods?’

Naïvely applying BatchNorm as presented by Ioffe & Szegedy (2015) does not stabilise TD as
CrossQ does not succeed without applying several modifying ‘tricks’ such as double Q-learning,
batch renormalisation using running statistics and calculating the batch statistics from a mixture of
datasets (Bhatt et al., 2024). In contrast, LayerNorm + ℓ2 regularisation benefits from the strong
theoretical guarantees in Theorem 2 without burdening practioners with additional tricks and their
associated hyperparameter tuning. Additionally, compared to BatchNorm, LayerNorm does not
require memory or estimation of the running batch averages.

Our empirical analysis in Section 5 shows that BatchNorm can degrade performance in some cases,
while in others it can improve results if applied early in the network. Therefore, we don’t dismiss
BatchNorm outright, but a thorough theoretical analysis is needed to fully understand its practical
effects. Nonetheless, we recommend starting with LayerNorm and ℓ2 regularisation as a strong,
simple baseline for stabilising TD algorithms before experimenting with alternatives like BatchNorm.

4 PARALLELISED Q-LEARNING

Guided by our analysis in Section 3, we develop a simplified version of deep Q-learning to exploit the
power of parallelised sampling with minimal memory requirements and without target networks. The
Q-Network is regularised with network normalisation (preferably LayerNorm) and ℓ2 regularisation
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as required (see Eq. (9)). As we are developing an online algorithm, it is straightforward to exploit
n-step returns. In Algorithm 1 we present PQN with λ-returns, which is a parallelised variant of
the approach of Daley & Amato (2019). An exploration policy πExplore (ϵ-greedy for this paper)
is rolled out for a small trajectory of size T : (si, ai, ri, si+1 . . . si+T ). Starting with Rλ

i+T =

maxa′ Qϕ(si+T , a
′) the targets are computed recursively back in time from Rλ

i+T−1 to Rλ
i using:

Rλ
t = rt+γ

[
λRλ

t+1 + (1− λ)maxa′ Qϕ(st+1, a
′)
]

or Rλ
t = rt if st is a terminal state. We provide

a derivation of our approach in Appendix B.4. Due to the use of λ-returns and minibatches, we
require a small buffer of size I · T containing interactions from the current exploration policy.

The special case λ = 0 with T = 1 is equivalent to a vectorised variant of Watkins (1989)’s original
Q-learning algorithm with LayerNorm + ℓ2 regularisation where I separate interactions occur in
parallel with the environment.

Algorithm 1 PQN with λ-returns
1: ϕ← initialise regularised Q-network parameters
2: s0 ∼ P0, t← 0
3: for each episode do
4: for each i ∈ {0, 1, . . . I − 1} (in parallel) do
5: ai

t ∼ πExplore(s
i
t), (e.g. ϵ-greedy)

6: rit ∼ PR(s
i
t, a

i
t) s

i
t+1 ∼ PS(s

i
t, a

i
t),

7: t← t+ 1,
8: end for
9: if t mod T = 0 then

10: calculate Rλ,i
t−1 to Rλ,i

t−T ,
11: for number of epochs do
12: for number of minibatches do
13: draw minibatch B of size b ≤ I · T from

{t− T, . . . t− 1} and {0, . . . I − 1}
14: ϕ← ϕ+ αt

2b
∇ϕ

∑
i,t∈B(R

λ,i
t −Qϕ(x

i
t))

2

15: end for
16: end for
17: end if
18: end for

PQN with λ-returns is simpler than ex-
isting state-of-the-art λ-based algorithms
such as Retrace (Munos et al., 2016)
which adopt computationally intensive
techniques to handle the computation of
λ-targets. Similarly, an implementation
of PQN using RNNs only requires sam-
pling trajectories for multiple time-steps
and then back-propagating the gradient
through time in the learning phase. In
contract existing approaches like R2D2
(Kapturowski et al., 2018) that integrate
RNNs with replay buffers must handle hid-
den states of trajectories collected with
old policies during replay. A basic multi-
agent version of PQN for coordination
problems can be obtained by adopting
Value Network Decomposition Networks
(VDN) (Sunehag et al., 2017b), i.e. opti-
mising the joined action-value function as a sum of the single agents action-values. Finally, similar to
PPO, it is possible to increase PQN’s sample efficiency by dividing the collected experiences into
multiple minibatches and using them multiple times within epochs.

Table 1 summarises the advantages of PQN in comparison to popular methods. Compared to
traditional DQN and distributed DQN, PQN enjoys ease of implementation, fast execution, very
low memory requirements, and high compatibility with GPU-based training and RNNs. The only
algorithm that shares these attributes is PPO. However, although PPO is in principle a simple
algorithm, its success is determined by numerous interacting implementation details (Huang et al.,
2022a; Engstrom et al., 2020), making the actual implementation challenging. Moreover, PQN uses
few main hyperparameters, namely the number of parallel environments, the learning rate and epsilon
with its decay, plus the value for λ if λ-returns are used. We emphasise that, whilst PQN can be
run using a single environment interaction at each timestep (i.e. with I = 1, T = 1), yielding a
stable, regularised Q-learning algorithm without a replay buffer (see Fig. 10), PQN is also designed
to exploit vectorisation to solve parallel world problems, i.e. applications trained in simulators where
parallelisation is advantageous and possible.

Table 1: Advantages and Disadvantages of DQN, Distributed DQN, PPO and PQN.

DQN Distr. DQN PPO PQN

Implementation Easy Difficult Medium Very Easy
Memory Requirement High Very High Low Low
Training Speed Slow Fast Fast Fast
Sample Efficient Yes No Yes Yes
Compatibility with RNNs Medium Medium High High
Compatibility w. end-to-end GPU Training Low Low High High
Amount of Hyper-Parameters Medium High Medium Low
Convergence No No No Yes
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Figure 4: (a) Comparison between PPO and PQN in Atari-10. (b) Median score of PQN in the full Atari suite of
57 games. (c) Percentage of games with score higher than human score. (d) Computational time required to run a
single game and the full ALE suite for PQN and DQN implementation of CleanRL. In (c) and (d) performances
of PQN are relative to training for 400M frames.

4.1 BENEFITS OF ONLINE Q-LEARNING WITH VECTORISED ENVIRONMENTS

x0

t = 0

PQN

x0

t = t′

DQN

x ∼ 1
t′+1

∑t′

t=0 d
πt
t

x ∼ dπt′

Figure 3: Sketch of Sampling Regimes
in DQN and PQN

Vectorisation of the environment enables fast collection of
many parallel transitions from independent trajectories. De-
noting the stationary distribution at time t of the MDP under
policy πt as dπt , uniformly sampling from a replay buffer con-
taining historic data estimates sampling from the average of
all distributions across all timesteps: 1

t′+1

∑t′

t=0 d
πt . In con-

trast, vectorised sampling in PQN estimates sampling from the
stationary distribution dπt′ at timestep t’. We sketch the differ-
ence in these sampling regimes in Fig. 3. Coloured lines rep-
resent different state-actions trajectories across the vectorised
environment as a function of timestep t. Crosses represent
samples drawn for each algorithm at timestep t′.

PQN’s sampling further aids algorithmic stability by better approximating this regime in two ways:
firstly, the parallelised nature can help exploration since the (potential) natural stochasticity in the
dynamics means even a greedy policy will explore several different states in parallel. Secondly, by
taking multiple actions in multiple states, PQN’s sampling distribution is a good approximation of
the true stationary distribution under the current policy: as time progresses, ergodic theory states that
this sampling distribution converges to dπt′ . In contrast, sampling from DQN’s replay buffer involves
sampling from an average of older stationary distributions under shifting policies from a single
agent, which will be more offline and take longer to converge, as illustrated in Fig. 3. We emphasise
that PQN is still an off-policy approach since it uses two different policies to optimise the Bellman
equations: the ϵ-greedy policy for the current timestep and the current policy for the next. Notice that
at beginning of training PQN uses an ϵ = 1, meaning that it approximates a value function from a
completely random policy. This requires normalisation to mitigate off-policy instability identified in
Section 3.

5 EXPERIMENTS

In contrast to prior work in Q-learning, which has focused heavily on evaluation in the Atari Learning
Environment (ALE) (Bellemare et al., 2013), probably overfitting to this environment, we evaluate
PQN on a range of single- and multi-agent environments, with PPO as the primary baseline. We
summarise the memory and sample efficiency of PQN in Table 2. Due to our extensive evaluation,
additional results are presented in Appendix D. All experimental results are shown as mean of 10
seeds, except in ALE where we followed a common practice of reporting 3 seeds.

5.1 CONFIRMING THEORETICAL RESULTS

Fig. 5a shows that together LayerNorm + ℓ2 can stabilise TD in Baird’s counterexample (Baird, 1995),
a challenging environment that is intentionally designed to be provably divergent, even for linear
function approximators. Our results show that stabilisation is mostly attributed to the introduction
of LayerNorm. Moreover the degree of ℓ2-regularisation needed is small - just enough to mitigate
off-policy stability due to final layer weights according to Theorem 2 - and it makes relatively little
difference when used in isolation.

5.2 ATARI

To save computational resources, we evaluate PQN against PPO in the Atari-10 suite of games from
the ALE, which estimates the median across the full suite using a smaller sample of games. PQN
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Figure 5: Results in Baird’s Counterexample, Craftax and Multi-Agent tasks. For Smax, we report the
Interquartile Mean (IQM) of the Win Rate on the 9 most popular maps. For Overcooked, we report the IQM of
the returns normalized by the maximum obtained score in the classic 4 layouts. In Hanabi, we report the returns
of self-play in the 2-player game.

outperforms PPO in terms of sample efficiency, final score, and training time (1 hour compared to
2.5 hours for PPO), and also surpasses sample-efficient methods like Double-DQN and Prioritised
DDQN in the same number of frames, despite these methods being trained for several days and
using over 16 times more gradient updates (12.5M compared to 780k for PQN). To further test our
method, we train PQN on the full suite of 57 Atari games. Fig. 4d shows that the time needed to train
PQN on the full Atari suite is equivalent to the time required to train traditional DQN methods on a
single game1. With an additional budget of 100M frames (30 minutes of training), PQN achieves
the median score of Rainbow (Hessel et al., 2018), which is still a SOTA method in ALE for sample
efficiency but requires around 3 days of training per game, meaning that PQN can be considered
50x faster. While Rainbow is slightly more sample efficient, it’s important to note that Rainbow is a
much more complex system, designed specifically for Atari. Moreover, parallelisation of Q-Learning
has traditionally sacrificed far more sample efficiency than PQN. For instance, Ape-X struggles to
solve even the simplest Atari game, Pong, within 200M frames (Horgan et al., 2018). In this regard,
PQN represents a significant advancement in Q-Learning research, offering a balanced compromise
between speed, simplicity, and sample efficiency.

In Appendix D, we provide detailed data from these experiments, a comparison with Dopamine-
Rainbow using the IQM score, and a comparative bar chart (Fig. 13) of the performances of algorithms
in all the games. In this chart, we show that PQN reaches human-level performance in 40 of the
57 games of the ALE, underperforming mainly in the hard-exploration games, suggesting that the
ϵ-greedy exploration used by PQN is too simple to solve ALE, and indicating a clear research
direction to improve the method.

5.3 CRAFTAX

Craftax (Matthews et al., 2024b) is an open-ended RL environment based on Crafter (Hafner, 2021)
and Nethack (Küttler et al., 2020). It is a challenging environment that requires an agent to solve
multiple tasks before completion. By design, Craftax is fast to run in a pure-GPU setting, but existing
benchmarks are based solely on PPO. The observation size of the symbolic environment is around
8000 floats, making a pure-GPU DQN implementation with a buffer prohibitive, as it would take
around 30GBs of GPU-ram. PQN can provide an off-policy Q-learning baseline without using GPU
memory for a replay buffer. Following the Craftax paper, we evaluate for 1B steps and compared
PQN to PPO using both an MLP and an RNN. The RNN results are shown in Fig. 5b. PQN is more
sample efficient and with a RNN obtains a higher score of 16% against the 15.3% of PPO-RNN. The
two methods also take a similar amount of time to train. PQN offers researchers a simple, successful
Q-learning alternative to PPO that can be run on a GPU in this challenging environment.

5.4 MULTI-AGENT TASKS

When dealing with multi-agent problems, any replay buffer needs to store observations for all agents,
increasing the memory requirements up to hundreds of gigabytes. Additionally, RNNs are highly
effective in handling the individual agents’ partial observability of the environments and credit
assignment, a key challenge in MARL, is typically addressed with value-based methods Sunehag
et al. (2017b); Rashid et al. (2020a). Therefore, a memory-efficient, RNN-compatible and value-
based method is highly desirable. We evaluate PQN combined with VDN in Hanabi (Bard et al.,
2020), SMAC-SMACV2 (Ellis et al., 2024; Samvelyan et al., 2019) (in its JAX-vectorised version,
Smax) (Rutherford et al., 2023), and Overcooked (Carroll et al., 2019). Smax is a faster version
of SMAC, running entirely on a single GPU. Notably, when at least 20 agents are active in the
environment, a replay buffer can consume all available memory on a typical 10GB GPU. PQN-VDN
runs successfully on Smax without a large buffer, outperforming MAPPO and QMix. Remarkably,
PQN learns a coordination policy even in the most difficult scenarios in about 10 minutes, compared

1DQN training time was optimistically estimated using the JAX-based CleanRL DQN implementation.
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Figure 6: Ablations confirming the importance of the different components of our method.

to QMix’s 1 hour (see Fig. 17). Similarly, PQN outperforms the replay-buffer-based version of VDN
and PPO in Overcooked, and is significantly more sample-efficient than MAPPO in Hanabi, where it
achieves an average score of 24 points.
5.5 ABLATIONS

To examine the effectiveness of PQN’s algorithmic components, we perform the following abla-
tions.

Regularisation: In Fig. 6a, we examine the impact of regularisation on performance in the Atari-10
suite. Results show that LayerNorm significantly improves performance, supporting the theoretical
findings in Section 3, while BatchNorm can degrade performance when applied through the network.
Additionally, applying the additional tricks from CrossQ further worsens PQN’s performance.

Input Normalisation: In preliminary experiments, we observed that BatchNorm significantly
improves PQN performances in Craftax. Figure 6b compares the performance of PQN RNN with
BatchNorm, LayerNorm, and no normalisation in the two cases where BatchNorm is applied to
the input before the first hidden layer or not. Without input normalisation, BatchNorm provides
a substantial boost. However, PQN performs best when only the input to the first layer is batch
normalised, and applying LayerNorm to the rest of the network offers a similar improvement. This
suggests BatchNorm can be effective as input normalisation, particularly in scenarios like Craftax
with large, sparse observation vectors.

Varying λ: In Fig. 6c we compare different values of λ in Atari-10. We find that a value of
λ = 0.65 performs the best by a significant margin. It significantly outperforms λ = 0 (which is
equal to performing 1-step update with the traditional Bellman operator) confirming that the use of
λ-returns represents an important design choice over one-step TD.

Replay Buffer: In Fig. 6d, we compare PQN from with a variant that maintains a standard sized
replay buffer of 1M of experiences in GPU using Flashbax Toledo et al. (2023). This version
converges to the same final performance but takes ∼6x longer to train, which is likely due to the
constant need to perform random access of a buffer of around 30GBs. This reinforces our core
message that a large memory buffer should be avoided in pure GPU training.

Number of Environments: PQN can learn even with a small number of environments but clearly
benefits from collecting more experiences in parallel (Fig. 6e). As expected, PQN is also significantly
faster when greater parallelisation is used, (see Fig. 10 in Appendix).

6 CONCLUSION Table 2: Summary of Memory Saved and Speedup
of PQN Compared to Baselines. The Atari speedup
is relative to the traditional DQN pipeline, which
runs a single environment on the CPU while training
the network on GPU. Smax and Craftax speedups
are relative to baselines that also run entirely on
GPU but use a replay buffer. The Hanabi speed-up is
relative to an R2D2 multi-threaded implementation.

Memory Saved Speedup

Atari 26gb 50x
Smax 10gb (up to hundreds) 6x
Hanabi 250gb 4x
Craftax 31gb 6x

We have presented the first rigorous analysis explain-
ing the stabilising properties of LayerNorm and ℓ2

regularisation in TD methods. These results allowed
us to develop PQN, a simple, stable and efficient
regularised Q-learning algorithm without the need
for target networks or a large replay buffer. PQN
exploits vectorised computation to achieve excellent
performance across an extensive empirical evalu-
ation with a significant boost in computational ef-
ficiency and without sacrificing sample efficiency.
PQN offers a simple pipeline that is easy to imple-
ment and out-of-the-box compatible with key ele-
ments in RL, such as λ-returns and RNNs, which
are otherwise difficult to use in current Q-Learning implementations. Additionally, it provides a
valuable baseline for multi-agent systems. By saving the memory occupied by large replay buffers,
PQN paves the way for a generation of powerful but stable algorithms that exploit end-to-end GPU
vectorised deep RL.
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REPRODUCIBILITY STATEMENT

All our experiments can be replicated with the following repository:
https://github.com/mttga/purejaxql. Proofs for all theorems and corollaries can be found in
Appendix B.
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regularized, optimistic: scaling for compute and sample-efficient continuous control, 2024. URL
https://arxiv.org/abs/2405.16158. 1

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009. doi: 10.1137/
070704277. URL https://doi.org/10.1137/070704277. 2.2

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf. C

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019. C

Vassilis A. Papavassiliou and Stuart Russell. Convergence of reinforcement learning with general
function approximators. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’99, pp. 748–755, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc. 2.2

Jing Peng and Ronald J. Williams. Incremental multi-step q-learning. In William W. Cohen and
Haym Hirsh (eds.), Machine Learning Proceedings 1994, pp. 226–232. Morgan Kaufmann, San
Francisco (CA), 1994. ISBN 978-1-55860-335-6. doi: https://doi.org/10.1016/B978-1-55860-
335-6.50035-0. URL https://www.sciencedirect.com/science/article/pii/
B9781558603356500350. A.4

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014. 2.1

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020a. 5.4

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020b. A.5

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586. 2.2, 3.1

15

http://dx.doi.org/10.1038/nature14236
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://arxiv.org/abs/2405.16158
https://doi.org/10.1137/070704277
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://www.sciencedirect.com/science/article/pii/B9781558603356500350
https://www.sciencedirect.com/science/article/pii/B9781558603356500350
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586


Published as a conference paper at ICLR 2025

Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and MCMC
algorithms. Probability Surveys, 1(none):20 – 71, 2004. doi: 10.1214/154957804100000024. URL
https://doi.org/10.1214/154957804100000024. 2.2, 1, 1

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023. 1, 1, 2.3, 5.4

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019. 5.4

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/schulman15.html. 1

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347. 1

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), pp. 5887–5896. PMLR, 2019. A.5

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation and
td learning. In Conference on Learning Theory, pp. 2803–2830. PMLR, 2019. 3.1, A.2

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017a. A.5

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017b. 4, 5.4

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, Aug 1988. ISSN 1573-0565. doi: 10.1007/BF00115009. 2.2

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018a. URL http://incompleteideas.net/book/the-book-
2nd.html. 3.1

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018b.
C

Edan Toledo, Laurence Midgley, Donal Byrne, Callum Rhys Tilbury, Matthew Macfarlane, Cyprien
Courtot, and Alexandre Laterre. Flashbax: Streamlining experience replay buffers for reinforce-
ment learning with jax, 2023. URL https://github.com/instadeepai/flashbax/.
5.5

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025. 2.3

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690, May 1997. ISSN 2334-3303.
doi: 10.1109/9.580874. 1, 3.1, A.2

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep Reinforcement Learning and the Deadly Triad. working paper or preprint, December 2018.
URL https://hal.science/hal-01949304. 3.1

16

https://doi.org/10.1214/154957804100000024
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://github.com/instadeepai/flashbax/
https://zenodo.org/record/8127025
https://hal.science/hal-01949304


Published as a conference paper at ICLR 2025

Lingxiao Wang, Qi Cai, Zhuoyan Yang, and Zhaoran Wang. On the global optimality of model-
agnostic meta-learning: reinforcement learning and supervised learning. In Proceedings of the
37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020. 2.2

Yixin Wang and David Blei. Frequentist consistency of variational bayes. Journal of the American
Statistical Association, 05 2017. doi: 10.1080/01621459.2018.1473776. 1

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning (ICML), pp. 1995–2003. PMLR, 2016. C

Christopher J. C. H. Watkins and Peter Dayan. Technical note: q -learning. Mach. Learn., 8(3–4):
279–292, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992698. URL https://doi.org/
10.1007/BF00992698. 3.1

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, University of Cambridge, Cambridge, UK, May 1989. URL http://www.cs.rhul.
ac.uk/~chrisw/new_thesis.pdf. 1, 2.2, 4

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk,
Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan.
EnvPool: A highly parallel reinforcement learning environment execution engine. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 22409–22421. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_
files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-
Datasets_and_Benchmarks.pdf. 2.3

Zhuora Yang, Yuchen Xie, and Zhaoran Wang. A theoretical analysis of deep q-learning, 2019. 2.2

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019. C

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022. A.5

Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, pre-
dicting and better resolving q-value divergence in offline-rl. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 60247–60277. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/bd6bb13e78da078d8adcabbe6d9ca737-Paper-Conference.pdf. A.2

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
network. Proceedings of the International Conference on Machine Learning, Unknown Month
2021. URL NoURL. 2.2

17

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bd6bb13e78da078d8adcabbe6d9ca737-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bd6bb13e78da078d8adcabbe6d9ca737-Paper-Conference.pdf
No URL


Published as a conference paper at ICLR 2025

A RELATED WORK

A.1 ASYNCHRONOUS METHODS AND PARALLELISATION OF Q-LEARNING

Existing attempts to parallelise Q-learning adopt a distributed architecture, where a separate process
continually trains the agent and sampling occurs in parallel threads which contain a delayed copy
of its parameters (Horgan et al., 2018; Kapturowski et al., 2018; Badia et al., 2020; Hoffman et al.,
2020). On the contrary, PQN samples and trains in the same process, enabling end-to-end single
GPU training. While distributed methods can benefit from a separate process that continuously train
the network, PQN is easier to implement, doesn’t introduce time-lags between the learning agent and
the exploratory policy. Moreover, PQN can be optimised to be sample efficient other than fast, while
distributed system usually ignore sample efficiency.

Mnih et al. (2016) propose an asynchronous Q-learning, a parallelised version of Q-learning which
performs updates of a centralised network asynchronously. Compared to PQN, asynchronous Q-
learning still uses target networks and accumulates gradients over many timesteps to update the
network. Moreover, it is a multi-threaded approach where each worker independently performs
exploration and gradient updates with its own target network. This setup results in each actor being
optimised independently with its own experiences and objective, introducing significant noise into
the central learner that periodically unifies the gradients. Finally, the algorithm relies on collecting
historical data: "We also accumulate gradients over multiple timesteps before they are applied" (Mnih
et al., 2016). This undermines a key benefit of parallelised methods, which is avoiding the use of data
collected under historic policies (see Section 4.1).

PQN is a synchronous method where a single actor interacts with vectorised environments, and a
single gradient is computed at once using all the experiences. PQN can be seen as the synchronous
version of that asynchronous Q-Learning algorithm, which has never been implemented before.
Note that moving from asynchronous to synchronous, removing the target networks, and avoiding
multi-step gradient accumulation drastically changes the optimisation procedure and implementation,
resulting in a much simpler and more stable algorithm. To our knowledge, we are the first to unlock
the potential of a parallelised deep Q-learning algorithm with minimal memory requirements and
without target networks.

A.2 ANALYSIS OF TD
Most prior approaches analysing TD focus on linear function approximation. Tsitsiklis & Van Roy
(1997) first proved convergence of linear, on-policy TD, arguing that the projected Bellman operator
in this setting is a contraction. Dalal et al. (2017) give the first finite time bounds for linear TD(0),
under an i.i.d. data model similar to the one that we use here. Bhandari et al. (2018) provide bounds
for linear TD in both the i.i.d. and Markov chain setting. Srikant & Ying (2019) approach the problem
from the perspective of Ordinary Differential Equations (ODE) analysis, bounding the divergence
of a Lyapunov function from the limiting point of the ODE that arises from the TD update scheme.
Analysis of pure TD in the general nonlinear and Markov chain sampling regime is lacking.

Two papers that are most closely related to our work are: (Fellows et al., 2023) and (Yue et al.,
2023).

(Yue et al., 2023) analyses the effect of LayerNorm in TD, however there are several important
differences. Firstly, the paper analyzes the neural tangent kernel (NTK) of the update, which only
exists in the limit of infinite width networks and does not capture the nonlinear instability that we
analyse. We make no such assumption as this will never hold in practice. Instead, we use the analysis
of Fellows et al. (2023) which predates (Yue et al., 2023) and provides a more general framework
for studying TD with finite width nonlinear networks. Moreover, Fellows et al. (2023) provide key
results on establishing stability of general TD using an eigenvalue analysis this is more general but
are remarkably similar to Yue et al. (2023)’s SEEM framework. We extend these results to Markov
chain sampling with normalised regularisation.

Yue et al. (2023) claim that LayerNorm alone can stabilise TD. Under our more general and applicable
analysis, as our results show, LayerNorm without ℓ2 regularisation cannot completely stabilise TD
for all domains. This is because for stability, the Jacobian eigenvalues need to be strictly negative.
As Lemma 2 shows, there may still be a residual positive term that prevents this. Our empirical
results in Baird’s counterexample confirm this, showing that the algorithm can only be stabilised
using normalisation. Existing empirical research (Lyle et al., 2023) also supports this.
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A.3 REGULARISATION IN RL
CrossQ is a recently developed off-policy algorithm based on SAC that removes target networks
and introduces BatchNorm into the critic (Bhatt et al., 2024). CrossQ demonstrates impressive
performance when evaluated across a suite of MuJoCo domain with high sample and computational
efficiency, however no analysis is provided explaining its stability properties or what effect introducing
BatchNorm has. To develop PQN, we performed a rigorous analysis of LayerNorm in TD. Here is a
complete list of the differences between CrossQ and PQN:

• CrossQ is based on a soft-actor critic architecture for continuous action control. Its entropy-
based actor objective optimises a stochastic policy. On the contrary, PQN consists of a
single, simple value network optimised with the standard Bellman Equations, which is used
to learn a deterministic policy for discrete actions.

• CrossQ is not parallelised, i.e., it interacts with a single environment at a time, while a
fundamental contribution of PQN is handling parallel environments for faster training on
modern hardware. Parallelisation of Q-Learning algorithms is not trivial: one cannot simply
interact with multiple environments while leaving the rest of the learning pipeline unchanged,
as this drastically modifies the ratio between interactions with the environments and the
number of gradient updates. PQN approaches this problem by offering a sample-efficient
implementation based on normalisation, Q-Lambda, and mini-batches/mini-epochs updates.

• CrossQ uses a large replay buffer containing data from historical policies to perform updates,
while PQN obtains mini-batches directly from interactions with parallel environments under
a single policy.

• CrossQ is not directly compatible with Q-Lambda and Recurrent Neural Networks because
of the overhead introduced by the replay buffers: the use of old experiences in the update
step makes computation of Q-Lambda unsafe, and the use of hidden states for the RNNs
problematic. To include these methods in CrossQ one should add, e.g., Retrace and Burn-In
techniques. Conversely, the theoretical absence of a replay buffer in PQN allows us to use
them out of the box. Note that these are crucial in many scenarios (see Q-Lambda ablation
for Atari and MLP-RNN results in Craftax).

• There is no theoretical analysis of normalisation in CrossQ and empirical evidence limited
to six Mujoco continuous-action tasks. This is not sufficient to make any reasonable claims
for its performance in general RL scenarios. We give a theoretical basis for our method
and we compare it with baselines across 79 discrete-action tasks (2 Classic Control tasks, 4
MinAtar games, 57 Atari games, Craftax, 9 Smax tasks, 5 Overcooked, and Hanabi). The
limited evaluation provided for CrossQ is concerning, and the results in Mujoco might not
reflect its true capabilities. Our results in Atari demonstrate it.

• PQN is designed for complete GPU implementation and to be compatible with end-to-end
compilation, which is a fundamental step for bringing Q-Learning into modern RL research
(currently dominated by PPO). CrossQ does not tackle this problem, instead favouring a
standard pipeline (which consists of interacting with one environment - sampling from
the replay buffer - updating the network - repeat) with the addition of normalisation. This
pipeline is exactly the same as that used by DQN in our Atari experiments, where we show
that PQN is between 50x and 100x faster and uses 26 times less memory.

The benefits of regularisation have also been reported in other areas of the RL literature. Lyle
et al. (Lyle et al., 2023; 2024) investigate plasticity loss in off-policy RL, a phenomenon where
neural networks lose their ability to fit a new target functions throughout training. They propose
LayerNorm (Lyle et al., 2023) and LayerNorm with ℓ2 regularisation (Lyle et al., 2024), as a solution
to this problem, and show improved performance on the Atari Learning Environment, but they also
use other methods of stabilisation, such as target networks, that we explicitly remove. In addition,
they provide no formal analysis explaining stability.

A.4 MULTI-STEP Q-LEARNING

The concept of n-step returns in reinforcement learning extends the traditional one-step update to
consider rewards over future timesteps. The n-step return for a state-action pair (s, a) is defined as
the cumulative reward over the next n steps plus the discounted value of the state reached after n
steps. Several variations of n-step Q-learning have been proposed to enhance learning efficiency and
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stability. Peng & Williams (1994) introduced a variation known as Q(λ), which integrates eligibility
traces to account for multiple time steps while maintaining the off-policy nature of Q-learning.
Replay buffers are difficult to combine with Q(λ), so standard methods like DQN use a single-step
TD learning. The most relevant work that aimed to use Q(λ) with a replay buffer is Retrace (Munos
et al., 2016). More recent methods have tried to reconcile λ-returns with the experience buffer Daley
& Amato (2019) most notably in TD3 Kozuno et al. (2021).

A.5 MULTI-AGENT DEEP Q LEARNING

Q-learning methods are a popular choice for multi-agent RL (MARL), especially in the purely
cooperative centralised training with decentralised execution (CTDE) setting (Foerster et al., 2018;
Lowe et al., 2017). In CTDE, global information is made available at training time, but not at test
time. Many of these methods develop approaches to combine individual utility functions into a joint
estimate of the Q function: Son et al. (2019) introduce the individual-global-max (IGM) principle
to describe when a centralised Q function can be computed from individual utility functions in a
decentralised fashion; Value Decomposition Networks (VDN) (Sunehag et al., 2017a) combines
individual value estimates by summing them, and QMIX (Rashid et al., 2020b) learns a hypernetwork
with positive weights to ensure monotonicity. All these methods can be combined with PQN, which
parallises the learning process.

IPPO (De Witt et al., 2020) and MAPPO (Yu et al., 2022) use vectorised environments, adapting a
single-agent method for use in multi-agent RL. These are both on-policy actor-critic based methods
based on PPO.

B PROOFS AND DERIVATIONS

B.1 DERIVATION OF TD STABILITY RESULTS

We start by examining the TD Jacobian to separate the TD stability condition into two components.
From the definition of the TD Jacobian:

J(ϕ) = ∇ϕδ(ϕ) = ∇ϕEς∼Pς
[δ(ϕ, ς)],

= Eς∼Pς [∇ϕ ((r + γQϕ(x
′)−Qϕ(x))∇ϕQϕ(x))] ,

= γEς∼Pς

[
∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤]− Eς∼Pς

[
∇ϕQϕ(x)∇ϕQϕ(x)

⊤]
+ Eς∼Pς

[
(r + γQϕ(x

′)−Qϕ(x))∇2
ϕQϕ(x)

]
,

= γEς∼Pς

[
∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤]− Ex∼dµ

[
∇ϕQϕ(x)∇ϕQϕ(x)

⊤]
+ Eς∼Pς

[
(r + γQϕ(x

′)−Qϕ(x))∇2
ϕQϕ(x)

]
,

hence, we can write the TD Jacobian condition as:
v⊤J(ϕ)v = γEς∼Pς

[
v⊤∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤v
]
− Ex∼dµ

[
v⊤∇ϕQϕ(x)∇ϕQϕ(x)

⊤v
]

+ Eς∼Pς

[
(r + γQϕ(x

′)−Qϕ(x)) v
⊤∇2

ϕQϕ(x)v
]
,

= γEς∼Pς

[
v⊤∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤v
]
− Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
+ Eς∼Pς

[
(r + γQϕ(x

′)−Qϕ(x)) v
⊤∇2

ϕQϕ(x)v
]
,

= COffPolicy(Q
k
ϕ, d

µ) + CNonlinear(Q
k
ϕ),

yielding the two stability components introduced in Section 3.1. Next, we investigate the effect that
off-policy sampling has on COffPolicy(Q

k
ϕ, d

µ):

COffPolicy(Q
k
ϕ, d

µ) = γEς∼Pς

[
v⊤∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤v
]
− Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
. (10)

We now apply the Cauchy-Schwarz inequality to separate the expectations in the first term:
Eς∼Pς

[
v⊤∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤v
]
≤
∣∣Eς∼Pς

[
v⊤∇ϕQϕ(x

′)∇ϕQϕ(x)
⊤v
]∣∣ ,

=

√
|Eς∼Pς

[v⊤∇ϕQϕ(x′)∇ϕQϕ(x)⊤v]|2,

≤
√

Eς∼Pς

[
(v⊤∇ϕQϕ(x′))

2
]
Eς∼Pς

[
(v⊤∇ϕQϕ(x))

2
]
,

=

√
Eς∼Pς

[
(v⊤∇ϕQϕ(x′))

2
]
Ex∼dπ

[
(v⊤∇ϕQϕ(x))

2
]
.
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Substituting into Eq. (10) yields:

COffPolicy(Q
k
ϕ, d

µ) ≤ γ

√
Eς∼Pς

[
(v⊤∇ϕQϕ(x′))

2
]
Ex∼dπ

[
(v⊤∇ϕQϕ(x))

2
]

− Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
.

Now, as γ ∈ [0, 1), to prove that COffPolicy(Q
k
ϕ, d

µ) < 0, we require that Eς∼Pς

[(
v⊤∇ϕQϕ(x

′)
)2] ≤

Ex∼dπ

[(
v⊤∇ϕQϕ(x)

)2]
, yielding:

COffPolicy(Q
k
ϕ, d

µ) ≤ γ

√
Ex∼dπ

[
(v⊤∇ϕQϕ(x))

2
]2

− Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
,

= (γ − 1)Ex∼dµ

[(
v⊤∇ϕQϕ(x)

)2]
,

< 0.

B.2 THEOREM 1 - ANALYSING TD
We now characterise the convergence of TD in our general setting. Our proof is structured as follows:
we first bound the expected norm one timestep into the future in terms of the expected norm at
the current timestep: Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
≤ Constant · E−ςi

[
∥ϕi − ϕ⋆∥2

]
+ Residuali where

Residuali is a residual term that accounts for the variance of the updates and sampling from the
Markov chain. This is done by expanding ∥ϕi+1 − ϕ⋆∥2 and following the algebra to Ineq. 11 of
Theorem 1. To bound the residual term, we then invoke Lemma 1. Bounding the variance contribution
results naturally from our Lipschitz assumption. Bounding the Markov contribution follows from the
definition of geometric ergodicity and our proof is similar to Bhandari et al. (2018). Crucially, this
bound implies limi→∞ Residuali = 0. We then use the fundamental theorem of calculus to show that
the TD stability criterion implies Constant < 1 for small enough αi (see Eq. (12)). This demonstrates
that the TD updates are a contraction mapping with a decaying residual term, allowing us to verify
convergence in the remainder of the proof.
Theorem 1 (TD Stability). Let Assumptions 1 and 2 hold. If the TD criterion holds then the TD
updates in Eq. (1) converge with:

lim
i→∞

E
[
∥ϕi − ϕ⋆∥2

]
= 0.

Proof. We use the notation E−ςi [·] to denote the expectation over {ς0, . . . ςi−1} and Eςi|ςi−1
[·] to

denote the expectation over ςi conditioned on ςi−1. Substituting for ϕi+1 = ϕi + αiδ(ϕi, ςi) into
E
[
∥ϕi+1 − ϕ⋆∥2

]
yields:

Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
= Eςi,−ςi

[
∥ϕi + αiδ(ϕi, ςi)− ϕ⋆∥2

]
,

=Eςi,−ςi

[
∥ϕi − ϕ⋆∥2 + 2αiδ(ϕi, ςi)

⊤(ϕi − ϕ⋆) + α2
i ∥δ(ϕi, ςi)∥2

]
,

=E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αiEςi|−ςi [δ(ϕi, ςi)]

⊤
(ϕi − ϕ⋆) + α2

iEςi|−ςi

[
∥δ(ϕi, ςi)∥2

]]
,

=E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αi

(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi) + δ(ϕi)

)⊤
(ϕi − ϕ⋆)

+ α2
iEςi|−ςi

[
∥δ(ϕi, ςi)∥2

] ]
,

=E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αiδ(ϕi)

⊤(ϕi − ϕ⋆)

+ 2αi

(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆) + α2

iEςi|−ςi

[
∥δ(ϕi, ςi)∥2

] ]
,

≤E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αiδ(ϕi)

⊤(ϕi − ϕ⋆)
]

+ 2αi

∣∣∣E−ςi

[(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆)

]∣∣∣︸ ︷︷ ︸
Non i.i.d. term

+α2
i Eςi,−ςi

[
∥δ(ϕi, ςi)∥2

]︸ ︷︷ ︸
Variance term

, (11)
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where we have isolated the contribution of variance and non-i.i.d. sampling in deriving the final line.
We now bound the non-i.i.d. contribution in total variation and variance term using Lemma 1:

Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
≤E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αiδ(ϕi)

⊤(ϕi − ϕ⋆)
]
+ 2αiCMarkovρ

i + α2
iCVar.

Note that for i.i.d. sampling, Eςi|−ςi [δ(ϕi, ςi)] = Eςi∼Pς
[δ(ϕi, ςi)] = δ(ϕi) and so CMarkov = 0.

Next, we re-write δ(ϕi) to contain a factor of ϕi − ϕ⋆. Define the line joining ϕ⋆ to ϕi as ℓ(l) =
ϕi − l(ϕi −ϕ⋆). Under Assumption 2, we can apply the fundamental theorem of calculus to integrate
along this line, yielding:

δ(ϕi) = δ(ϕi)− δ(ϕ⋆)︸ ︷︷ ︸
=0

,

= δ(ϕ = ℓ(0))− δ(ϕ = ℓ(1)),

= −
∫ 1

0

∂lδ(ϕ = ℓ(l))dl,

=

∫ 1

0

∇ϕδ(ϕ = ℓ(l))(ϕi − ϕ⋆)dl,

=

∫ 1

0

J(ϕ = ℓ(l))dl(ϕi − ϕ⋆),

= J̃(ϕi − ϕ⋆)

where we have used the chain rule to derive the fourth line and introduced the notation J̃ :=
∫ 1

0
J(ϕ =

ℓ(l))dl. Substituting yields:

Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
≤E−ςi

[
∥ϕi − ϕ⋆∥2 + 2αi(ϕi − ϕ⋆)⊤J̃(ϕi − ϕ⋆)

]
+ 2αiCMarkovρ

i + α2
iCVar.

Now, as the TD criterion: v⊤J(ϕ)v < 0 holds almost everywhere, it follows that:

(ϕi − ϕ⋆)⊤
∫ 1

0

J(ϕ = ℓ(l))dl︸ ︷︷ ︸
:=J̃

(ϕi − ϕ⋆) < 0,

=⇒ (ϕi − ϕ⋆)⊤J̃(ϕi − ϕ⋆) = (ϕi − ϕ⋆)⊤
1

2

(
J̃ + J̃⊤

)
(ϕi − ϕ⋆) ≤ −λmin∥ϕi − ϕ⋆∥2,

where λmin > 0 is the smallest (in magnitude) eigenvalue of − 1
2 (J̃ + J̃⊤). Substituting yields:

Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
≤ E−ςi

[
∥ϕi − ϕ⋆∥2

]
(1− 2αiλmin) + 2αiCMarkovρ

i + α2
iCVar. (12)

Re-arranging yields:

2λminαiE−ςi

[
∥ϕi − ϕ⋆∥2

]
≤ E−ςi

[
∥ϕi − ϕ⋆∥2

]
− Eςi,−ςi

[
∥ϕi+1 − ϕ⋆∥2

]
+ 2αiCMarkovρ

i + α2
iCVar.
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Summing over i up to timestep t and using the telescoping property of the series yields:

2λmin

t∑
i=0

αiE−ςi

[
∥ϕi − ϕ⋆∥2

]
≤ E−ςi

[
∥ϕ0 − ϕ⋆∥2

]
− Eςi,−ςi

[
∥ϕt+1 − ϕ⋆∥2

]
+ 2CMarkov

t∑
i=0

αiρ
i + CVar

t∑
i=0

α2
i ,

≤ E−ςi

[
∥ϕ0 − ϕ⋆∥2

]
+ 2CMarkov

t∑
i=0

αiρ
i + CVar

t∑
i=0

α2
i ,

=⇒
t∑

i=0

αi∑t
i′=0 αi′

E−ςi

[
∥ϕi − ϕ⋆∥2

]

≤ 1

2λmin

E−ςi

[
∥ϕ0 − ϕ⋆∥2

]
∑t

i′=0 αi′
+ 2CMarkov

∑t
i=0 αiρ

i∑t
i=0 αi

+ CVar

∑t
i=0 α

2
i∑t

i′=0 αi′

 , (13)

where the penultimate bound follows from Eςi,−ςi

[
∥ϕt+1 − ϕ⋆∥2

]
≥ 0. In preparation for taking

the limit t → ∞, we observe that by the Cauchy-Schwarz inequality:

t∑
i=0

αiρ
i =

t∑
i=0

|αi||ρi| ≤

√√√√ t∑
i=0

α2
i ρ

2i ≤

√√√√ t∑
i=0

α2
i

t∑
i=0

ρ2i.

Now, from Assumption 1, limt→∞
∑t

i=0 α
2
i < ∞, hence:

lim
t→∞

t∑
i=0

αiρ
i ≤

√√√√ lim
t→∞

t∑
i=0

α2
i lim
t→∞

t∑
i=0

ρ2i = O(1)

As limt→∞
∑t

i=0 αi = ∞, this implies:

lim
t→∞

∑t
i=0 αiρ

i∑t
i=0 αi

= 0.

We are now ready to take limits of Inq. 13, yielding:

lim
t→∞

t∑
i=0

αi∑t
i′=0 αi′

E−ςi

[
∥ϕi − ϕ⋆∥2

]
= 0. (14)

Eq. (14) proves our desired result:

lim
i→∞

E−ςi

[
∥ϕi − ϕ⋆∥2

]
= 0.

To see why, assume this does not hold, that is limi→∞ E−ςi

[
∥ϕi − ϕ⋆∥2

]
̸= 0. This implies there

exists some infinite length sub-sequence S such that for all i ∈ S:

E−ςi

[
∥ϕi − ϕ⋆∥2

]
> 0,

hence, as all quantities are positive:

lim
t→∞

t∑
i=0

αi∑t
i′=0 αi′

E−ςi

[
∥ϕi − ϕ⋆∥2

]
≥ lim

t→∞

∑
i∈S

αi∑t
i′=0 αi′

E−ςi

[
∥ϕi − ϕ⋆∥2

]
> 0,

which is a contradiction.

Lemma 1. Let Assumption 2 hold. Then there exist constants: 0 < CMarkov < ∞, 0 < CVar < ∞
and ρ ∈ [0, 1) such that:∣∣∣E−ςi

[(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆)

]∣∣∣ ≤ CMarkovρ
i, Eςi,−ςi

[
∥δ(ϕi, ςi)∥2

]
≤ CVar.
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Proof. For both results, we use the fact that, because Φ is compact and X is bounded, rewards are
bounded and δ(ϕ, ς) is Lipschitz under Assumption 2, δ(ϕ, ς) is bounded almost everywhere. To
prove the first bound, we denote the marginal probability distribution of the i-th timestep element in
the Markov chain ςi as P i with density:

pi(ςi) =

∫
p(−ςi, ςi)d(−ςi).

Under this notation we write:

E−ςi

[(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆)

]
=E−ςi,ςi

[(
δ(ϕi, ςi)− Eς′i∼Pς

[δ(ϕi, ς
′
i)]
)⊤

(ϕi − ϕ⋆)
]
,

=E−ςi,ςi

[
δ(ϕi, ςi)

⊤ (ϕi − ϕ⋆)− Eς′i∼Pς
[δ(ϕi, ς

′
i)]

⊤
(ϕi − ϕ⋆)

]
,

=E−ςi,ςi

[
δ(ϕi, ςi)

⊤ (ϕi − ϕ⋆)− Eς′i∼Pς

[
δ(ϕi, ς

′
i)

⊤ (ϕi − ϕ⋆)
]]
,

=Eςi∼P i

[
E−ςi∼P i(ςi)

[
δ(ϕi, ςi)

⊤ (ϕi − ϕ⋆)
]]

− Eςi∼Pς

[
E−ςi∼P i(ςi)

[
δ(ϕi, ςi)

⊤ (ϕi − ϕ⋆)
]]

,
(15)

where P i(ςi) is the backwards conditional distribution in the Markov chain with density:

pi(−ςi|ςi) =
pi(−ςi, ςi)

pi(ςi)
.

Introducing the notation:

g(ςi) = E−ςi∼P i(ςi)

[
δ(ϕi, ςi)

⊤ (ϕi − ϕ⋆)
]
,

we write Eq. (15) as:

E−ςi

[(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆)

]
= Eςi∼P i [g(ςi)]− Eςi∼Pς

[g(ςi)] ,

= Eς0

[
Eςi∼P i(ς0) [g(ςi)]− Eςi∼Pς

[g(ςi)]
]
,

= Eς0

[
gmax

(
Eςi∼P i(ς0)

[
g(ςi)

gmax

]
− Eςi∼Pς

[
g(ςi)

gmax

])]
, (16)

where gmax := maxς |g(ς)| < ∞ almost everywhere, which follows from the fact that δ(ϕ, ς) is
bounded almost everywhere, implying g(ς) is also bounded almost everywhere. Now, as g(·)

gmax
:

X × R × X → [−1, 1], we can bound Eq. (16) in total variation using Roberts & Rosenthal
(2004)[Proposition 3b]:∣∣∣∣Eς0

[
gmax

(
Eςi∼P i(ς0)

[
g(ςi)

gmax

]
− Eςi∼Pς

[
g(ςi)

gmax

])] ∣∣∣∣ ≤
Eς0

[∣∣∣∣gmax

(
Eςi∼P i(ς0)

[
g(ςi)

gmax

]
− Eςi∼Pς

[
g(ςi)

gmax

])∣∣∣∣]
=2gmaxEς0

[
1

2

∣∣∣∣Eςi∼P i(ς0)

[
g(ςi)

gmax

]
− Eςi∼Pς

[
g(ςi)

gmax

]∣∣∣∣] ,
≤2gmaxEς0

[
1

2
sup

f :X×R×X→[−1,1]

∣∣Eςi∼P i(ς0) [f(ςi)]− Eςi∼Pς
[f(ςi)]

∣∣] ,
=2gmaxEς0

[
TV(P i(ς0)∥Pς)

]
, (17)

where TV(P i(ς0)∥Pς) is the total variational distance between the marginal distribution P i(ς0)
(conditioned on initial observations) and the steady state distribution Pς . Now, as the Markov chain
is geometricaly ergodic, by definition there exists some function M(ς0) and constant ρ ∈ [0, 1) such
that:

TV(P i(ς0)∥Pς) ≤ M(ς0)ρ
i,
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almost surely (see Roberts & Rosenthal (2004)[Section 3.4]), hence substituting into Eq. (17) yields
our desired result:∣∣∣E−ςi

[(
Eςi|−ςi [δ(ϕi, ςi)]− δ(ϕi)

)⊤
(ϕi − ϕ⋆)

]∣∣∣ ≤2gmaxEς0

[
TV(P i(ς0)∥Pς)

]
,

≤2gmaxEς0

[
M(ς0)ρ

i
]
,

=2gmaxEς0 [M(ς0)] ρ
i,

=CMarkovρ
i,

where CMarkov := 2gmaxEς0 [M(ς0)] < ∞. Our second bound follows from the fact that δ(ϕ, ς) is
bounded almost everywhere. This implies there exists some CVar > 0 such that ∥δ(ϕ, ς)∥2 ≤ CVar
almost everywhere, hence:

Eςi,−ςi

[
∥δ(ϕi, ςi)∥2

]
≤ CVar.

B.3 THEOREM 2 - STABILISING TD WITH LAYERNORM AND ℓ2-REGULARISATION

Notation: For all proofs in this section, we introduce the following simplifying notations:

fM (x) :=σPre ◦Mx,

LayerNormk
i [f ](x) :=

1√
k
· fi(x)− µ̂ [f ] (x)

σ̂[f ](x)
,

where µ̂ [f ] (x) and σ̂[f ](x) are the element-wise empirical mean and standard deviation of the output
f(x):

µ̂ [f ] (x) :=
1

k

k−1∑
i=0

fi(x), σ̂[f ](x) :=

√√√√1

k

k−1∑
i=0

(fi(x)− µ̂ [f ] (x))2 + ϵ,

Finally, we write M in terms of its row vectors:

M =



| mT
0

|

| m⊤
1

|

...

| m⊤
k−1

|

 .

and split the test vector into the corresponding k + 1 sub-vectors:

v⊤ = [vTw , v
⊤
m0

, v⊤m1
, · · · v⊤mk−1

],

where vw is a vector with the same dimension as the final weight vector w and each vmi
∈ Rn has the

same dimension as x. We will make use of the following three key properties of LayerNorm:
Proposition 1. Let f : X → Rk be a vector-valued function such that all components fi are bounded,
then:

∥LayerNormk[f(x)]∥ ≤ 1,

∂fi LayerNormk
j [f(x)] = O

(
k−

1
2

(
1(i = j) +

1

k

))
,

∂fs∂ft LayerNormk
j [f(x)] = O

(
k−

3
2

(
1(t = j) + 1(t = s) + 1(j = s) +

1

k

))
.
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Proof. Our first result follows directly from the definition of LayerNorm:

∥LayerNormk[f(x)]∥ =
1√
k

∥f(x)− µ̂ [f ] (x)∥
σ̂[f ](x)

,

=

√
1
k

∑k−1
i=0 (fi(x)− µ̂ [f ] (x))

2

σ̂[f ](x)
,

≤

√
1
k

∑k−1
i=0 (fi(x)− µ̂ [f ] (x))

2
+ ϵ

σ̂[f ](x)
,

=
σ̂[f ](x)

σ̂[f ](x)
,

= 1,

as required. For our second result, we take partial derivatives with respect to the ith input channel to
the LayerNorm:

∂fi LayerNormk
j [f(x)] =

1√
k

(
1(i = j)− 1

k

σ̂[f ](x)
− fj(x)− µ̂[f ](x)

σ̂[f ](x)2
∂fi σ̂[f ](x)

)
,

=
1√
k

(
1(i = j)− 1

k

σ̂[f ](x)
−
√
k

LayerNormk
j [f(x)]

σ̂[f ](x)
∂fi σ̂[f ](x)

)
.

Finding the derivative of the empirical variance yields:

∂fi σ̂[f ](x) = ∂fi

√√√√1

k

k−1∑
i=0

(fi(x)− µ̂ [f ] (x))2 + ϵ,

=
1

2

(
1

k

k−1∑
i=0

(fi(x)− µ̂ [f ] (x))2 + ϵ

)− 1
2

∂fi

(
1

k

k−1∑
i=0

(fi(x)− µ̂ [f ] (x))2 + ϵ

)
,

=
1

kσ̂[f ](x)

k−1∑
l=0

(fl(x)− µ̂ [f ] (x))

(
1(i = l)− 1

k

)
,

=
1

kσ̂[f ](x)

(
k−1∑
l=0

(fl(x)− µ̂ [f ] (x))1(i = l)− 1

k

k−1∑
l=0

fl(x) + µ̂ [f ] (x)

k−1∑
l=0

1

k

)
,

=
1

kσ̂[f ](x)

(
fi(x)− µ̂ [f ] (x)− 1

k

k−1∑
l=0

fl(x)︸ ︷︷ ︸
=µ̂[f ](x)

+µ̂ [f ] (x)

)
,

=
fi(x)− µ̂ [f ] (x)

kσ̂[f ](x)
,

=
1√
k

LayerNormk
i [f(x)],

hence:
∂fi LayerNormk

j [f(x)]

=
1√

kσ̂[f ](x)

(
1(i = j)− 1

k
− LayerNormk

i [f(x)]LayerNormk
j [f(x)]

)
, (18)

= O
(

1√
k

(
1(i = j) +

1

k

))
,

where we use the fact that LayerNormk
j [f(x)] = O

(
1√
k

)
to derive the final line. To prove our third

result, we start with the first order partial derivative using Eq. (18):

∂ft LayerNormk
j [f(x)] =

1√
kσ̂[f ](x)

(
1(t = j)− 1

k
− LayerNormk

t [f(x)]LayerNormk
j [f(x)]

)
,
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Taking partial derivatives with respect to fs yields:
∂fs∂ft LayerNormk

j [f(x)]

= − ∂fs σ̂[f ](x)√
kσ̂[f ](x)2

(
1(t = j)− 1

k
− LayerNormk

t [f(x)]LayerNormk
j [f(x)]

)
− k−

1
2 ·

∂fsLayerNormk
t [f(x)] · LayerNormk

j [f(x)] + LayerNormk
t [f(x)]∂fsLayerNormk

j [f(x)]

σ̂[f ](x)
,

= O
(
k−

3
2

(
1(t = j) +

1

k

))
+O

(
k−

3
2

(
1(t = s) +

1

k

))
+O

(
k−

3
2

(
1(j = s) +

1

k

))
,

= O
(
k−

3
2

(
1(t = j) + 1(t = s) + 1(j = s) +

1

k

))
,

as required.

We are now ready to prove our main result. Most of the work is done by proving Lemma 2: once
the bounds in Lemma 2 have been established, the result follows by subtracting the regularisation
term from the off policy and nonlinear components of the TD stability condition. We split the proof
of Lemma 2 into two parts. Firstly, we bound the off-policy contribution by splitting it further into
components that affect the final layer weights and the other matrix weights. By doing so, we find
a residual term remains that is only affected by the final layer weights (Lemma 3). Secondly, we
bound the non-linear contribution in Lemma 4 by isolating the second order derivative of the function
approximator. What remains is to show this term decays as 1/

√
k, which we prove in Lemma 5. Our

proof of Lemma 5 is similar to Liu et al. (2020).
Theorem 2. Let Assumption 2 apply. Using the LayerNorm regularised TD update δkreg(ϕ, ς) in
Eq. (9), there exists some finite k′ such that the TD stability criterion holds for all k > k′

Proof. From the definition of the expected regularised TD error vector:
δkreg(ϕ) = Eς∼Pς

[(
r + γQk

ϕ(x
′)−Qk

ϕ(x)
)
∇ϕQ

k
ϕ(x)

]
−

(
η

(
γLPost

2

)2 [
w
0

]
+ (η − 1)

[
0

Vec(M)

])
,

=⇒ v⊤∇ϕδ
k
reg(ϕ)v = Eς∼Pς

[(
r + γQk

ϕ(x
′)−Qk

ϕ(x)
)
v⊤∇2

ϕQ
k
ϕ(x)v

]
+ Eς∼Pς

[
v⊤(γ∇ϕQ

k
ϕ(x

′)−∇ϕQ
k
ϕ(x))∇ϕQ

k
ϕ(x)

⊤v
]

− η

(
γLPost

2

)2

∥vw∥2 − (η − 1)∥v−m∥2,

= COffPolicy(Q
k
ϕ, d

µ) + CNonlinear(Q
k
ϕ)

− η

(
γLPost

2

)2

∥vw∥2 − (η − 1)∥v−m∥2.

Applying Lemma 2 and taking the limit k → ∞ yields:

lim
k→∞

v⊤∇ϕδ
k
reg(ϕ)v =

(
γLPost

2

)2

(1− η)∥vw∥2 + (1− η)∥vM∥2 < 0,

almost everywhere, which follows from the fact η > 1, hence, by the definition of the limit, there
must exist some finite k′ such that for all k > k′:

v⊤∇ϕδ
k
reg(ϕ)v < 0,

almost everywhere, as required.

Lemma 2. Let Assumption 2 apply. Let vw be the first k components of the test vector v = [v⊤w , v
⊤
M ]⊤,

associated with final layer parameters w, and vM be the remaining components, associated with the
matrix M parameters. Using the LayerNorm Q-function defined in Eq. (5):

Off-Policy Bound: COffPolicy(Q
k
ϕ, d

µ) ≤ ∥vw · γLPost/2∥2 +O
(
∥vM∥2

/k
)
,

Nonlinear Bound: CNonlinear(Q
k
ϕ) = O

(
∥v∥2

/
√
k
)
,

almost surely for any test vector and any state-action transition pair x, x′ ∈ X .
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Proof. By definition of the off-policy and nonlinear contribution terms:

COffPolicy(Q
k
ϕ, d

µ) :=γEς∼Pς

[
v⊤∇ϕQ

k
ϕ(x

′)v⊤∇ϕQ
k
ϕ(x)

]
− Ex∼dµ

[(
v⊤∇ϕQ

k
ϕ(x)

)2]
,

CNonlinear(Q
k
ϕ) :=Eς∼Pς

[
(r + γQk

ϕ(x
′)−Qk

ϕ(x))v
⊤∇2

ϕQ
k
ϕ(x)v

]
.

Applying Lemma 3 and Lemma 4 yields:

COffPolicy(Q
k
ϕ, d

µ) =Eς∼Pς

[
γv⊤∇ϕQ

k
ϕ(x

′)v⊤∇ϕQ
k
ϕ(x)−

(
v⊤∇ϕQ

k
ϕ(x)

)2]
,

≤Eς∼Pς

[(
γLPost∥vw∥

2

)2

+O
(
∥vM∥2

k

)]
,

=

(
γLPost∥vw∥

2

)2

+O
(
∥vM∥2

k

)
,

CNonlinear(Q
k
ϕ) :=Eς∼Pς

[
(r + γQk

ϕ(x
′)−Qk

ϕ(x))v
⊤∇2

ϕQ
k
ϕ(x)v

]
,

≤Eς∼Pς

[∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x))v

⊤∇2
ϕQ

k
ϕ(x)v

∣∣] ,
=O

(
∥v∥2√

k

)
,

as required.

Lemma 3 (Mitigating Off-policy Instability). Under Assumption 2, using the LayerNorm critic in
Eq. (5):

γv⊤∇ϕQ
k
ϕ(x

′)∇ϕQ
k
ϕ(x)

⊤v − (v⊤∇ϕQ
k
ϕ(x))

2 ≤
(
γLPost∥vw∥

2

)2

+O
(
∥vM∥2

k

)
, (19)

almost surely for any test vector and any state-action transition pair x, x′ ∈ X .

Proof. Using the notation introduced at the start of Appendix B.3, we start by splitting the left hand
side of Eq. (19) into two terms, one determining the stability of the final layer weights and one for
the matrix vectors:

γv⊤∇ϕQ
k
ϕ(x

′)∇ϕQ
k
ϕ(x)

⊤v − (v⊤∇ϕQ
k
ϕ(x))

2

= γv⊤w∇wQ
k
ϕ(x

′)∇wQ
k
ϕ(x)

⊤vw − (v⊤w∇wQ
k
ϕ(x))

2

+

k−1∑
i=0

(
γv⊤mi

∇mi
Qk

ϕ(x
′)∇mi

Qk
ϕ(x)

⊤vmi
− v⊤mi

∇mi
Qk

ϕ(x)∇mi
Qk

ϕ(x)
⊤vmi

)
. (20)

We first focus on the term determining stability of the final layer weights. Taking derivatives of the
critic with respect to the final layer weights w yields:

∇wQ
k
ϕ(x

′) =σPost ◦ LayerNormk [fM (x′)] ,

hence:

∥∇wQ
k
ϕ(x

′)∥ =∥σPost ◦ LayerNormk [fM (x′)]∥,
=∥σPost ◦ LayerNormk [fM (x′)]− σPost(0)︸ ︷︷ ︸

=0

∥,

≤LPost∥LayerNormk [fM (x′)]− 0∥,
=LPost∥LayerNormk [fM (x′)]∥,
≤LPost, (21)

where we have used the fact that σPost(·) is LPost-Lipschitz to derive the third line and ap-
plied ∥LayerNormk [fM (x′)]∥ ≤ 1 from Proposition 1 to derive the final line. We then bound
v⊤w∇wQ

k
ϕ(x

′)∇wQ
k
ϕ(x)

⊤vw as:

v⊤w∇wQ
k
ϕ(x

′)∇wQ
k
ϕ(x)

⊤vw ≤ ∥vw∥∥∇wQ
k
ϕ(x

′)∥|∇wQ
k
ϕ(x)

⊤vw|,
≤ LPost∥vw∥|∇wQ

k
ϕ(x)

⊤vw|.
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Defining ϵ := |∇wQ
k
ϕ(x)

⊤vw| yields:

γv⊤w∇wQ
k
ϕ(x

′)∇wQ
k
ϕ(x)

⊤vw − (v⊤w∇wQ
k
ϕ(x))

2 ≤ γ∥vw∥|∇wQ
k
ϕ(x)

⊤vw| − |∇wQ
k
ϕ(x)

⊤vw|2,
= γLPost∥vw∥ϵ− ϵ2,

≤ max
ϵ

(
γLPost∥vw∥ϵ− ϵ2

)
.

Our desired result follows from the fact that the function γLPost∥vw∥ϵ − ϵ2 is maximised at ϵ =
γLPost∥vw∥

2 , hence:

γv⊤w∇wQ
k
ϕ(x

′)∇wQ
k
ϕ(x)

⊤vw − (v⊤w∇wQ
k
ϕ(x))

2 ≤ γ2L2
Post∥vw∥2

2
−
(
γLPost∥vw∥

2

)2

=

(
γLPost∥vw∥

2

)2

Substituting into Eq. (20) yields:

γv⊤∇ϕQ
k
ϕ(x

′)∇ϕQ
k
ϕ(x)

⊤v − (v⊤∇ϕQ
k
ϕ(x))

2 ≤
(
γLPost∥vw∥

2

)2

+

k−1∑
i=0

(
γv⊤mi

∇mi
Qk

ϕ(x
′)∇mi

Qk
ϕ(x)

⊤vmi
− v⊤mi

∇mi
Qk

ϕ(x)∇mi
Qk

ϕ(x)
⊤vmi

)
. (22)

We now bound the remaining terms (i.e. those that characterise stability of the matrix row vectors) by
taking derivatives of the critic with respect to each matrix row vector: mi :

∇mi
Qk

ϕ(x) = ∇mi
w⊤σPost ◦ LayerNormk [fM (x)] ,

=

k−1∑
j=0

wj∇miσPost(LayerNormk
j [fM (x)]).

Applying the chain rule to find an expression for the derivative:

∇miQ
k
ϕ(x) =

k−1∑
j=0

wjσ
′
Post(LayerNormk

j [fM (x)])∇mi
LayerNormk

j [fM (x)] ,

=

k−1∑
j=0

wjσ
′
Post(LayerNormk

j [fM (x)])∂fiLayerNormk
j [fM (x)]σ′

Pre(m
⊤
i x)x,

where σ′
Pre and σ′

Post denote the derivatives of the activation functions, which are bounded almost
surely from the Lipschitz assumption, hence:

σ′
Pre(m

⊤
i x), σ

′
Post

(
LayerNormk

j [fM (x)]
)
= O(1).

Using this, we bound
∣∣∣∇mi

Qk
ϕ(x)

⊤vmi

∣∣∣ as:

∣∣∇mi
Qk

ϕ(x)
⊤vmi

∣∣ ≤ k−1∑
j=0

O(1)wj∂fiLayerNormk
j [fM (x)] v⊤mi

x.

Now, as each element fM,i(x) is Lipschitz and defined over a bounded set of parameters mi and
inputs X , it follows that fM,i(x) must be a bounded function. We can thus apply the derivative bound
to ∂fiLayerNormk

j [fM (x)] from Proposition 1, yielding:

∣∣∇mi
Qk

ϕ(x)
⊤vmi

∣∣ ≤
k−1∑

j=0

O
(
1(i = j)− 1

k√
k

)
wj

 v⊤mi
x,

=

k−1∑
j=0

O
(
1(i = j)− 1

k√
k

) v⊤mi
x,

= O
(

1√
k

)
v⊤mi

x,
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where we have used the fact that wj = O(1) in deriving the second line. Finally, we use this result to
bound each ∇mi

Qk
ϕ(x

′)⊤vmi
and ∇mi

Qk
ϕ(x)

⊤vmi
term in Eq. (22):

γv⊤∇ϕQ
k
ϕ(x

′)∇ϕQ
k
ϕ(x)

⊤v − (v⊤∇ϕQ
k
ϕ(x))

2 ≤
(
γLPost∥vw∥

2

)2

+

k−1∑
i=0

(
γ
∣∣v⊤mi

∇miQ
k
ϕ(x

′)
∣∣ ∣∣∇miQ

k
ϕ(x)

⊤vmi

∣∣+ ∣∣v⊤mi
∇miQ

k
ϕ(x)

∣∣2) ,
≤
(
γLPost∥vw∥

2

)2

+O
(
1

k

) k−1∑
i=0

(
γ
∣∣v⊤mi

x′∣∣ ∣∣v⊤mi
x
∣∣+ ∣∣v⊤mi

x
∣∣2) ,

≤
(
γLPost∥vw∥

2

)2

+O
(
1

k

)(k−1∑
i=0

∥vmi
∥2
)(

γ∥x′∥∥x∥+ ∥x∥2
)
.

Now, it follows from the definition of the euclidean norm:
k−1∑
i=0

∥vmi
∥2 = ∥vM∥2 ,

and by the definition of the state-action space of the MDP in Section 2.1:

∥x∥, ∥x′∥ = O(1),

hence:

γv⊤∇ϕQ
k
ϕ(x

′)∇ϕQ
k
ϕ(x)

⊤v − (v⊤∇ϕQ
k
ϕ(x))

2 ≤
(
γLPost∥vw∥

2

)2

+O
(
∥vM∥2

k

)
,

as required.

Lemma 4 (Mitigating Nonlinear Instability). Under Assumption 2, using the LayerNorm Q-function
defined in Eq. (5):

∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x)

)
v⊤∇2

ϕQ
k
ϕ(x)v

∣∣ = O

(
∥v∥2√

k

)
,

almost surely for any test vector and any state-action transition pair x, x′ ∈ X .

Proof. We start by bounding the TD error, second order derivative and test vector separately:∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x)

)
v⊤∇2

ϕQ
k
ϕ(x)v

∣∣ ≤ ∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x)

)∣∣ ∥∥∇2
ϕQ

k
ϕ(x)

∥∥ ∥v∥2 ,
By the definition of the LayerNorm Q-function:

|Qk
ϕ(x)| ≤ ∥w∥

∥∥σPost ◦ LayerNormk [fM (x)]
∥∥ ,

≤ ∥w∥LPost.

where the final line follows from Eq. (21). As the reward is bounded by definition and ∥w∥ is bounded
under Assumption 2, we can bound the TD error vector as:∣∣(r + γQk

ϕ(x
′)−Qk

ϕ(x)
)∣∣ = O(1),

hence: ∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x)

)
v⊤∇2

ϕQ
k
ϕ(x)v

∣∣ = ∥∥∇2
ϕQ

k
ϕ(x)

∥∥ ∥v∥2 .
Our result follows immediately by using Lemma 5 to bound the second order derivative:

∣∣(r + γQk
ϕ(x

′)−Qk
ϕ(x)

)
v⊤∇2

ϕQ
k
ϕ(x)v

∣∣ = O

(
∥v∥2√

k

)
.
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Lemma 5. Let Assumption 2 hold. ∥∇2
ϕQ

k
ϕ(x)∥ = O

(
1√
k

)
.

Proof. Using the notation introduced at the start of Appendix B.3, we denote the partial derivative
with respect to the i, j-th matrix element as: ∂mi,j

LayerNormk
l [fM (x)]. Using the chain rule, we

find the partial derivatives with respect to each element as:

∂mi,j LayerNormk
l [fM (x)] = ∂fiLayerNormk

l [fM (x)] ∂mi,jfi,

= ∂fiLayerNormk
l [fM (x)]σ′

pre(m
⊤
i x)xj ,

where σ′
Pre denotes the derivatives of the activation function, which is bounded almost surely from

the Lipschitz assumption, hence applying Proposition 1 it follows:

∂mi,j
LayerNormk

l [fM (x)] = O
(
∂fiLayerNormk

l [fM (x)]
)
,

= O
(
k−

1
2

(
1(l = i) +

1

k

))
.

We find a similar result for the second order derivative:

∂ms,t∂mi,j LayerNormk
l [fM (x)] = ∂fiLayerNormk

l [fM (x)]σ′′
pre(m

⊤
i x)xjxt1(i = s)

+ ∂fs∂fiLayerNormk
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where σ′′
pre denotes the second order derivative, which is bounded by assumption, hence:

∂ms,t∂mi,j LayerNormk
l [fM (x)]

= O
(
∂fiLayerNormk

l [fM (x)]
)
1(i = s) +O

(
∂fs∂fiLayerNormk

l [fM (x)]
)
,

= O
(
1(i = s)k−

1
2

(
1(l = i) +

1

k

))
+O

(
k−

3
2

(
1(l = i) + 1(i = s) + 1(l = s) +

1

k

))
,

We now use these results find the partial derivatives of the LayerNorm Q-function. Starting with
∂wu

∂mi,j
Qk

ϕ(x):
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, (23)
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and now for ∂ms,t
∂mi,j

Qk
ϕ(x):
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, (24)

where σ′′
Post(x) denotes the second order derivative and we have used the fact that σ′

Post(·) and σ′′
Post(·)

are bounded by assumption.

Now, from the definition of the Matrix 2-norm:

∥∇2
ϕQ

k
ϕ(x)∥ = sup

v

v⊤∇2
ϕQ

k
ϕ(x)v

v⊤v
,

for any test vector. As the Q-function is linear in w, we can ignore second order derivatives with
respect to elements of w as their value is zero. The matrix norm can then be written in terms of the
partial derivatives of Qk

ϕ(x) as:
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We now bound the partial derivatives using:
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,
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from Eq. (23) and Eq. (24), yielding:
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Using the definition v⊤v :=
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2
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2
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yields our desired result:
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B.4 DERIVATION OF RECURSIVE λ-RETURNS.
The original proof can be found in Daley & Amato (2019, Appendix D), which we repeat and adapt
here for convenience. We wish to write Rλ

t as a function of Rλ
t+1. First, note the general recursive

relationship between n-step returns:

R
(n)
k = rk + γR

(n−1)
k+1 (25)

Let N = T − t. Starting with the definition of the λ-return,

Rλ
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[
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[
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a′
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]
,

where we used the recursive relationship for R(n)
t in Equation (25) and the substitution R

(1)
t =

rt + γmaxa′ Q(s′, a′). Finally, we note that in our implementation, we replace the true value
function with a function approximator.

C EXPERIMENTAL SETUP

All experimental results are shown as mean of 10 seeds, except in Atari Learning Environment
(ALE) where we followed a common practice of reporting 3 seeds. They were performed on a
single NVIDIA A40 by jit-compiling the entire pipeline with Jax in the GPU, except for the Atari
experiments where the environments run on an AMD 7513 32-Core Processor. Hyperparameters
for all experiments can be found in Appendix E. We used the algorithm proposed in Algorithm 1.
All experiments used Rectified Adam optimiser Liu et al. (2019). We didn’t find any improvements
in scores by using RAdam instead of Adam, but we found it more robust in respect to the epsilon
parameter, simplifying the tuning of the optimiser.

Baird’s Counterexample For these experiments, we use the code provided as solutions to the
problems of (Sutton & Barto, 2018b) 2. We use a single-layer neural network with a hidden size of 16
neurons, with normalisation between the hidden layer and the output layer. To not include additional
parameters and completely adhere to theory, we don’t learn affine tranformation parameters in these
experiments, which rescale the normalised output by a factor γ and add a bias β. However, in more
complex experiments we do learn these parameters.

2https://github.com/vojtamolda/reinforcement-learning-an-introduction/
tree/main

34

https://github.com/vojtamolda/reinforcement-learning-an-introduction/tree/main
https://github.com/vojtamolda/reinforcement-learning-an-introduction/tree/main


Published as a conference paper at ICLR 2025

DeepSea For these experiments, we utilised a simplified version of Bootstrapped-DQN (Osband
et al., 2016), featuring an ensemble of 20 randomly initialised policies, each represented by a two-
layered MLP with middle-layer normalisation. We did not employ target networks and updated all
policies in parallel by sampling from a shared replay buffer. We adhered to the same parameters for
Bootstrapped-DQN as presented in Osband et al. (2019).

MinAtar We used the vectorised version of MinAtar (Young & Tian, 2019) present in Gymnax and
tested PQN against PPO in the 4 available tasks: Asterix, SpaceInvaders, Freeway and Breakout. PQN
and PPO use both a Convolutional Network with 16 filters with a 3-sized kernel (same as reported
in the original MinAtar paper) followed by a 128-sized feed-forward layer. Results in MinAtar are
reported in Fig. 9. Hyperparameters were tuned for both PQN and PPO.

Atari We use the vectorised version of ALE provided by Envpool for a preliminary evaluation of
our method. Given that our main baseline is the CleanRL (Huang et al., 2022b) implementation of
PPO (which also uses Envpool and Jax), we used its environment and neural network configuration.
This configuration is also used in the results reported in the original Rainbow paper, allowing us to
obtain additional baseline scores from there. Aitchison et al. (Aitchison et al., 2023) recently found
that the scores obtained by algorithms in 5 of the Atari games have a high correlation with the scores
obtained in the entire suite, and that 10 games can predict the final score with an error lower than
10%. This is due to the high level of correlation between many of the Atari games. The results
we present for PQN are obtained by rolling out a greedy-policy in 8 separate parallel environments
during training, which is more effective than stopping training to evaluate on entire episodes, since in
Atari they can last hundreds of thousands of frames. We did not compare with distributed methods
like Ape-X and R2D2 because they use an enormous time-budget (5 days of training per game) and
frames (almost 40 Bilions), which are outside our computational budget. We comment that these
methods typically ignore concerns of sample efficiency. For example Ape-X (Horgan et al., 2018)
takes more than 100M frames to solve Pong, the easiest game of the ALE, which can be solved in
few million steps by traditional methods and PQN.

Craftax We follow the same implementation details indicated in the original Craftax paper
Matthews et al. (2024a). Our RNN implementation is the same as the MLP one, with an addtional
LSTM layer before the last layer.

Hanabi We used the Jax implementation of environments present in JaxMARL. Our model doesn’t
use RNNs in this task. From all the elements present in the R2D2-VDN presented in Hu et al. (2021),
we only used the duelling architecture Wang et al. (2016). Presented results of PQN are average
across 100k test games.

Smax We used the same RNN architecture of QMix present in JaxMARL, with the only difference
that we don’t use a replay buffer, with added normalisation and Q(λ). We evaluated with all the
standard SMAX maps excluding the ones relative to more than 20 agents, because they could not be
run with traditional QMix due to memory limitations.

Overcooked We used the same CNN architecture of VDN present in JaxMARL, with the only
difference that we don’t use a replay buffer, with added normalisation and Q(λ).

D FURTHER RESULTS
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Figure 7: Results from theoretical analysis in Baird’s Counterexample and DeepSea.
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Figure 8: Results in classic control tasks. The goal of this comparison is to show the time boost of PQN relative
to a traditional DQN agent running a single environment in the cpu. PQN is compiled to run entirely on gpu,
achieving a 10x speed-up compared to the standard DQN pipeline.
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Figure 10: Ablation study varying the number of parallel environments in Minatar. PQN can learn even with a
small number of environments but clearly benefits from collecting more experiences in parallel. PQN is also
significantly more time-efficient when more environments are used in parallel (time is considered for running
10 seeds in parallel). For a fair comparison, we adjusted the number of minibatches and epochs so that PQN
performs the same number of gradient steps with the same batch size (or, where not possible, with an adjusted
learning rate) for every number of parallel environments considered.
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Figure 11: Comparison between training a Q-Learning agent in Atari-Pong with PQN and the CleanRL
implementation of DQN. PQN can solve the game by reaching a score of 20 in less than 4 minutes, while DQN
requires almost 6 hours. As shown in the plot on the right, this doesn’t result in a loss of sample efficiency, as
traditional distributed systems like Ape-X need more than 100 million frames to solve this simple game.

Table 3: Scores in ALE.

Method (Frames) Time Gradient Atari-10 Atari-57 Atari-57 Atari-57
(hours) Steps Score Median Mean >Human

PPO (200M) 2.5 780k 165
PQN (200M) 1 780k 191
PQN (400M) 2 1.4M 243 245 1440 40
Rainbow (200M) 100 12.5M 239 230 1461 43
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Figure 12: IQM computed over 3 seeds when training PQN with the ALE configuration proposed by Dopamine
Castro et al. (2018). This configuration incorporates sticky actions and doesn’t set the done flag when an agent
loses a life. With this setup, PQN can still outperform Rainbow, but it requires significantly more compute time
(almost 5 hours), corresponding to 800 million frames, indicating a loss of sample efficiency. Sample efficiency
might be recovered in this configuration by using a larger network or tuning the hyperparameters, but we leave
this as future work. PQN is still much faster to train than a Dopamine agent, which requires multiple days
depending on the hardware.
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Figure 13: Improvement of PQN over Rainbow. Results refer to PQN trained for 400M frames, i.e. 2 hours of
GPU time.
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Figure 15: PQN learns a policy from an almost random policy. To further test PQN’s off-policiness, we conducted
an experiment on Atari10 games using a highly random policy for collecting data, gradually shifting from 100%
random to 70% random during training. As expected, the resulting policy was less effective compared to one
with more exploitation. However, the key finding is that PQN can still learn a policy even when off-policiness is
extremely high — i.e., when data is collected almost randomly from the environment, without following the
learning policy.
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Figure 16: Left: comparison between PPO and PQN in Craftax. Center: comparison with RNN versions of the
two algorithms. Right: time to learn for 1e9 timesteps keeping a replay buffer in GPU.
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Figure 17: Results in Smax
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Figure 18: The buffer size scales quadratically in respect to the number of agents in SMAX.
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Figure 19: Results in Overcooked

E HYPERPARAMETERS

Table 4: Craftax RNN Hyperparameters

Parameter Value

NUM_ENVs 1024
NUM_STEPS 128
EPS_START 1.0
EPS_FINISH 0.005
EPS_DECAY 0.1
NUM_MINIBATCHES 4
NUM_EPOCHS 4
NORM_INPUT True
NORM_TYPE "batch_norm"
HIDDEN_SIZE 512
NUM_LAYERS 1
NUM_RNN_LAYERS 1
ADD_LAST_ACTION True
LR 0.0003
MAX_GRAD_NORM 0.5
LR_LINEAR_DECAY True
REW_SCALE 1.0
GAMMA 0.99
LAMBDA 0.5
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Table 5: Atari Hyperparameters

Parameter Value

NUM_ENVs 128
NUM_STEPS 32
EPS_START 1.0
EPS_FINISH 0.001
EPS_DECAY 0.1
NUM_EPOCHS 2
NUM_MINIBATCHES 32
NORM_INPUT False
NORM_TYPE "layer_norm"
LR 0.00025
MAX_GRAD_NORM 10
LR_LINEAR_DECAY False
GAMMA 0.99
LAMBDA 0.65

Table 6: SMAX Hyperparameters

Parameter Value

NUM_ENVs 128
MEMORY_WINDOW 4
NUM_STEPS 128
HIDDEN_SIZE 512
NUM_LAYERS 2
NORM_INPUT True
NORM_TYPE "batch_norm"
EPS_START 1.0
EPS_FINISH 0.01
EPS_DECAY 0.1
MAX_GRAD_NORM 1
NUM_MINIBATCHES 16
NUM_EPOCHS 4
LR 0.00025
LR_LINEAR_DECAY True
GAMMA 0.99
LAMBDA 0.85
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Table 7: Overcooked Hyperparameters

Parameter Value

NUM_ENVs 64
NUM_STEPS 16
HIDDEN_SIZE 512
NUM_LAYERS 2
NORM_INPUT False
NORM_TYPE "layer_norm"
EPS_START 1.0
EPS_FINISH 0.2
EPS_DECAY 0.2
MAX_GRAD_NORM 10
NUM_MINIBATCHES 16
NUM_EPOCHS 4
LR 0.000075
LR_LINEAR_DECAY True
GAMMA 0.99
LAMBDA 0.5

Table 8: Hanabi Hyperparameters

Parameter Value

NUM_ENVS 1024
NUM_STEPS 1
TOTAL_TIMESTEPS 1e10
HIDDEN_SIZE 512
N_LAYERS 3
NORM_TYPE layer_norm
DUELING True
EPS_START 0.01
EPS_FINISH 0.001
EPS_DECAY 0.1
MAX_GRAD_NORM 0.5
NUM_MINIBATCHES 1
NUM_EPOCHS 1
LR 0.0003
LR_LINEAR_DECAY False
GAMMA 0.99
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Game Rainbow PQN
Alien 9491.70 6970.42
Amidar 5131.20 1408.15
Assault 14198.50 20089.42
Asterix 428200.30 38708.98
Asteroids 2712.80 45573.75
Atlantis 826659.50 845520.83
BankHeist 1358.00 1431.25
BattleZone 62010.00 54791.67
BeamRider 16850.20 23338.83
Berzerk 2545.60 18542.20
Bowling 30.00 28.71
Boxing 99.60 99.63
Breakout 417.50 515.08
Centipede 8167.30 11347.98
ChopperCommand 16654.00 129962.50
CrazyClimber 168788.50 171579.17
Defender 55105.00 140741.67
DemonAttack 111185.20 133075.21
DoubleDunk -0.30 -0.92
Enduro 2125.90 2349.17
FishingDerby 31.30 46.17
Freeway 34.00 33.75
Frostbite 9590.50 7313.54
Gopher 70354.60 60259.17
Gravitar 1419.30 1158.33
Hero 55887.40 26099.17
IceHockey 1.10 0.17
Jamesbond 20000.00 3254.17
Kangaroo 14637.50 14116.67
Krull 8741.50 10853.33
KungFuMaster 52181.00 41033.33
MontezumaRevenge 384.00 0.00
MsPacman 5380.40 5567.50
NameThisGame 13136.00 20603.33
Phoenix 108528.60 252173.33
Pitfall 0.00 -89.21
Pong 20.90 20.92
PrivateEye 4234.00 100.00
Qbert 33817.50 31716.67
Riverraid 20000.00 28764.27
RoadRunner 62041.00 109742.71
Robotank 61.40 73.96
Seaquest 15898.90 11345.00
Skiing -12957.80 -29975.31
Solaris 3560.30 2607.50
SpaceInvaders 18789.00 18450.83
StarGunner 127029.00 331300.00
Surround 9.70 5.88
Tennis 0.00 -1.04
TimePilot 12926.00 21950.00
Tutankham 241.00 264.71
UpNDown 100000.00 308327.92
Venture 5.50 76.04
VideoPinball 533936.50 489716.33
WizardOfWor 17862.50 30192.71
YarsRevenge 102557.00 129463.79
Zaxxon 22209.50 23537.50

Table 9: ALE Scores: Rainbow vs PQN (400M frames)
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