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ABSTRACT

Existing models for learning representations in supervised classification problems
are permutation invariant with respect to class labels. However, structured knowl-
edge about the classes, such as hierarchical label structures, widely exists in many
real-world datasets, e.g., the ImageNet and CIFAR benchmarks. How to learn rep-
resentations that can preserve such structures among the classes remains an open
problem. To approach this problem, given a tree of class hierarchy, we first define
a tree metric between any pair of nodes in the tree to be the length of the shortest
path connecting them. We then provide a method to learn the hierarchical relation-
ship of class labels by approximately embedding the tree metric in the Euclidean
space of features. More concretely, during supervised training, we propose to
use the Cophenetic Correlation Coefficient (CPCC) as a regularizer for the cross-
entropy loss to correlate the tree metric of classes and the Euclidean distance in
the class-conditioned representations. Our proposed regularizer is computation-
ally lightweight and easy to implement. Empirically, we demonstrate that this
approach can help to learn more interpretable representations due to the preserva-
tion of the tree metric, and leads to better generalization in-distribution as well as
under sub-population shifts over multiple datasets.

1 INTRODUCTION

In supervised learning, the cross-entropy loss is often used for classification tasks. As a common
practice in deep learning, in order to train a model for classification, practitioners build a linear
layer over the representation to obtain the logit score of each class. A softmax transformation is
then applied to convert the logits into a vector belonging to the probability simplex. As a result, we
can randomly permute the representations of any classes without affecting the performance of the
original classification task. However, in many real-world datasets, as we move towards fine-grained
classification, labels are not independent from each other anymore: ImageNet (Deng et al., 2009)
inherits label relationship from WordNet (Fellbaum, 1998), that contains both semantic and lexical
connections; iNaturalist (Van Horn et al., 2017) borrows the biological taxonomy so that each image
contains seven labels that reflect the morphological characteristic of the organism. Many existing
works (Deng et al., 2014; Yan et al., 2014; Ristin et al., 2015; Guo et al., 2018; Chen et al., 2019)
investigated how to leverage this hierarchical information for various purposes, but how to explicitly
project this knowledge onto representations remains unexplored.

In this paper, we focus on the most common label relationship: tree hierarchy. As illustrated in
Fig. 1b, given a tree hierarchy of classes, our goal is to learn representations in feature space such
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that the Euclidean distances between different class centers approximate the distances between these
classes in the tree. More concretely, we shall first define a tree metric to be the length of the short-
est path connecting two subset of classes in the tree hierarchy. Based on this tree metric, we then
propose a regularizer, the cophenetic correlation coefficient (CPCC) between sequences of tree met-
ric and Euclidean distance of the feature space, to ensure that the class-conditional representations
inherit the tree structure of the classes. Different from the original cross-entropy loss with softmax
activation, the proposed CPCC regularizer helps to break the symmetry of permutation invariance
among the classes, and thus also improves the interpretability of the learned representations.

We show that the proposed CPCC regularizer is computationally lightweight with negligible over-
head, and can be applied to a wide range of supervised learning paradigms, including standard flat
empirical risk minimization and other hierarchical objectives, including both multitask learning and
cirriculum learning. For generalization, over six real-world datasets, we demonstrate that our pro-
posed CPCC regularizer leads to improved generalization performance on some unseen tasks with
sub-population shifts when there is only limited amount of labeled data.

2 PRELIMINARIES

In this section we first introduce the notations used throughout the paper, formulate our learning
problem, and then briefly review the CPCC score to quantify the correlation of two sequences.

Notations and Setup We shall use X and Y to denote the input and target random variables, living
in spaces X and Y , respectively. In this work, we mainly focus on the supervised classification
setting where for each input data point x ∈ X ⊆ Rd, there is a ground-truth label y ∈ Y = [k] :=
{1, . . . , k}, where k is the number of output classes. We let µ be the joint distribution over (X,Y )
from where the data is sampled. During the learning process, the learner has access to a dataset
D = {(xj , yj)}nj=1 of size n sampled from µ.

In the context of representation learning, a learned representation z = fθ(x) is obtained by applying
a feature encoder fθ : X → Z parametrized by θ to x, where Z ⊆ Rp denotes the feature space.
Upon feature vector z, we further apply a linear predictor g : Z → ∆k, where we use ∆k to
denote the (k−1)-dimensional probability simplex. The cross-entropy loss is our objective function.
Specifically, let qy ∈ ∆k be a one-hot vector with the y-th component being 1. The cross-entropy
loss, ℓCE(·, ·) between the prediction g ◦ f(x) and the label y is given by ℓCE(g ◦ f(x), y) :=
−
∑

i∈[k] qi log(g(f(x))i). For z, z′, ∥z − z′∥2 denotes the Euclidean distance between them.

2.1 CLASS HIERARCHY

In classification problems, the target label Y ∈ [k] is treated as a categorical random variable that can
take k different nominal values. However, there is no particular ordering among these k categories,
i.e., for different categories i, j ∈ [k], one can only compare whether i = j or not. Formally, letting
dH(i, j) = 0 if i = j and dH(i, j) = 1 otherwise defines a metric dH(·, ·) over Y .

However, in many real-world applications the similarity between different classes is not binary.
Consider object classification in ImageNet (Deng et al., 2009) as an example. Intuitively, one would
think the distance between the classes corgi and chihuahua to be smaller than that between corgi
and panda. One way to characterize this distance between different classes is through a tree of
class hierarchy, also known as a dendrogram. An example is shown in Fig. 1a. Formally, let T :=
(V,E, d) be a weighted tree, where V is the set of nodes, E the set of weighted edges in T , and
d : V × V → R+ specifies the distance between nodes in the tree. Each node vS in T is associated
with a subset of class labels S ⊆ [k], and can be recursively defined as follows:

1. For each class i ∈ [k], there is a corresponding leaf node vi ∈ V . Conversely, each leaf node
vi ∈ V is identified with a single class label i ∈ [k].

2. For some S ⊆ [k], if vS ∈ V is not a leaf node in T , then its children form a partition of S. In
other words, if vS1 , . . . , vSc are the children of vS , then ∀i ̸= j, Si ∩Sj = ∅ and ∪i∈[c]Si = S.

3. The root node of T is v[k].

At a colloquial level, the tree T specifies a hierarchy of class labels that represents the structured
knowledge among them. For example, as shown in Fig. 1a of the MNIST dataset, the two children
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Figure 1: Fig. 1a: MNIST class hierarchy. The root node contains all the 10 digit classes. The two
children nodes of the root node correspond to the coarse classes of odd and even digits, respectively.
Each leaf node in this class hierarchy corresponds to a fine class label (digit). Fig. 1b: An example of
a class hierarchy tree T along with a visualization of the data in the feature space. The CPCC score
computes the correlation coefficient of the tree metric from T in the left panel and the corresponding
Euclidean distance obtained from the feature space in the right panel.

of the root node correspond to the odd and even numbers, respectively. Accordingly, the distance
between digits 1 and 3 is smaller than that between digits 1 and 2.

2.2 COPHENETIC CORRELATION COEFFICIENT (CPCC)

In the context of clustering, Sokal & Rohlf (1962) introduced the cophenetic correlation coefficient
(CPCC) to evaluate the correspondence between two dendrograms. The CPCC is the Pearson’s
correlation coefficient between two sequences of pairwise distances. For a class hierarchy T and a
node v ∈ V , the depth dt(v) of v is the length of the shortest path from v to the root of T . In the
original applications of CPCC, the “dendrogrammatic ” ground-truth distance t(vi, vj) between a
pair of nodes vi, vj in T is defined as follows:

t(vi, vj) := max{dt(vi), dt(vj)} − dt(LCA (vi, vj)),

where LCA (vi, vj) is the least common ancestor (LCA) of vi and vj . In Fig. 1a, the LCA of 1
and 3 is “odd” while the LCA of 1 and 0 is the root node. As an example of ground-truth distance,
let us consider the class hierarchy tree T and clustering of classes given in Fig. 1b. In Fig. 1b,
t(△a,△b) = 1 since they share an LCA △ at L1, and t(△a,□c) = 2 as they go up 2 levels to meet
at the the root node, which is their LCA.

Now consider a dataset D. For a node vi ∈ T , since vi corresponds to a subset of classes, we use
Di ⊆ D to denote the subset of data points whose class label belongs to vi. The pairwise distance
between Di and Dj is then defined as the Euclidean distance between the center of Di and Dj :

ρ(vi, vj) :=
∥∥∥ 1
ni

∑
x∈Di

x− 1
nj

∑
x′∈Dj

x′
∥∥∥
2
, where ni = |Di| and nj = |Dj | are the number of

points in each cluster. Then, the CPCC score CPCC(t, ρ), between distances t and ρ is defined as:

CPCC(t, ρ) :=

∑
i<j

(t(vi, vj)− t)(ρ(vi, vj)− ρ)

(
∑
i<j

(t(vi, vj)− t)2)1/2(
∑
i<j

(ρ(vi, vj)− ρ)2)1/2
, (1)

where t := 2
∑

i<j t(vi, vj) / k(k − 1), ρ := 2
∑

i<j ρ(vi, vj)/k(k − 1) are the averages of all the
pairwise distances for t and ρ.
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3 OUR METHOD

In this section we first define an alternative tree metric used to measure the distance between two
nodes in a tree. Then, we proceed to discuss our method that uses the proposed tree metric to learn
structured representations when a class hierarchy T is available during supervised learning.

3.1 TREE METRIC

Given a tree T = (V,E, d) forming a class hierarchy, we formally define the tree metric dT as:
Definition 3.1 (Tree Metric). The tree metric dT (v, v

′) for any pair of nodes v, v′ ∈ V is the
weighted length of the shortest path in T connecting v and v′.

Proposition 3.1. For any undirected weighted graph G, dT (·, ·) is a well-defined metric over Y , if
all edge weights of G are positive and G is connected.

Our main motivation to use the tree metric dT instead of t as defined in Section 2.2 is two-folds.

First, while each edge in the class hierarchy T corresponds to a subset relationship, there are other
kinds of structured relationships between classes that go beyond the subset relationship. For exam-
ple, the benchmark dataset MetaShift (Liang & Zou, 2021) also contains a graph to describe the
relationship between different subsets of classes. However, in MetaShift the weighted edges do
not correspond to the subset relationship as in the case of a class hierarchy, but rather to a similar-
ity/discrepancy measure between them. In this case, the relationship between classes corresponds to
an undirected and weighted graph, where the notion of LCA does not apply any more. In fact, even
in the case of a tree, the LCA is subject to change depending on which node in the tree is chosen as
the root node. However, the tree metric dT is invariant to rotations of the tree, and applies to both
trees and general graphs as shown in Proposition 3.1.

Second, the definition of t(·, ·) does not account for the weights of edges in T . This implies that
all the fine-grained classes under a given super-class are the same. However, in many applications,
different fine-grained classes may have different proportions or importance, for a given super-class.
In these cases, the tree metric is more adapted since it also takes into account the edge weights.

Nevertheless, when T is an unweighted class hierarchy tree, we have the following relationship
between the proposed tree metric dT (·, ·) and t(·, ·):
Proposition 3.2. Let T be an unweighted tree with a fixed root node. Then for any pair of nodes
vi, vj ∈ V , dT (vi, vj) = 2t(vi, vj)− |dt(vi)− dt(vj)|.

The proof is deferred to App. A. In particular, Proposition 3.2 states that if the depths of vi and vj
are the same in T , then our tree metric reduces to twice of t(vi, vj). Multiplying a variable by a
constant does not affect its correlation with others. Henceforth, in what follows, we propose to use
the tree metric dT (·, ·) in replacement of t(·, ·) to compute CPCC.

3.2 STRUCTURED REPRESENTATIONS BY EMBEDDING THE TREE METRIC

Now that we have defined our tree metric dT (·, ·), we are interested in learning representations fθ(·),
by optimizing the model parameter θ, such that the Euclidean distance between the representations
of any pair of class centers i, j ∈ [k] approximates dT (vi, vj) in the tree T . Consider a dataset
D = {(xi, yi)}ni=1 of size n for classification problem over ∆k. We propose to use the CPCC
between ρZ(·, ·) and dT (·, ·) as a regularizer to the cross-entropy loss, resulting in the loss function:

L(D) =
∑

(x,y)∈D

ℓCE(y, g(fθ(x)))− λ · CPCC(dT , ρZ), (2)

where λ > 0 is the regularization strength (λ = 1 in the experiments). The Euclidean distance ρZ
is computed in feature space. Concretely, we first apply the encoder fθ to D and obtain a set of
points in Z × Y: DZ := {(fθ(xi), yi)}ni=1. Then, we partition DZ into k subsets according to the
ground-truth labels, and consider the same tree structure T on DZ . Note the negative sign before
coefficient λ in the above formulation, as we wish to maximize the CPCC score.

In practice, at each iteration during training, since stochastic optimization methods are used, we
process a batch of inputs instead of the whole data set D. For each incoming batch, we track the
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number of finest classes represented in the batch before any pairwise calculation. When all the
inputs in a batch come from the same coarse class, the CPCC score is not well-defined due to the 0
variance of dT . This can happen when the batch size is relatively small. In such cases, we fix the
value of the CPCC regularizer to 0 to avoid the numerical division by zero error.

Time Complexity of the CPCC Regularizer The computation of our CPCC regularizer is
lightweight. For a feature space with p dimensions, for each training iteration, there will be at
most O(pmin(b2, k2)) additional computations, where b is the batch size. Such an overhead is of-
ten negligible when compared with the computations needed to train a neural network. In App. B
we also provide a brief discussion on the convergence of optimizing the above objective function
with SGD.

3.3 THE BENEFITS OF STRUCTURED REPRESENTATIONS

In what follows, we describe two potential benefits of learning structured representations with the
proposed CPCC regularizer, before providing thorough empirical validation in Section 4.

Interpretability As we briefly discussed before, one potential drawback of the representations
learned through supervised learning is the lack of interpretability. Recent work (Papyan et al., 2020;
Han et al., 2021) have both empirically and theoretically (under certain assumptions) shown that
under the cross-entropy loss, when enough training has happened, the learned representations will
have reduced variance within each class, and the set of features corresponding to different classes
will converge to the so-called simplex equiangular tight frame (ETF). Yet, the vertices of the simplex
ETF are symmetric (in the sense of being permutation-invariant), hence the class features do not
necessarily reflect the similarities/differences between different classes, even in feature space.

By enforcing the Euclidean distances in feature space between different classes to be close to the tree
metric through our CPCC regularization, we attempt to break the symmetry in learning the features.
This can potentially lead to more interpretable features, as closer classes (in the sense of the tree
metric) are closer to each other in feature space.

Generalization Another by-product of structured representations is potentially better generaliza-
tion both in-distribution when only limited amount of labels is available, or under sub-population
shifts (Santurkar et al., 2020). To see this, note that the goal of our CPCC regularizer is consistent
with classification accuracy: it essentially pushes data from different classes away proportionally
to their distance in the tree. Consequently, for sub-population shifts, if the hierarchy correctly cap-
tures coarse-fine relationship, future unseen fine-grained classes from the same coarse category will
be further away from those under a different coarse category. This may help generalize to unseen
fine-grained classes in zero or few-shot learning.

4 EXPERIMENTS

In this section, we apply our proposed method to: (i) study how using CPCC during training affects
the representation learnt under various training objectives (Section 4.3), and (ii) see how the learned
structured representations can improve generalization (Section 4.4).

4.1 DATA

We conduct our experiments on MNIST (Lecun et al., 1998), CIFAR100 (Krizhevsky, 2009), and
BREEDS (Santurkar et al., 2020). By using this variety of datasets and hierarchies, we get a com-
prehensive overview of the usefulness of CPCC as a regularizer. See App. G for the full hierarchies.

MNIST contains handwritten digits from 0 to 9. We define odd and even digits to be two coarse
classes (Fig. 1a). The digits in the leaves are called fine classes below. The artificial level based
on odd- and even-ness corresponds to concepts that are not visually observable. CIFAR100 comes
with a predefined hierarchy: its coarse level has 20 classes, each containing 5 fine classes (e.g.,
beaver, dolphin, otter, seal and whale belongs to aquatic mammals). While the hierarchies are
semantically meaningful, the coarse level labels are not purely defined by visual similarities. For
instance, it is hard to tell the size of an animal from its image (making the coarse classes large
omnivores/herbivores and mid-size mammals difficult to distinguish). BREEDS is a benchmark
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built on ImageNet (Deng et al., 2009). It contains a manually calibrated label hierarchy, based
solely on shared visual characteristics. Santurkar et al. (2020) proposed four tasks: LIVING17,
ENTITY13, ENTITY30, and NONLIVING26. For each, we consider the leaf nodes, which are
ImageNet classes, as our fine level classes, and define the coarse levels to be their “superclasses” at
different depths. We end up with trees that only contain the root node and two levels of the initial
hierarchy, and ignore intermediate relationships for CPCC regularization.

New Levels Based on the coarse and fine levels in the hierarchy, we insert a mid level between
the coarse and fine ones, as well as a coarser level between the coarse one and the root node. This
results in classes verifying kcoarser < kcoarse < kmid < kfine. In MNIST, the mid classes are 1,3,5
(odd numbers ≤ 5), 7,9 (odd numbers > 5), 0,2,4 (even numbers ≤ 5), and 6,8 (even numbers > 5).
We do not consider a coarser level (it is trivial to train on the root node). In CIFAR100, each coarse
level (containing 5 fine classes) is split into arbitrary groups of 2/3 fine classes, creating 40 classes in
the mid level. 2 arbitrary coarse classes are merged into 1 coarser label, creating 10 coarser labels.
Since BREEDS contains 8 non-root levels in total, and all 4 datasets’ coarse levels have a depth
≥ 2, we use the original hierarchy and let the mid level be one level above the fine classes, and the
coarser level be one level above the coarse classes.

Source & Target Split We split BREEDS into source (s) and target (t): s and t have the same
coarser and coarse labels, but mid and fine classes are different. Following this idea, recall we split
MNIST/CIFAR’s coarse levels into groups of 2 and 3. We take 60 fine classes as CIFARs and the
rest as CIFAR t, 6 classes as MNISTs, 4 in MNIST t. Due to this construction, there is only one
mid class in each of CIFAR/MNISTs/t’s coarse class. On the other hand, BREEDS ’s coarse classes
have many mid children.

4.2 BASELINES AND METRICS

As mentioned above, we operate in a fully supervised setting. We denote our neural network as a
function h : X → ∆k. h .

= g ◦ fθ can be decomposed into a feature extractor fθ, and a linear classi-
fier g to which the softmax is applied. Training is performed using the following objectives, on the
fine-coarse hierarchy of MNIST, CIFAR, and BREEDS, with and without CPCC as a regularization
(see App. C, F for more details). Our baselines include:

• Flat ℓCE: training on the fine classes only, without leveraging any hierarchical information.
• Multi-task Learning: jointly training a two-headed network to treat fine and coarse as two sepa-

rate tasks. The loss function is the sum of the cross-entropies on the fine and coarse classification
tasks, and we simply set the weight of the two parts to 1.

• Curriculum Learning: In the spirit of curriculum learning, we first train on the coarse classes
using ℓCE and use ycoarse instead of yfine. In the second step, we remove the linear classifier and
fine tune a new one on the fine level labels with ℓCE as the loss function.

• Sum Loss: We define a hierarchical Sum Loss as
∑

ℓCE(ycoarse,Wh(x)) + ℓCE(yfine, h(x)), W
is a k1 by k2 matrix representing the relationships in the label tree: if a fine class i belongs to a
coarse class j, then Wji is 1, otherwise the entry is set to 0.

• HXE: The Hierarchical Cross Entropy (Bertinetto et al., 2020) that replaces the predicted output
in ℓCE with weighted hierarchical class conditional probabilities.

• Soft: The soft labels objective (Bertinetto et al., 2020) where labels in ℓCE are derived from a
mapping function to encode class node similarity in y.

• Quad: The Quadruplet Zhang et al. (2016) multi-task loss which combines ℓCE with a generalized
triplet loss to enforce different margins at different levels of the hierarchy.

Metrics To evaluate the representation structure learnt with the various loss functions, as well as
the influence of CPCC, we use (i) silhouette scores (Rousseeuw, 1987) to measure the salience of
clustering patterns at the coarse level, (ii) CPCC as a metric to measure how the whole representa-
tion structure is similar to the fine-coarse hierarchy, (iii) t-SNE (Van der Maaten & Hinton, 2008)
for visualization of the learnt embeddings in 2D, and (iv) a symmetric distance matrix to evaluate
the hierarchical structure. Specifically, we calculate the Euclidean distance between the mean rep-
resentation vectors for each pair of fine classes. The matrix is organized in a way where fine classes
from the same coarse class are grouped together, so that the coarse within-cluster distance is shown
around the diagonal while other entries present coarse level between-cluster distances.
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Figure 2: The matrices show the distance between fine CIFAR100 classes with and without CPCC
for Flat (lighter color means smaller distance, same color palette used for both). The light diago-
nal blocks with CPCC correspond to the coarse classes. We also show t-SNE visualization of the
representations (colored by coarse labels) learnt using Flat with and without CPCC regularization.
The pattern is aligned with distance matrix. When CPCC is used, fine classes from the same coarse
classes tend to be closer, and coarse classes tend to be further apart.

4.3 STRUCTURE OF THE LEARNT REPRESENTATIONS

Fig. 2 show the effects of training with CPCC, which matches our expectations shown in Fig. 1b.
In the distance matrix, we can see that the within-coarse cluster distance is much smaller than the
between-coarse cluster distance (corresponding to diagonal 5 by 5 blocks). This fact is verified
qualitatively in the t-SNE plots, where coarse groups tend to be better separated. Similar patterns
are observed when CPCC is paired with the other loss functions described above. We want to point
out that although other setups have a more structured representation to some extent, these are not as
perfect as when paired with CPCC (see App. D for the figures).

In Table 1, we see that the objectives leveraging the hierarchical information tend to increase the
CPCC. This is particularly true of the multi-task and soft labels setting. But, directly optimizing the
CPCC score still gives the largest gains, both on CPCC and silhouette scores.

4.4 GENERALIZATION ON DATASETS WITH A SHARED HIERARCHY

Given a representation fθ trained on the fine-coarse hierarchy (Section 4.2), we want to see if struc-
tured representations help performance in-hierarchy, i.e., on the fine and coarse classes the model
was trained on; as well as out-of-hierarchy, i.e., on new levels and/or new classes of the hierarchy.

In-hierarchy In this setting, we evaluate the models on classes and levels used during training to
construct the various objectives and the tree metric (i.e., the fine and coarse classes). Results can be
found in the FineAcc and CoarseAcc columns of Table 1. Adding our CPCC regularizer leads to
better test accuracy at both levels, across objectives and datasets, with gains sometimes exceeding
1%. According to Goyal et al. (2021), such a performance gain (especially on fine classes) is rarely
observed when hierarchical information is leveraged. Overall, our findings suggest that when such
information is available, using CPCC as a regularizer is beneficial.

Out-of-hierarchy Two questions naturally arise in our hierarchical setting. The first one is how well
CPCC structured representations generalize to new levels of the hierarchy. To answer this question,
we report in Table 1 the accuracy on the new mid and coarser levels defined in Section 4.1, and not
used during training. This accuracy is obtained zero-shot, via a simple marginalization (e.g., the
probability of a mid class is the sum of the probabilities of all fine classes that belong to it). There
too, adding the CPCC regularization results in performance gains (also see App. Table 4).

The second natural question is if CPCC structured representations can generalize to classes unseen
in the training hierarchy. Assume a model has learned that cats and dogs are animals. Does knowing
the animal concept help it understand giraffes or horses better? To explore this, we train our models
on the source split of the mid and fine classes (Section 4.1), and evaluate their performance on the
target split. We can still apply “zero-shot” transfer to coarse and coarser level via marginalization,
but fine tuning is necessary to classify the new mid and fine classes: we freeze fθ and fine tune a
linear classifier gmid or gfine on a single image from each new target label (one-shot generalization).
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Table 1: Mean % and standard deviation over 5 seeds for various datasets, objectives and metrics,
with and without CPCC (overall best in bold, best for a given objective with/without CPCC under-
lined). BREEDS ’s results are on the source split. Regularizing with CPCC never hurts performance,
and in most cases leads to consistent and sometimes significant improvements on all metrics.

Dataset Objective CPCC Silhouette FineAcc MidAcc CoarseAcc CoarserAcc

MNIST Flat 10.80 (1.49) 13.97 (0.72) 99.05 (0.23) 99.38 (0.04) 99.49 (0.08) N/A
FlatCPCC 99.96 (0.01) 61.33 (0.42) 99.28 (0.08) 99.38 (0.03) 99.61 (0.03) N/A

CIFAR100

Flat 24.38 (0.57) 5.59 (0.02) 76.82 (0.30) 80.27 (0.35) 85.59 (0.35) 86.85 (0.27)
FlatCPCC 84.20 (0.39) 34.40 (0.11) 77.47 (0.27) 81.30 (0.14) 86.95 (0.17) 88.17 (0.17)
MTL 39.75 (0.33) 8.09 (0.08) 76.56 (0.20) 80.17 (0.22) 85.79 (0.20) 87.11 (0.14)
MTLCPCC 84.88 (0.58) 31.58 (0.23) 76.90 (0.32) 80.91 (0.29) 87.11 (0.19) 88.39 (0.19)
Curr 23.81 (0.60) 5.25 (0.11) 76.84 (0.20) 80.40 (0.17) 85.72 (0.16) 87.02 (0.18)
CurrCPCC 85.32 (0.51) 34.08 (0.23) 77.48 (0.44) 81.42 (0.32) 87.15 (0.19) 88.44 (0.20)
SumLoss 29.85 (0.63) 4.93 (0.07) 76.78 (0.20) 80.47 (0.22) 85.88 (0.25) 87.11 (0.26)
SumLossCPCC 84.78 (0.64) 31.16 (0.13) 77.26 (0.12) 81.17 (0.18) 86.99 (0.07) 88.26 (0.02)
HXE 25.40 (0.68) 8.31 (0.05) 76.58 (0.27) 80.17 (0.24) 85.67 (0.15) 87.02 (0.16)
HXECPCC 85.13 (0.22) 35.84 (0.18) 76.57 (0.33) 80.63 (0.24) 86.48 (0.20) 87.77 (0.20)
Soft 55.95 (0.67) 14.48 (0.11) 76.82 (0.06) 80.41 (0.07) 85.84 (0.16) 87.16 (0.07)
SoftCPCC 85.23 (0.24) 35.80 (0.16) 77.11 (0.16) 81.02 (0.13) 86.63 (0.17) 87.93 (0.14)
Quad 25.08 (0.26) 6.75 (0.06) 76.40 (0.28) 80.05 (0.27) 85.30 (0.11) 86.67 (0.14)
QuadCPCC 84.65 (0.32) 34.79 (0.23) 77.10 (0.16) 80.92 (0.12) 86.78 (0.09) 88.04 (0.09)

LIVING17s Flat 36.74 (0.92) 8.89 (0.08) 83.66 (0.51) 89.16 (0.28) 89.72 (0.26) 92.54 (0.34)
FlatCPCC 93.56 (0.46) 48.26 (0.51) 84.97 (0.68) 90.52 (0.54) 91.13 (0.61) 93.66 (0.36)

ENTITY13s Flat 34.97 (0.43) 3.12 (0.03) 82.36 (0.38) 84.52 (0.33) 90.43 (0.34) 93.38 (0.33)
FlatCPCC 90.98 (0.22) 38.68 (0.17) 83.37 (0.37) 85.53 (0.28) 91.50 (0.09) 94.22 (0.06)

ENTITY30s Flat 24.29 (0.30) 3.07 (0.06) 80.81 (0.35) 82.28 (0.35) 86.00 (0.25) 89.27 (0.27)
FlatCPCC 73.55 (0.77) 29.43 (0.12) 82.00 (0.31) 83.57 (0.34) 87.60 (0.13) 90.72 (0.28)

NONLIVING26 s Flat 26.95 (0.31) 5.90 (0.13) 80.79 (0.36) 83.49 (0.30) 80.79 (0.36) 87.28 (0.25)
FlatCPCC 82.20 (0.44) 34.63 (0.31) 82.96 (0.35) 85.88 (0.37) 87.42 (0.36) 89.35 (0.40)

Results are shown in Table 2. First, under this subpopulation shift, using CPCC still outperforms the
original loss functions on coarse and coarser levels (zero-shot), which is consistent with results in
Table 1. Second, in one-shot generalization to new mid levels, CPCC gives an often large advantage.
Intuitively, as all fine classes are grouped together within coarse groups, if one data point is randomly
selected, then other data points in the same coarse class will readily be assigned the same label.
Without this structure in the representation, generalization is more difficult as all fine labels are
evenly distributed. The only notable exception is ENTITY13, where each coarse label has too many
mid level children and grouping by coarse level hurts. Third, CPCC regularization is often harmful
to one-shot fine level generalization due to coarse grouping: new fine classes are close together at the
coarse level, making them hard to linearly separate. The structure of label tree matters: compared to
LIVING17 and NONLIVING26, ENTITY ’s fine level labels partition coarse labels into much more
fine-grained subsets, resulting in the performance difference in BREEDS. We do observe that other
hierarchical methods have some advantage compared to the flat cross entropy.

5 RELATED WORK

There were many works exploiting label hierarchy and we only refer to the most related ones. How-
ever, to the best of our knowledge, none of the previous work set learning structured representations
as main objective or embedded the tree metric under this context.

Background of Baseline Methods The simplest label hierarchy contains only two level, coarse
and fine, which can be treated as two tasks trained jointly or sequentially. The former originates
from Multi-task Learning (MTL) where part of single network is shared for multiple heads for
each task during training (Caruana, 1997; Zhao et al., 2020; Inoue et al., 2020). The latter echoes
with Curriculum Learning (CL) (Bengio et al., 2009), where pretraining with a easy task will
help the convergence and performance on a hard task. We define coarse level classes following Ahn
et al. (2021); Peterson et al. (2018); Wang & Cottrell (2015); Stretcu et al. (2021) to emulate human
learning behavior. Sum Loss directly modifies the loss function by marginalizing fine classes prob-
ability for coarse classes. Su & Maji (2021); Hu et al. (2018) defined a similar version to address
some partially labeled tasks. Bertinetto et al. (2020) provided a thorough survey of different types of
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Table 2: The superscript denotes 1- or 0-shot generalization. All models are trained on the source
split s and evaluated on the target split t. s and t have different fine/mid classes but the same
coarse/coarser classes. CPCC shows an advantage on mid, coarse and coarser, but not fine, levels.

Dataset Objective FineAcc1 MidAcc1 CoarseAcc0 CoarserAcc0

MNIST t Flat 69.93 (10.46) 53.25 (4.89) 51.84 (3.71) N/A
FlatCPCC 53.25 (4.89) 55.11 (8.32) 58.75 (2.28) N/A

CIFAR100 t

Flat 28.14 (2.50) 30.66 (3.17) 42.90 (0.34) 47.37 (0.46)
FlatCPCC 25.73 (1.05) 32.97 (6.55) 44.58 (0.17) 48.93 (0.18)
MTL 29.59 (1.72) 30.36 (3.79) 42.86 (0.31) 47.34 (0.32)
MTLCPCC 25.75 (1.61) 32.47 (5.92) 44.43 (0.44) 48.79 (0.43)
Curr 28.77 (2.73) 30.82 (4.64) 43.88 (0.67) 48.33 (0.65)
CurrCPCC 25.50 (1.18) 32.78 (4.47) 44.65 (0.47) 48.96 (0.47)
SumLoss 29.31 (2.62) 30.62 (3.26) 43.15 (0.33) 47.56 (0.37)
SumLossCPCC 26.39 (1.83) 32.40 (5.98) 44.87 (0.37) 49.14 (0.39)
HXE 28.97 (2.81) 31.71 (5.51) 44.28 (0.43) 48.67 (0.46)
HXECPCC 25.14 (1.84) 32.03 (5.68) 44.38 (0.34) 48.35 (0.26)
Soft 29.35 (1.90) 32.96 (3.31) 43.99 (0.13) 48.25 (0.34)
SoftCPCC 26.10 (1.80) 34.10 (5.60) 44.65 (0.70) 49.08 (0.68)
Quad 27.89 (0.24) 31.28 (4.57) 42.73 (0.29) 47.32 (0.54)
QuadCPCC 24.48 (1.78) 32.14 (5.57) 43.68 (0.39) 48.17 (0.42)

LIVING17 t Flat 28.52 (3.22) 32.24 (2.60) 52.99 (0.79) 69.68 (0.38)
FlatCPCC 29.92 (3.40) 39.16 (3.30) 56.36 (0.69) 72.08 (0.43)

ENTITY13 t Flat 16.03 (1.60) 20.66 (0.43) 58.42 (0.33) 69.76 (0.45)
FlatCPCC 13.06 (1.64) 18.89 (1.29) 61.28 (0.18) 71.94 (0.28)

ENTITY30 t Flat 21.53 (1.49) 21.61 (1.68) 45.66 (0.20) 60.07 (0.26)
FlatCPCC 20.79 (0.78) 25.29 (1.32) 48.83 (0.12) 62.89 (0.39)

NONLIVING26 t Flat 23.50 (1.74) 25.37 (2.36) 39.31 (0.21) 53.14 (0.14)
FlatCPCC 24.04 (1.04) 27.99 (2.53) 42.49 (0.54) 56.14 (0.73)

hierarchical methods, as well as label embedding methods (encoding hierarchical information into
labels, the Soft objective), hierarchical losses (Quad (Zhang et al., 2016), HXE). None of these use
a regularization method, with the exception of group overlapping lasso (Zhao et al., 2011). However,
it was introduced for logistic regression, making it hard to to be applied to modern neural networks
that use the penultimate layer as its representation.

Learning with Label Hierarchy The most common motivation of hierarchical models is to im-
prove the fine-level accuracy. Interestingly, accuracy improvements are often mixed: while most
works claimed to gain performance improvement, Wang & Cottrell (2015) stated that this improve-
ment was limited, and Goyal et al. (2021) claimed most hierarchical models lead to worse perfor-
mance on non-hierarchical accuracy metrics. Additionally, using coarse level labels often appears in
a weakly supervised setting, where coarse classes are always available but fine class labels are only
accessible for part of data, to reduce annotation cost at a finer level (Taherkhani et al., 2019; Lei
et al., 2017; Ristin et al., 2015). Other works built hierarchy from dataset (Murdock et al., 2016;
Li et al., 2010; Verma et al., 2012; Han et al., 2018; Zheng et al., 2017). We only name a few since
they are very different from our setting where the hierarchy is defined before training.

6 CONCLUSION

How to include label relation into representation is an open question. In this paper, in the context
of tree label hierarchies, we use the cophenetic correlation coefficient as a regularizer to embed
this hierarchical relationship into representations, and outperform other baseline methods. CPCC
has multiple advantages, including low time complexity, better interpretability, flexibility on any
supervised learning paradigms, and it can be applied to any common label relation graphs. We also
demonstrate that it leads to better generalization performance on several downstream tasks. All these
benefits show that our method provides an interesting solution to this important problem.
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