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ABSTRACT

Action abstraction is critical for solving imperfect information extensive-form
games (IIEFGs) with large action spaces. However, due to the large number of
states and high computational complexity in IIEFGs, existing methods often fo-
cus on using a fixed abstraction, which can result in sub-optimal performance. To
tackle this issue, we propose a novel Markov Decision Process (MDP) formulation
for finding the optimal (and possibly state-dependent) action abstraction. Specif-
ically, the state of the MDP is defined as the public information of the game,
each action is a feature vector representing a particular action abstraction, and
the reward is defined as the expected value difference between the selected action
abstraction and a default fixed action abstraction. Based on this MDP, we build a
game tree with the action abstraction selected by reinforcement learning (RL), and
solve for the optimal strategy based on counterfactual regret minimization (CFR).
This two-phase framework, named RL-CFR, effectively trades off computational
complexity (due to CFR) and performance improvement (due to RL) for IIEFGs,
and offers a novel RL-guided action abstraction selection in CFR. To demonstrate
the effectiveness of RL-CFR, we apply the method to solve Heads-up No-limit
(HUNL) Texas Hold’em, a popular representative benchmark for IIEFGs. Our
results show that RL-CFR defeats ReBeL’s replication, one of the best fixed ac-
tion abstraction-based HUNL algorithms, and a strong HUNL agent Slumbot by
significant win-rate margins 64± 11 and 84± 17 mbb/hand, respectively.

1 INTRODUCTION

The imperfect information extensive-form game (IIEFG) model (Streufert, 2021) is a general for-
mulation for studying multi-player turn-taking games in a tree representation, including Poker
(Moravcı́k et al., 2017), MahJong (Wang, 2023) and Scotland Yard (Schmid et al., 2021). Solv-
ing IIEFGs requires finding the Nash equilibrium (Nash, 2002) of the game, especially under two-
person zero-sum conditions. In recent years, the most popular approach for solving large IIEFGs
has been counterfactual regret minimization (CFR) or its variants (Burch & Bowling, 2013; Tam-
melin, 2014; Brown & Sandholm, 2019b; Brown et al., 2019), which gives a mixed strategy with
low exploitability for IIEFG.

However, many IIEFGs have myriad actions. As a result, the size of the game tree increases ex-
ponentially with the number of actions (Schnizlein et al., 2009), and directly applying CFR-based
solutions encounters tremendous computational complexity. To mitigate this problem, action ab-
straction (Aceto, 1991), which selects limited number of actions from all available actions, has thus
been extensively applied to greatly reduce the size of the game tree so that CFR can be solved effi-
ciently. Nevertheless, due to the large number of different states and high computational complexity
in IIEFGs, existing results mostly focus on fixed action abstractions (Moravcı́k et al., 2017; Brown
et al., 2020; Zarick et al., 2020). Doing so inevitably lead to sub-optimality, and it remains an
unsolved challenge to design strategies that can find optimal dynamic action abstractions with man-
ageable computational complexity (Brown, 2020). In this paper, we propose an action abstraction
technique that achieves better performance compared to fixed action abstraction methods, and the
size of our action abstraction not exceed the fixed action abstraction.

Reinforcement learning (Humphreys, 1997; Sutton & Barto, 1998) (RL) has been shown to be a
revolutionary method in many games (Madeira et al., 2006), e.g., Go (Silver et al., 2016), StarCraft
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II (Lee et al., 2018) and Dota 2 (Berner et al., 2019). However, applying RL methods to IIEFGs is
challenging due to two important features of IIEFG: (i) the optimal strategy for an IIEFG is most
likely a mixed strategy on its support (Chen & Ankenman, 2007; Neyman, 2008), and (ii) the value
of an information set may depend on the strategy that it is chosen (Brown et al., 2020). To see this,
consider the simplified poker example (Burch, 2017) in Figure 1. In this case, player 1 has equal
chance of being dealt J or K and player 2 is always dealt Q. There are 2 chips in the pot (both
player put 1 chips in the pot), and both players have 2 chips left behind, with player 1 acts first. The
Nash equilibrium strategy for player 1 is all-in all of K and 50% of J , and checking the other 50%
of J . If player 1 declares all-in, then the Nash equilibrium strategy for player 2 is calling and folding
with equal probabilities. If a Nash equilibrium strategy is adopted, player 1’s K expects to win 2
chips, while J expects to lose 1 chips, and player 2 expects to lose 0.5 chips. If player 1 all-in with
100% probability, and player 2’s best response strategy is call with 100% probability, player 1’s K
expects to win 3 chips, while J expects to lose 3 chips, and player 2 expects to win 0 chips.

50%50%

J/Q K/Q

-1/+1

J/Q K/Q

check all-in all-in

+1/-1 -3/+3 +1/-1 +3/-3

fold call fold call

J/Q

check

chance player

player 1

player 2

payoff

chance state non-terminal state

terminal state information set

Figure 1: The game starts with a
chance state where player 1 has equal
chance of being dealt J or K, and
player 2 is always dealt Q. Player
1 will always all-in with K and has
to decide whether to check or all-in
with J . If player 1 declares all-in,
player 2 has to decide whether to fold
or call. Player 2 does not know player
1’s cards, the information set contains
two states player 2 incapable of dis-
tinguishing. In the terminal state, we
assign payoffs to both players based
on the assignment rule.

To tackle the above challenges, we propose a two-phase framework, named RL-CFR, which inge-
niously combines deep reinforcement learning (DRL) and CFR. Specifically, we first formulate a
novel Markov Decision Process (MDP) (van Otterlo & Wiering, 2012) for determining the action-
abstraction with highest expected payoff. For this MDP, the state is the public information of the
game, each control action is a feature vector representing a particular action abstraction, and the
action rewards are set to be the value differences calculated by CFR between selected action abstrac-
tions and default fixed action abstraction. Based on this MDP, we then build a game tree according
to action abstraction selected by the actor-critic DRL method (Konda & Tsitsiklis, 1999), and even-
tually solve the strategy for selected action abstraction based on CFR. Our RL-CFR framework
offers a principled way to reaps benefits from both RL and CFR, and handles the aforementioned
mixed-strategy and probability-dependent reward issues. It also effectively trades off computational
complexity (due to CFR) and performance improvement (due to RL) for IIEFGs.1 As we will see in
the experiments, RL-CFR can be trained from scratch given only the rules of the IIEFG. Compared
to other methods for choosing action abstractions (Hawkin et al., 2011; 2012; Zarick et al., 2020),
RL-CFR has a wider range of applicability and faster convergence (Brown, 2020).

To demonstrate the effectiveness of RL-CFR on large IIEFGs, we evaluate its performance on the
challenging Heads-up No-limit Texas Hold’em (HUNL) poker game.2 Our results show that RL-
CFR defeats the fixed action abstraction-based HUNL algorithm ReBeL’s replication (Brown et al.,
2020) by 64 mbb/hand win-rate in a test of over 600, 000 hands, and beats the popular strong HUNL
agent Slumbot (Jackson, 2013) by 84 mbb/hand win-rate in a test of over 250, 000 hands. These
significant win-rate margins clearly show the power of our novel RL-CFR solution.

1The “trade off” is that action abstraction techniques reduce CFR’s computational complexity of large
IIEFGs, while RL-CFR achieves performance improvement through selecting an action abstraction that has
a higher expected value calculated by CFR compared to the fixed action abstraction, and the size of this se-
lected action abstraction does not exceed the size of the fixed action abstraction.

2Heads-up No-limit Texas Hold’em is a two-player form of Texas Hold’em, and is an important version
of Texas Hold’em for investigating mixed strategy two-player zero-sum IIEFGs (Bard et al., 2013) due to its
complex nature (Rubin & Watson, 2011) and extremely large decision space (Johanson, 2013).
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The main contributions of our work are summarized as follows.

• We introduce a novel MDP formulation for IIEFGs, whose states are carefully defined based on
public information, actions are feature vectors representing action abstractions, and rewards are
value differences between selected action abstractions and default fixed action abstractions. The
MDP formulation allows us to dynamically adjust the action abstraction at different states.

• Based on our novel MDP, we propose a novel framework RL-CFR, which effectively combines
DRL with CFR to achieve a good balance between computation and optimism, and can be trained
from scratch given only the rules of the IIEFG. RL-CFR effectively handles the large decision
space and computational complexity of IIEFGs, and enables one to tradeoff computational com-
plexity (due to CFR) and performance improvement (due to RL).

• We evaluate RL-CFR on the popular HUNL game. Our results show that RL-CFR defeats ReBeL’s
replication (one of the best fixed action abstraction-based HUNL algorithms) and Slumbot (the
strongest publicly available HUNL AI provides online comparisons) by significant win-rates, i.e.,
by margins 64± 11 and 84± 17 mbb/hand, respectively.

2 RELATED WORK ON EXTENSIVE-FORM GAMES

Methods of solving IIEFGs. CFR-based algorithms (Burch & Bowling, 2013; Tammelin, 2014;
Brown & Sandholm, 2019b; Brown et al., 2019) are are commonly used to solve large IIEFGs,
because the regret of CFR is bounded linearly with the game size (a more detailed description of
CFR is presented in Appendix D). There are methods such as Hedge (Cesa-Bianchi & Lugosi, 2006)
or excessive gap technique (Hoda et al., 2010) that theoretically converge faster than CFR.

Faster convergence and better efficiency for solving large IIEFGs. (Habara et al., 2023) com-
bined excessive gap technique with CFR for accelerating the solving of large IIEFGs. (Liu et al.,
2023) investigated RL regularization techniques in solving IIEFGs and proposed a regularization-
based payoff function. (Meng et al., 2023) proposed an efficient deep reinforcement learning method
to solve the problem of inaccurate state value estimation in large IIEFGs.

Action abstraction in IIEFGs. The action abstraction technique is able to quickly compute a
strategy for an IIEFG and obtain a solution with theoretical bounds (Kroer & Sandholm, 2014; 2018;
2015). In IIEFGs with myriad actions, action abstraction can affect strategy quality in surprising
ways (Waugh et al., 2009; Chen & Ankenman, 2007). A parametric method (Hawkin et al., 2011) has
been proposed to find the optimal action abstraction in IIEFGs, and an iterative algorithm (Hawkin
et al., 2012) has been introduced to adjust the action abstraction during iteration. However, these
methods change the action abstraction of each node in the game tree at each iteration, and therefore
converge slower compared to fixed action abstraction methods (Brown, 2020; Zarick et al., 2020).

RL for IIEFGs. There are several CFR-based works inspired by RL, such as regression counter-
factual regret minimization (Waugh et al., 2015; D’Orazio et al., 2020), neural fictitious self-play
(Heinrich & Silver, 2016), deep counterfactual regret minimization (Brown et al., 2019) and ReBeL
(Brown et al., 2020). (Pérolat et al., 2021) applied a regularization-based reward adaptation tech-
nique to solve two-player zero-sum IIEFGs with strong convergence guarantees. (Sokota et al.,
2023) studied a RL algorithm called magnetic mirror descent to achieve empirically competitive re-
sults with CFR in two-player zero-sum games. (Pérolat et al., 2022) solved an imperfect information
game Stratego with model-free multi-agent RL.

3 BACKGROUND AND NOTATION

Imperfect Information Extensive-Form Games We first provide the necessary notations for Im-
perfect Information Extensive-Form Games (IIEFGs) based on notations from (Streufert, 2021;
Osborne & Rubinstein, 1994; Burch, 2017; Brown, 2020; Kovaı́k & Lis, 2019). Specifically, an
IIEFG describes an imperfect information games in the form of a tree, and can be represented by
G = ⟨H,Z,A,N ,P, σc, u, I⟩, where each notation is explain below.

• H is the set of states (histories/nodes). A state h ∈ H is described by all history actions from the
initial game state ∅. We use · to indicate concatenation, and h · a means taking an action a at state
h. h ⊑ h′ means h is an ancestor of h′, and h ⊏ h′ means h is a strict ancestor of h′.
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• Z ⊂ H is the set of terminal states. A terminal state z ∈ Z has no available action.
• A(h) := {a|h · a ∈ H} is the set of available actions at a non-terminal state h ∈ H\Z . AA(h) ⊆
A(h) is an action abstraction for A(h).

• N = {1, · · · , N} is the set of players. There is a “player” not in player setN , defined as c, called
chance decisions, which represents random events players can not control.

• A function P : H\Z → N ∪{c} determines the acting player at a non-terminal state h. Hp is the
set of all states h such that P(h) = p, andHc is the set of chance states.

• The chance strategy σc(h, a) is a probability that chance will act a ∈ A(h) at a state h ∈ Hc.
• u = (up)p∈N is the value function for each terminal state z.
• The information-partition I = (Ip)p∈N describes the imperfect information of G where Ip is a

partition of Hp for each player p. A set I ∈ Ip is called an information set, and all states in I
are indistinguishable for player p. We denote I(h) as the unique information set that contains h.
There is a constraint that ∀I ∈ Ip,∀h ∈ I , we have same acting player p, same available actions
A(h) := A(I(h)) and same action abstraction AA(h) := AA(I(h)).

A behaviour strategy σp ∈ Σp is a function σp(I, a) ∈ R that determines a probability distribution
over available actions a ∈ A(I) for every information set I ∈ Ip. We denote σ(I, a) = σP(I)(I, a).
σ = (σp)p∈N is a strategy profile. πσ(h) is the probability of reaching state h if players follow
σ, calculated as πσ(h) =

∏
h′·a⊑h σ(h

′, a). πσ
p (h) is the probability of reaching state h if players

except p take actions to h and player p follows σ. πσ
−p(h) is the probability of reaching state h

if player p takes actions to reach h and other players follow σ. The counterfactual value (CFV)
(Zinkevich et al., 2007) for player p of state h is vσp (h) =

∑
z∈Z,h⊏z π

σ
−p(h)π

σ(z|h)up(z). The
CFV of an information set I ∈ Ip is vσp (I) =

∑
h∈I(π

σ
−p(h)

∑
z∈Z,h⊑z(π

σ(z|h)up(z))).

Public Belief State Intuitively, the common knowledge of an IIEFG should include the player’s
strategies (Brown et al., 2020). Public belief state (PBS) is an assumption that treats players’ strate-
gies as common knowledge for reducing the state of large IIEFGs significantly, e.g., (Burch et al.,
2014; Sustr et al., 2019; Kovarı́k & Lisý, 2019; Brown et al., 2020). Specifically, we define player
p’s observation-action history (infostate) as Op = (I1, a1, I2, a2, · · · ),3 which includes the infor-
mation sets visited and actions taken by p. The unique infostate corresponding to a state h ∈ Hp

for player p is Op(h). The set of states that correspond to Op is denoted H(Op). We use ∼ to
denote states indistinguishable by some player, i.e., g ∼ h means

∨N
i=1 Oi(g) = Oi(h) (

∨
is the

OR operation on all expressions). A public partition is any partition PS of H\Z whose elements
are closed under ∼ and form a tree Johanson et al. (2011). An element PS ∈ PS is called a public
state that includes the public information that each player knows. The unique public state of a state
h and an infostate Op are denoted by PS(h) and PS(Op), respectively. The set of states that match
the public information of PS is denoted asH(PS).

In general, a PBS β is described by the joint probability distribution of the possible infostates of
the players (Nayyar et al., 2013; Oliehoek, 2013; Dibangoye et al., 2016). Formally, given a public
state PS, Op(PS) is the set of infostates that player p may be in, and △Op(PS) is a probability
distribution over the elements of Op(PS). Then, PBS β = (△O1(PS), · · · ,△ON (PS))4. The
public state of PBS β is denoted as PS(β). The acting player at PBS β is denoted P(β). The
available actions for acting player at PBS β is denoted A(β), and the action abstraction at PBS β is
denoted AA(β).
A subgame can be rooted at a PBS because PBS is a state of the perfect-information belief-
representation game with well-defined values (Brown et al., 2020). At the beginning of a subgame,
a history is sampled from the probability distribution of the PBS, and then the game plays as if it is
the original game. The value for player p of PBS β (PBS value) when all players play according to σ
is vσp (β) =

∑
h∈H(PS(β))(π

σ(h|β)vσp (h)). The value for an infostate Op ∈ β when all players play
according to σ is vσp (Op|β) =

∑
h∈H(Op)

(πσ(h|Op, β−p)v
σ
p (h)) where πσ(h|Op, β−p) is the prob-

3Observation-action history is a kind of information set introduced in (Burch et al., 2014).
4In general, PBS can shed extraneous history to refine information (Brown et al., 2020). For example, in

HUNL, we do not need to record the entire history of actions, and a PBS state contains chips information,
position information, public cards, and the probability of private hands of two players. We can represent a PBS
with a marginal probability distribution in HUNL example as shown in the equation.
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ability of reaching state h according to σ assuming Op is reached and the probability distribution
over infostates for player other than p is β−p.

4 A NOVEL MDP FORMULATION FOR IIEFGS

Below, we present our novel MDP formulation for IIEFGs. It is important to note that our formu-
lation is an abstract MDP model, designed to determine the action abstraction of IIEFGs, based on
which we perform a CFR algorithm to solve for the optimal strategy. Thus, it does not correspond
exactly to the actual game dynamics in IIEFGs.

In general, a Markov Decision Process (van Otterlo & Wiering, 2012) (MDP) consists of the tuple
⟨S,A, P, r, γ⟩, where S is the set of states, A is the set of actions, r : S × A 7→ R is the reward
function, P (s′|s,a) is the state transfer function, and γ is the discount factor. The objective is to find
an optimal control policy π∗, which determines at = π∗(st) at each time, to maximize the expected
cumulative reward R = E{

∑∞
t=0 γ

tr(st,at)}.
New state, action and reward function for IIEFGs. We now specify the state s, the action a
and the value r of our MDP formulation. Our design is inspired by (Brown et al., 2019), which
transforms high-dimensional public belief states into low-dimensional public states.

(State) The dimension of the PBS is generally large because it needs to record the distribution of
infostates. To reduce the dimension of the state, we use the public state as the state in MDP for a
PBS β, denoted as s = PS(β). The public state needs to record public information known to both
players, and the dimensionality is generally not very large.5 The selection of public states has the
additional advantage that the public states of the non-root nodes are fixed during the CFR iterations,
while the PBS of the non-root nodes can change during the CFR iterations.

(Action) We design novel control actions for our abstract MDP to represent different action abstrac-
tions in the IIEFGs, based on which we will build a game tree for the CFR solving.

In IIEFG, there are some actions that are common and are added to the action abstraction no matter
what the PBS β is. We define such a set of actions as always-selected action set AAalways(β),
and AAalways(β) can consist of a few of the most common actions in the set of available actions
A(β). AAalways(β). Meanwhile, we also define a default fixed action abstraction AAbase(β) at
PBS β. AAbase(β) ⊆ A(β) is a set of actions related only to PBS β, and we have AAalways(β) ⊆
AAbase(β). In general, AAbase(β) will be pre-specified to a set of available actions related to the
important information of PBS β.

AAalways(β) and AAbase(β) can be chosen arbitrarily in any IIEFG, although different choices
can affect the win-rate and running time, as mentioned in (Moravcı́k et al., 2017). For example, in
HUNL experiments, we can choose AAalways(β) = {F,C,A} and AAbase(β) = {F,C,A, 0.5×
pot, 1 × pot, 2 × pot} (same setting as (Moravcı́k et al., 2017; Brown et al., 2020)), where F,C,A
refer to fold, check/call and all-in respectively and ×pot means the fraction of the size of the pot
being bet. (Moravcı́k et al., 2017) shows the win-rate decreases by 96 mbb/hand after 10, 000 hands
if we make AAbase(β) = {F,C,A, 1× pot}, although the running time improves by 6 times.

Action a in our MDP is used to select an action abstraction AAMDP (β,a) at PBS β, and we
describe the specifics next. Formally at PBS β, the action abstraction chosen by a is

AAMDP (β,a) = AAalways(β) ∪ AAoptional(β,a) (1)

where optional action setAAoptional(β,a) is the set of actions generated from the PBS β and chosen
action vector a. Since the size of the game tree increases exponentially with the number of available
actions, we can choose to have K actions to the optional action set AAoptional(β,a). The action
we design is a 2K-dimensional vector a = (x1, y1, · · · , xK , yK), with each dimension having a
value between −1 and 1. Precisely, AAoptional(β,a) =

⋃K
i=1 f(xi, yi, β), where f(xi, yi, β) is

a function to generate an available action from all available actions except actions in AAalways

(specially, if f(xi, yi, β) = ∅, there is no action abstraction in this dimension) according to variable
xi, yi and PBS β. Since the set of available actions of IIEFGs with myriad actions tends to be

5For example, in HUNL, a public state only includes the previous actions of the two players, the public
cards, chips in the pot, remaining chips and acting player. On the other hand, a public belief state includes
1, 326 different private hands for both two players, and requires 2, 652 more dimensions than a public state.
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continuous, to define the function f(xi, yi, β), we can correspond the continuous parameters xi, yi
one by one to the set of available actions A(β) of PBS β.

Below, we use HUNL as a concrete example to describe how to choose K and f(xi, yi, β). For
HUNL, we set K = 3, which means we can select up to 3 raising scales other than all-in. Based on
human experience and inspired by prior studies (Hawkin et al., 2011; 2012), a reasonable range for
a raising scale other than all-in is [0, 5]×pot. Thus, we define the f(xi, yi, β) function to be

f(xi, yi, β) =

{
CLIP (2.5(xi + 1)× pot), yi ≥ 0;

∅, yi < 0.
(2)

where CLIP is a function that corresponds the nearest available raising scale.

(Reward) For our abstract MDP, the reward of each action needs to be obtained by solving two
depth-limited subgames (Brown et al., 2018) (a technique for limiting the size of IIEFG, described
in Appendix E) according to CFR-based algorithm ReBeL (Brown et al., 2020), as described in the
Appendix F. We now describe how to compute the reward r from the PBS β, the state vector s and
the action vector a.

We first build a game tree rooted at PBS β with selected action abstraction AAMDP (β,a)
6. Based

on ReBeL, we then obtain a strategy profile σMDP for PBS β that gives state transfers for all
infostates corresponding to all non-leaf nodes of the subgame. Based on the calculated strategy
profile σMDP , we can calculate PBS value vσMDP

P(β) (β) for the acting player, which is the expected
value calculated for the acting player on PBS β (details of the PBS value calculation are in the last
paragraph of Section 3). We then build another game tree rooted at PBS β with default fixed action
abstraction AAbase(β). Similarly, we obtain the strategy profile σbase for this game tree based on
ReBeL, and compute the PBS value vσbase

P(β) (β) for the acting player.

Finally, we define the reward as the PBS value difference between the chosen action abstraction and
the default action abstraction, denoted r(s,a) = vσMDP

P(β) (β)− vσbase

P(β) (β). The state transition of the
MDP depends on the mixed strategy calculated by CFR, as described in Section 5.

5 RL-CFR FRAMEWORK

In this section, we present the RL-CFR framework, which builds upon the ReBeL algorithm (Brown
et al., 2020), an efficient method for solving depth-limited subgame (Brown et al., 2018) mentioned
in Appendix F.7 In contrast to ReBeL, which selects a fixed action abstraction, RL-CFR selects a
dynamic action abstraction via RL. As we will see in the experiments, doing so allows us to optimize
over the set of action abstraction and achieve better performance. It is important to note that applying
the DRL approach to IIEFGs is highly nontrivial. The key challenge comes from the fact that one
has to decide a mixed strategy for all information sets (Burch, 2017; Brown, 2020), which is hard to
calculate directly by RL approach.

RL-CFR framework is an end-to-end self-training reinforcement learning process, with the proce-
dure shown in Figure 2. We now describe the sampling steps for RL-CFR framework: ① Starting
from the initial PBS of the game, each time we handle a non-chance and non-terminal PBS β8, and
we compress a high-dimensional PBS β into a low-dimensional public state s by the method in Sec-
tion 4. ② Passing through the action network and add a Gaussian noise (for increasing exploration)
to obtain action vector a, and this action vector will be mapped to a specified action abstraction
AAMDP (β,a). ③ Building two depth-limited subgames rooted at β according to the default ac-
tion abstraction AAbase(β) and selected action abstraction AAMDP (β,a) respectively. ④ Using
ReBeL algorithm to solve the strategies and values of the two subgames. ⑤ Calculating PBS value
difference as reward r, and adding RL data {s, a, r} to the training data (denoted as DataRL) for
action and critic network. ⑥ Randomly choosing a subgame and following the corresponding strat-
egy σ(β) for state transition to a child PBS β′ next. Let β = β′, and repeat step ①. Algorithm 1
shows the formal procedure of sampling process.

6We use the selected action abstraction only for the root.
7ReBeL can be used to obtain efficient solutions for large IIEFGs by self-play RL and CFR.
8If we encounter a chance PBS where acting player is chance player, we let the chance player randomly act

and update the PBS. If we encounter a terminal PBS, the epoch of sampling ends.
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PBS 𝛽

State 𝒔

Strategy profile 𝜎(𝛽)

Action 𝒂 Reward 𝑟
Action
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PBS Value

Network

ReBeL

Replay Buffer

①
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③
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④

④

⑤

⑤⑤⑤

⑥⑥

update 

per epoch

noise

Start from 𝛽init

sample

𝒜𝒜𝑏𝑎𝑠𝑒(𝛽)

𝒜𝒜𝑀𝐷𝑃(𝛽, 𝒂)

Figure 2: Training procedure for the RL-CFR framework. The labels in the figure correspond to the
sampling steps for RL-CFR framework. A sampling epoch starts from the initial PBS βinit.

Algorithm 1: RL-CFR framework: Sampling (s, a, r) data
Input: θα, noise, η, ϵ// η = 0.33, ε = 0.25 during training
β ← βinit

DataRL ← {}
while !IsTerminal(β) do

while P (β) = c do
β ← TakeChance(β)// Random chance event

σbase(β), v
σbase

P(β) (β)←ReBeL(β,AAbase(β)) // calculate the strategy and

value for fixed default action abstraction
s← PS(β) // use public state as the state in MDP
a←ActionNetwork(s, θα) +N (0, noise) // noise = 0.15 during training
σMDP (β), v

σMDP

P(β) (β)←ReBeL(β,AAMDP (β,a))// calculate the strategy

and value for selected action abstraction
r ← vσMDP

P(β) (β)− vσbase

P(β) (β)// reward function

Add {s, a, r} to DataRL

c ∼ unif [0, 1]
d ∼ unif [0, 1]
if c < η then

if d < ϵ then
nextaction ∼ AAbase(β)

else
nextaction ∼ σbase(β)

β ←NEXTPBS(β, σbase(β), nextaction)
else

if d < ϵ then
nextaction ∼ AAlimit(β,a)

else
nextaction ∼ σMDP (β)

β ←NEXTPBS(β, σMDP (β), nextaction)
Output: DataRL

Thus, after each epoch, we sample a trajectory of (s1,a1, r1, s2,a2, r2, · · · , st,at, rt) based on the
current action network, where t is the length of the game and depends on the player actions. After
collecting a number of RL data DataRL = {(s,a, r)} in several epochs, we use the Actor-Critic
algorithm (Konda & Tsitsiklis, 1999) and MSE Loss to train the action network and critic network
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(These network structures are described in the Section 6). The loss function is as follows:
L(θc) = E(s,a,r)∼DataRL [(rθc(s,a)− r)2], L(θa) = E(s,a,r)∼DataRL [−rθc(s,aθa(s))], (3)

where θc, θa are the parameters of critic network and action network.

In the early epochs of training, the action network selects an action abstraction that is often not as
good as the default fixed action abstraction AAbase(β). Thus, we begin the training by choosing
the default action abstraction when building the depth-limited subgame except for the root node.
After a period of training the action abstraction chosen by the action network will outperform the
default action abstraction, at which point, when building the depth-limited subgame, we choose the
action abstraction for the child nodes based on the action network. Meanwhile, in order to get a
more accurate PBS value, we can retrain the PBS value network according to the action abstraction
selected by the action network. Theoretically, the PBS value network and action network can be
repeatedly updated for training.

6 EXPERIMENT

To illustrate the effectiveness of our RL-CFR framework on large IIEFGs with myriad actions, we
conduct experiments on Heads-up No-limit Texas Hold’em (HUNL), similar to many prior studies
on large IIEFGs (Brown et al., 2019; 2020; Zarick et al., 2020). The rules of HUNL are provided in
Appendix B. During the evaluation, both players start with 200 big blinds, and the two players will
switch their positions and private hands in every two hands, as similarly done in annual computer
poker competition (ACPC) (Bard et al., 2013).

Our experiments were run on a compute server with 4 NVIDIA PH402 SKU 200 GPUs and an 80-
core Intel(R) Xeon(R) Gold 6145 2.00GHz CPU. All neural networks in our implementation consist
of MLPs (size specified below) with ReLU (Glorot et al., 2011) activation functions, and are trained
with Adam (Kingma & Ba, 2015). In the CFR iteration to solve a PBS, we use leading equilibrium-
finding algorithm discounted CFR (DCFR) (Brown & Sandholm, 2019b), and we let the number of
iterations T = 250 during training and evaluation.9

A PBS value network has 6 layers and 18 million parameters, of which the input layer has 2, 678
dimensions (corresponding to all possible private hands of the two players and the public state
information). Each hidden layer has 1, 536 dimensions and the output layer has 2, 652 dimensions
(corresponding to all possible private hands of the two players). During the training process, we
sample 4.8× 107 PBS data in total. We randomly sampled data from the last 1× 107 PBS data and
set a learning rate of 1 × 10−5 and a batch size of 512 during training. The training process and
the data sampling process are performed simultaneously. Specifically, the data generation process
is run in parallel in 60 threads, and the training process is run continuously on a single GPU. After
the training of PBS value networks, we obtained a replication version of ReBeL as a baseline. In
addition, the PBS value networks used for all our experiments (including the PBS value network
used for RL-CFR) are trained based on the default action abstraction.10

The action network and the critic network both have 3 layers and 2 × 104 parameters, with hidden
layers of 128 and 96 dimensions. The training process has 2× 106 epochs, each sampling approxi-
mately 10 RL data.11 We randomly sample data from all RL data, and set a learning rate of 1×10−5

and a batch size of 1, 024 in training. After 5× 105 epochs, we generated PBS Data by building the
game tree exactly according to the action abstraction given by the action network. We generate data
in parallel on 60 threads while training on a single GPU. The training cost of action network and
critic network is approximately 40% of the training cost of PBS value network.

We evaluate the head-to-head performance of RL-CFR and ReBeL’s replication under the common
knowledge in HUNL. In detail, the common knowledge in HUNL is that the agent knows each

9Since HUNL evaluations are generally time-limited and need to be solved within a few seconds, common
poker AIs typically take between 100 to 1000 CFR iterations (Brown et al., 2015; Bowling et al., 2017; Brown
& Sandholm, 2017a; Moravcı́k et al., 2017; Brown et al., 2020).

10This setting is to illustrate that the performance improvement achieved by RL-CFR is entirely due to the
action abstraction chosen by the action network.

11A RL Data (s,a, r) consists of a 64-dimensional state s (record public cards, chips, positions and previous
actions in HUNL), a 6-dimensional action a and a scalar r. Since the number of rounds in a HUNL game is
not deterministic, a single sample to the terminate state will generally yield no more than 10 pieces of RL data.
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other’s hand ranges and previous actions played during the hand 12. As shown in Table 1, after per-
forming 600, 000 hands, RL-CFR achieves 64 mbb/hand win-rate versus the replication of ReBeL.

We further compare RL-CFR against the open source AI Slumbot (Jackson, 2013), which was the
winner of the 2018 ACPC and is the only HUNL AI we know that offers online competition testing.
Since the opponent may select actions that deviate from the game tree, we perform nested subgame
solving technique (Billings et al., 1998; Brown & Sandholm, 2017b; Moravcı́k et al., 2017) men-
tioned in Appendix E. We play RL-CFR for 250, 000 hands against Slumbot, and the test results
are shown in Table 1, which illustrate that the replication of ReBeL beat Slumbot with a win-rate
of 16 mbb/hand, while RL-CFR beat Slumbot with a win-rate of 84 mbb/hand, and the win-rate of
RL-CFR against Slumbot improved by 68 mbb/hand relative to ReBeL. Note that a win-rate of over
50 mbb/hand in poker is called a significant win-rate (Bowling et al., 2017), and RL-CFR clearly
achieves significant win-rate against ReBeL and Slumbot.

Table 1: Competition results of the HUNL AIs against each other, measured in mbb/hand (variance
was reduced by AIVAT technique (Burch et al., 2018)).

AI name ReBeL (replication) Slumbot

ReBeL (replication) - 16± 16
ReBeL (Brown et al., 2020) - 45± 5

RL-CFR 64± 11 84± 17

We also conducted an exploitability evaluation in over 10, 000 random river stage states.13 The
exploitability of a strategy σ and a player p is calculated by explp(σ) = uσ

p −minσ∗∈Σ−p
u
⟨σp,σ

∗⟩
p

Cesa-Bianchi & Lugosi (2006). RL-CFR’s exploitability is 17 mbb/hand and ReBeL’s exploitability
is 20 mbb/hand. The results indicate that RL-CFR generates action abstractions that are also less
likely to be exploited in the context of generating more win-rate.

We perform additional experiments for RL-CFR, the results are shown in Table 2 Here
we play against the method of choosing an optimal action abstraction among multiple
fixed action abstractions (MUL-ACTION). MUL-ACTION works by choosing an action ab-
straction that has the greatest value to the root PBS βr among three action abstractions
AAbase1(βr),AAbase2(βr),AAbase3(βr)

14. We see that RL-CFR beats MUL-ACTION by 21±26
mbb/hand win-rate after 100, 000 hands and only requires 1/3 of running time.

We also compare RL-CFR against choosing a finer-grained action abstraction (FINE-GRAIN)
AAbase(βr) = {F,C,A, 0.33 × pot, 0.5 × pot, 0.75 × pot, 1.0 × pot, 1.25 × pot, 2.0 × pot} at
root PBS βr (the same setting as in (Zarick et al., 2020)). RL-CFR beats FINE-GRAIN by 23± 28
mbb/hand win-rate after 100, 000 hands and only requires approximately 4/7 of running time.15

Table 2: Win-rate and solving time of the method relative to RL-CFR.

Method Win-rate Running time

ReBeL −64± 11 1×
MUL-ACTION −21± 26 3×
FINE-GRAIN −23± 28 1.75×

12HUNL can be modeled as a range-versus-range game (Kovarı́k & Lisý, 2019), and such common knowl-
edge will not affect the evaluation (Burch et al., 2018) and will avoid nested subgame solving technique
(Billings et al., 1998; Brown & Sandholm, 2017b; Moravcı́k et al., 2017).

13We simulate RL-CFR versus ReBeL until reaching river, i.e., the two agents choose their respective action
abstractions, and the performance of the previously chosen action abstraction has no effect on the test results.

14We set AAbase1(βr) = {F,C,A, 0.5×pot, 1×pot, 2×pot},AAbase2(βr) = {F,C,A, 0.25×pot, 0.5×
pot, 1× pot},AAbase3(βr) = {F,C,A, 0.33× pot, 0.7× pot, 1.5× pot}, and the action abstractions other
than the root are the same as in ReBeL.

15Since the numbers of non-terminal nodes extended by the root node in the game tree built by FINE-GRAIN
and RL-CFR are 7 and 4, respectively.
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Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019.

Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent modeling in poker.
In Jack Mostow and Chuck Rich (eds.), Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI
98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA, pp. 493–499. AAAI Press / The MIT
Press, 1998.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Commun. ACM, 60(11):81–88, 2017.

N. Brown and T. Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):eaay2400,
2019a.

Noam Brown. Equilibrium Finding for Large Adversarial Imperfect-Information Games. PhD
thesis, Carnegie Mellon University, 2020.

Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimization in
games. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp. 432–
438. AAAI Press, 2016a.

Noam Brown and Tuomas Sandholm. Baby tartanian8: Winning agent from the 2016 annual com-
puter poker competition. In Subbarao Kambhampati (ed.), Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pp. 4238–4239. IJCAI/AAAI Press, 2016b.

Noam Brown and Tuomas Sandholm. Libratus: The superhuman AI for no-limit poker. In Carles
Sierra (ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 5226–5228. ijcai.org, 2017a.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 689–699, 2017b.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted re-
gret minimization. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019, pp. 1829–1836. AAAI Press, 2019b. doi:
10.1609/aaai.v33i01.33011829.

Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, distributed equi-
librium computation, and post-processing, with application to a champion no-limit texas hold’em
agent. In Sam Ganzfried (ed.), Computer Poker and Imperfect Information, Papers from the 2015
AAAI Workshop, Austin, Texas, USA, January 26, 2015, volume WS-15-07 of AAAI Technical
Report. AAAI Press, 2015.

10



Under review as a conference paper at ICLR 2024

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
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Julien Pérolat, Rémi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pe-
dro A. Ortega, Neil Burch, Thomas W. Anthony, David Balduzzi, Bart De Vylder, Georgios
Piliouras, Marc Lanctot, and Karl Tuyls. From poincaré recurrence to convergence in imperfect
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A CONCLUSIONS

In this work, we propose a novel algorithmic solution, named RL-CFR, for solving large-scale
IIEFGs. RL-CFR builds on a novel abstract MDP formulation, which uses public information as
states, action abstraction features as actions, and a carefully defined reward function. RL-CFR
ingeniously combines reinforcement learning for action abstraction selection with CFR, to enable
dynamic action abstraction selection in IIEFGs. Even though we cannot prove theoretically that RL-
CFR has better convergence and less exploitable compared to the fixed action abstraction methods,
through extensive experiments, we show that RL-CFR achieves a significant performance improve-
ment compared to fixed action abstraction methods in HUNL benchmark.

B TEXAS HOLD’EM RULES

At the start of the game (hand), each player is given two cards, which we call “private hand”. There
are four stages in a game, called pre-flop, flop, turn and river, respectively. There are five public
cards in a game, three cards are dealt16 at the start of the flop and one card is dealt at the start of the
turn and the river. Several players have to put in a pre-specified number of chips before the game
starts, known as “small blind” and “big blind”, and a “small blind” is usually half of a “big blind”.
In HUNL, the small blind player acts first in pre-flop stage, and the big blind player acts first in other
stages. The legal actions are fold, check/call and bet/raise. In No-limit Texas Hold’em, players can
bet/raise any number of chips between the last bet/raise in the stage (at least 1 big blind) and their
remaining chips (all-in).

At the end of a game, each player who did not fold by the end of all stages chooses the best five cards
out of two cards from private hand and the five public cards to compare, and the player (or several
players) who has the best hand wins the pot. The win-rate in Texas Hold’em can be expressed as the
average number of big blinds won per game, or in more granular units of mbb (Bowling et al., 2017)
(one thousandth of a big blind). For example, we can say a win-rate of 0.01 big blind per hand, or
10 mbb/hand (10 mbb per hand).

C RELATED WORK OF TEXAS HOLD’EM AIS

The strongest Texas Hold’em AIs up to date, represented by Libratus (Brown & Sandholm, 2017a)
and Pluribus (Brown & Sandholm, 2019a), have beaten top human players in both two-player and
multi-player poker. They used complex abstraction (Johanson et al., 2012; Ganzfried & Sandholm,
2014; Brown et al., 2015) to reduce the huge decision space in Texas Hold’em and consume enor-
mous computing resources to pre-calculate a blueprint strategy (Brown & Sandholm, 2016a) by
CFR under a huge game tree.

16Poker term, means to open a new card.
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DeepStack (Moravcı́k et al., 2017) employed deep learning to estimate values of private hands in
game tree, thus reducing the size of the game tree and speeding up the CFR (Johanson, 2013). ReBeL
(Brown et al., 2020) used self-play reinforcement learning (Heinrich, 2017) to generate more realis-
tic training data than DeepStack. However, Libratus and Pluribus did not use reinforcement learning,
and DeepStack and ReBeL did not use reinforcement learning in action abstraction selection (raising
scales) in HUNL.

(Zhao et al., 2022) designed a HUNL AI based on reinforcement learning, which allows for an
excellent AI with very few computational resources. However, since it did not use the widely used
CFR algorithm in HUNL at all, it was fairly exploitable and had no theoretical guarantees.

D COUNTERFACTUAL REGRET MINIMIZATION

Counterfactual Regret Minimization (CFR) is an algorithm for large IIEFGs that minimizes regret
in each information set independently (Zinkevich et al., 2007), and can find ε-Nash equilibrium in
two-player zero-sum IIEFGs.

Let σt be the strategy profile of iteration t. The instantaneous regret for taking an action a at
information set I ∈ Ip on iteration t is rt(I, a) = vσ

t

p (I, a) − vσ
t

p (I). The counterfactual regret
for taking an action a at I on iteration T is RT (I, a) =

∑T
t=1 r

t(I, a). The counterfactual regret is
used for regret matching (RM) (Hart & Mas-Colell, 1997), a no-regret learning algorithm for solving
imperfect-information game.

For an information set I , on each iteration t + 1, an action a ∈ AA(I) is selected accord-

ing to probabilities σt+1(I, a) =
Rt

+(I,a)∑
a′∈AA(I) R

t
+(I,a′)

where Rt
+(I, a) = max{0, Rt(I, a)}. If∑

a′∈AA(I) R
t
+(I, a

′) = 0, then we can chose an arbitrary strategy. In general, the upper bound
on the regret value of the CFR or its variants (Burch & Bowling, 2013; Brown & Sandholm, 2017a;
2019b) is O(L

√
|AA(I)|

√
T ), where L is the range of payoffs, |AA(I)| is the size of action ab-

straction for information set I and T is the number of iterations (Cesa-Bianchi & Lugosi, 2006).

Discounted CFR (DCFR) (Brown & Sandholm, 2019b) is the leading equilibrium-finding algorithm
for large IIEFGs (Brown, 2020). DCFR is an variant of CFR with parameters α, β, γ (DCFRα,β,γ),
defined by multiplying accumulated positive regrets by tα

tα+1 , negative regrets by tβ

tβ+1
and contribu-

tions to the average strategy σ by ( t
t+1 )

γ on each iteration t. Our experiment setting is α = 3
2 , β = 1

2
and γ = 2, denoted DCFR 3

2 ,
1
2 ,2

.

E ABSTRACTION

The huge solution complexity of IIEFGs is reflected in 3 dimensions: the depth of the game D,
the size of the information set |I| and the number of available actions |A(I)|. In fact, the original
space complexity is O(|A(I)|D · |I|), which is over the order of 10160 for HUNL with stacks of 200
big blinds and 20, 000 chips (Johanson, 2013). The time complexity of CFR to solve an IIEFG is
O(T · |A(I)|D · |I|) where T is the number of iterations.

To limit the depth of the game, we generally do not compute the strategy to the end of the game,
but instead generate a depth-limited subgame (Brown et al., 2018) that extends only a limited num-
ber of states into the future. We estimate the strategy or expected value of leaf states, which are
non-terminal states in the full game but terminal states in the depth-limited subgame. DeepStack
(Moravcı́k et al., 2017) and ReBeL (Brown et al., 2020) employs deep learning to estimate counter-
factual values of leaf states, thus avoiding solving until the end of the game. Another way to limit
the depth is consuming enormous computing resources to pre-calculate a blueprint strategy (Brown
& Sandholm, 2016a; 2017a), thus avoiding solving when the game is deep.

To limit the size of the information set, we can put similar states into the same bucket (state-space
abstraction) (Johanson et al., 2012; 2013; Brown et al., 2015) or represent the states in a high-
dimensional feature abstraction (Brown et al., 2019).17 State-space abstractions need to be carefully

17These methods also reduce the number of nodes in the game tree by putting similar nodes into same bucket.
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designed to the specific game, and in order to illustrate the generality of our method to general EFGs,
our experiments do not use any state-space abstractions.

To limit the number of available actions, it is common to use action abstraction in IIEFGs (Brown
& Sandholm, 2016b). Formally, AA(I) is the set of available actions at information set I , and
AA(I) ⊆ A(I) is an action abstraction for A(I). If the opponent chooses an off-tree action a
that is not in the action abstraction AA(I), we can round off-tree action to a nearby in-abstraction
action (Schnizlein et al., 2009; Ganzfried & Sandholm, 2013) or resolve the strategy based on new
action abstraction AA(I) ∪ {a} (nested subgame solving (Ganzfried & Sandholm, 2015; Brown &
Sandholm, 2017b; Brown et al., 2020)).

F SOLVING THE STRATEGY AND PBS VALUE FOR LARGE EFGS

In this section, we introduce the training process of ReBeL algorithm (Brown et al., 2020), a self-
play RL method for solving the strategy and PBS values for large IIEFGs. Meanwhile, we take
HUNL as an example to describe the setting of specific parameters.

In each epoch, we start training from the initial state of the game, and the PBS corresponding to
the initial state is denoted as βinit. During training, we will deal with a PBS βr and corresponding
action abstraction AA(βr). We need to compute the PBS value v(βr) and sample to the a leaf PBS
βz . Algorithm 2 shows the details and we describe the training process next.

Algorithm 2: ReBeL (Brown et al., 2020) algorithm18: Solving the strategy and PBS value for
PBS βr with action abstraction AA(βr)

Function ReBeL(βr,AA(βr)):
G←ConstructSubgame(βr,AA(βr))// construct a subgame with βr as

the root
σ, σ0 ←UniformPolicy(βr,AA(βr))
v(βr)← 0
tsample ∼ unif{1, T}// Sample next iteration
for t = 1 · · ·T do

G←LeafValueEstimate(G, σt−1, θ)// θ is the parameters of PBS
value network

σt ←UpdatePolicy(G, σt−1)
σ ← t−1

t+1σ + 2
t+1σ

t// Update average strategy based on DCFR 3
2 ,

1
2 ,2

v(βr)← t−1
t+1v(βr) +

2
t+1v

σt

(βr)// Update PBS value for all
infostates at βr

if t = tsample then
βnext ←SampleLeaf(G, σt)// Sample a leaf PBS

Add {βr,v(βr)} to DataPBS// Add PBS data for training
vσP(βr)

(βr)←ComputeValue(v(βr))// Compute PBS value for acting

player at βr

return σ, vσP(βr)
(βr), βnext;

At the beginning of the training, we build a depth-limited subgame rooted with βr.19 In the process
of building the game tree, when we deal with a non-ternimal and non-leaf node β′, we expand the
child nodes downwards according to the action abstraction AA(β′).20

After building the game tree, this subgame is solved by running T iterations of CFR algorithm, and
estimating the value of leaf nodes by a learned value network v̂ at each iteration based on their PBS.
On each iteration t, we first use CFR to determine a strategy profile σt in the subgame. Next, the

19In the HUNL experiments, we build the subgame up to the end of the two players’ actions in a stage or the
end of the chance player’s action. This means that an epoch has up to 7 phases, i.e., start of pre-flop, end of
pre-flop, start of flop, end of flop, start of turn, end of turn and start of river.

20In the HUNL experiments, in order to reduce the size of the game tree, for the non-terminal PBS β other
than the root and root’s sons, we set AA(β) = {F,C,A, 0.8× pot}.
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infostate value of a leaf node z is set to v̂(Op(z)|βσt

z ), where βσt

z is the PBS at z when players
play according to σt. Since the estimates of the neural network lead to a non-zero-sum game,
we adjust the infostate values at each PBS so that the game satisfies zero-sum property. Also, for
some infostates that shall have the same value under the rules of the game, we average their value
estimates. PBSs may change every iteration, so the leaf node values may change every iteration.
Given σt and leaf node values, each infostate in each node has a calculated PBS value,21 so that we
can update the regret and average strategy σ for CFR algorithm.

After T iterations, we solved the average strategy σ. Based on this strategy, we calculate the PBS
values for all infostates vσp (Op|βr) for root PBS βr, and denote this vector of PBS values as v(βr).
We then add the PBS data {βr,v(βr)} to the training data (denoted DataPBS) for v̂(βr). Mean-
while, we calculate the PBS value vσP(βr)

of βr according to calculated value vector v(βr).22

Next, we sample a leaf PBS βz according to σt on a random iteration t ∼ unif{1, T} where T
is the number of iterations, and to ensure more exploration, we can sample random leaf PBS with
probability ε, and modify some public information in sampled PBS for more exploration23. We
repeat above processes until the game ends.

Terminal Node
PBS Data {β,v(β)}Next PBS

β

PBS value network

Zero-sum & 
average identical 
infostates' value 

Game Tree

After T Iteraions

in each iteration

 update PBS value network

 Non-Terminal/Leaf Node

 Leaf Node

 

  

   

  

  

  

    

  

  

Sample a 
leaf node  

Figure 3: This figure shows how to generate PBS data and train PBS value network. For a PBS
β, we build a depth-limit subgame rooted with β. A non-terminal and non-leaf node if represented
by a circle, we expand the child nodes according to the action abstraction of the PBS of the node
when we are building the game tree. A terminal node is represented by a diamond, we can directly
calculate the PBS value for a terminal node. A leaf nodes is represented by a rectangle, and in each
iteration of CFR we will use the PBS value network to estimate the PBS values of these leaf nodes
(PBS values are re-estimated each iteration since they will be different each time we iterate to these
nodes), then we can regard these leaf nodes as terminal nodes in this iteration.

We use Huber Loss (Huber, 1964) as the loss function for the PBS value network:
L(θ, δ) =E{Op,vp(Op)}∼{βr,v(βr)},{βr,v(βr)}∼DataPBS

[min{1
2
(vp(Op)− v̂θ(Op|βr))

2, δ|vp(Op)− v̂θ(Op|βr)| −
1

2
δ2}]

(4)

where θ is the parameters of PBS value network, Op is an infostate in PBS βr, and δ is a hyperpa-
rameter of Huber Loss.

21The details of calculating the PBS value are explained in Section 3.
22The ReBeL algorithm itself does not need to compute the PBS value vσP(βr)

, but our RL-CFR framework
requires this PBS value as part of the reward function.

23For HUNL agent training, we set ε = 25% for HUNL agent training, and for a sampled PBS, we multiply
the chips in the pot by a random number between 0.9 and 1.1. For the PBS corresponding to the initial state,
we set the chips of all players by a random number between 50 big blinds and 250 big blinds.
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In summary, ReBeL is a self-play RL framework capable of continuously generating data from
scratch for training, and Figure 3 shows the training process of ReBeL algorithm.

G EXAMPLES OF RL-CFR STRATEGIES

We use several examples from HUNL to illustrate how RL-CFR selects action abstractions. We show
examples of heads-up evaluation between ReBeL’s replication and RL-CFR. Both players start with
200 big blinds (BB) and 20, 000 chips (100 chips for 1 BB) in all examples.

Example 1.

Pre-flop stage. ReBeL sits in small blind position with hand 4♠3♠ and RL-CFR sits in big blind
position with hand J♡8♢. ReBeL acts first with action abstraction {F,C, 2, 3, 5, A}24. The strategy
calculated by CFR is: call with 3.21%, raise to 2 BB (0.5×pot) with 52.10%, raise to 3 BB (1×pot)
with 44.11% and raise to 4 BB (2×pot) with 0.58%. ReBeL raises to 2 BB in this example. In this
situation, RL-CFR selects an action abstraction {F,C, 3, 8.8, 16.21, A}. The strategy is: call with
76.08%, raise to 8.8 BB (1.7×pot) with 23.67% and raise to 16.21 BB (3.5525×pot) with 0.25%.
ReBeL calls in this example. When RL-CFR in the big blind is faced with a 2 BB raise, RL-CFR
will use the three raising scales of 3 BB, 8.8 BB, 16.21 BB and expect to win 10 mbb/hand compared
to the default raising scales (4 BB, 6 BB, 10 BB).

Flop stage. Flop is J♢6♡3♢. There are 4 BB in the pot and RL-CFR acts first. RL-CFR selects
an action abstraction {F,C,A}. In this case, RL-CFR will check all hands, which is a common
strategy that human professional players will employ. Now turn to ReBeL and the strategy is: check
with 47.94%, bet 2 BB (0.5×pot) with 51.63% and bet 4 BB (1×pot) with 0.42%. ReBeL bets
2 BB in this example. In this situation, RL-CFR selects an action abstraction {F,C, 4, 25.36, A}.
The strategy is: call with 72.09% and raise to 4 BB (0.25×pot) with 27.91%. RL-CFR calls in this
example. It’s an interesting strategy, with RL-CFR opting for a minimum raising scale (mini-raise)
and a very large raising scale, gaining an additional 6 mbb/hand win-rate compared to the default
action abstraction.

Turn stage. Turn is 4♣. There are 8 BB in the pot and RL-CFR acts first. RL-CFR selects an
action abstraction {F,C, 1, A}. The strategy is: check with 20.64% and bet 1 BB with 79.36%. The
turn card is very favourable to RL-CFR’s calling range, so RL-CFR had a high frequency of betting
(donk). Choosing a 1 BB raising scale (minimum betting) gives RL-CFR an additional win-rate of
42 mbb/hand compared to the default action abstraction, which is very impressive. RL-CFR bets 1
BB in this example. Now turn to ReBeL and the strategy is: call with 99.63% and raise to 6 BB
(0.5×pot) with 0.37%. ReBeL has two-pairs now, however the strategy calculated by CFR is calling
most hands since the turn card is unfavorable to small blind player’s hand range.

River stage. River is 2♡. There are 10 BB in the pot and RL-CFR acts first. RL-CFR selects an
action abstraction {F,C, 8.42, 14.88, 46.22, A} with 4 mbb/hand extra win-rate. The strategy is:
check with 99.93% and bet 8.42 BB (0.842×pot) with 0.07%. Now turn to ReBeL and the strategy
is: check with 0.37%, bet 5 BB (0.5×pot) with 43.76%, bet 10 BB (1×pot) with 55.66% and bet 20
BB (2×pot) with 0.19%. ReBeL bets 5 BB in the example. Now turn to RL-CFR and the selected
action abstraction is {F,C, 17.81, 55.31, 98.77, A} with 6 mbb/hand extra win-rate. The strategy of
RL-CFR is: fold with 42.04%, call with 56.52%, raise to 17.81 BB (0.6405×pot) with 0.55% and
raise to 93.77 BB (4.4385×pot) with 0.87%. RL-CFR folds and loses the 10 BB pot in the example.

Example 2. It is a symmetrical example of Example 1.

Pre-flop stage. RL-CFR sits in small blind position with hand 4♠3♠ and ReBeL sits in
big blind position with hand J♡8♢. RL-CFR acts first and selects an action abstraction
{F,C, 2.9, 4.56, 7.64, A} with 24 mbb/hand extra win-rate. The strategy of RL-CFR is: call with
18.16%, raise to 2.9 BB (0.95×pot) with 78.54% and raise to 4.56 BB (1.78×pot) with 3.29%.
RL-CFR raises to 2.9 BB and ReBeL calls in this example.

Flop stage. Flop is J♢6♡3♢. There are 5.8 BB in the pot and ReBeL checks first. The action
abstraction selected by RL-CFR is {F,C, 8.6, 28.1, A}. It is an interesting strategy generated by
RL-CFR with overbet (bet more than a pot) only and gain an additional 46 mbb/hand win-rate

24F,C,A refer to fold, check/call and all-in respectively and the numbers represent raising scales in BB.
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compared to the default action abstraction. The strategy is: check with 99.65%, bet 8.6 BB with
0.22% and bet 28.1 BB with 0.13%. RL-CFR checks in the example.

Turn stage. Turn is 4♣. There are 5.8 BB in the pot and ReBeL acts first. The strategy of ReBeL
is: check with 60.17%, bet 2.9 BB with 26.06%, bet 5.8 BB with 13.66% and bet 11.6 BB with
0.12%. ReBeL checks in the example and turn to RL-CFR. The action abstraction calculated by
RL-CFR is {F,C, 1, 1.85, A}. However, after evaluation by the policy network, RL-CFR considers
this action abstraction to be inferior to the default action abstraction, so the default action abstraction
will be chosen this time25. The strategy of RL-CFR is: check with 0.03%, bet 2.9 BB (0.5×pot)
with 98.88%, bet 5.8 BB (1×pot) with 0.14% and bet 11.6 BB (2×pot) with 0.94%. In this example,
RL-CFR bets 2.9 BB and ReBeL calls.

River stage. River is 2♡. There are 11.6 BB in the pot and ReBeL checks first. The action abstraction
selected by RL-CFR is {F,C, 2.3, 44.41, 46.43} and the strategy of RL-CFR is: check with 0.30%,
bet 2.3 BB with 99.64% and bet 44.41, 44.63 BB with 0.06%. In this example, RL-CFR bets 2.3
BB and ReBeL calls. RL-CFR wins the 16.2 BB pot with two pairs at showdown.

Example 3. In this example RL-CFR performed a bluff (betting with a weaker hand) and success-
fully bluffing with a suitable action abstraction.

Pre-flop stage. ReBeL sits in small blind position with hand Q♡9♡ and RL-CFR sits in big blind
position with hand 9♣8♡. ReBeL raises 2 BB first and RL-CFR calls in the example.

Flop stage. Flop is K♣6♠2♢. There are 4 BB in the pot. RL-CFR and ReBeL check in the example.

Turn stage. Turn is 7♣. There are 4 BB in the pot and RL-CFR acts first. The action abstraction
selected by RL-CFR is {F,C, 1, 2.25, A}with 10 mbb/hand extra win-rate. The strategy of RL-CFR
is: check with 34.31%, bet 1 BB with 11.06% and bet 2.25 BB with 54.63%. RL-CFR bets 1 BB
in the example. The stragety of ReBeL is: fold with 48.32%, call with 51.04%, raises to 4 BB with
0.61% and raises to 7 BB with 0.03%. ReBeL calls in the example.

River stage. River is 4♠. There are 6 BB in the pot and RL-CFR acts first. The action abstraction
selected by RL-CFR is {F,C, 4.56, 5.71, 29.23, A} with 3 mbb/hand extra win-rate. The strategy of
RL-CFR is: check with 12.48%, bet 4.56 BB with 41.63%, bet 5.71 BB with 33.11% and bet 29.23
BB with 12.78%. RL-CFR bets 5.71 BB in the example and the strategy of ReBeL is: fold with
99.14% and call with 0.85%. ReBeL folds and RL-CFR wins the 6 BB pot.

Example 4. In this example RL-CFR calls the 3-bet (re-raise at pre-flop) from ReBeL.

Pre-flop stage. RL-CFR sits in small blind position with hand A♢4♢ and ReBeL sits in big
blind position with hand K♠J♠. RL-CFR raises to 2.9 BB. The strategy of ReBeL is: call with
2.37%, raises to 5.8 BB with 36.31%, raises to 8.7 BB with 42.01% and raises to 14.5 BB with
19.31%. ReBeL raises to 8.7 BB in this example. The action abstraction selected by RL-CFR is
{F,C, 14.5, 16.22, 27.96, A} with 13 mbb/hand extra win-rate. The strategy of RL-CFR is: call
with 70.90%, raise to 14.5 BB with 0.03%, raise to 16.22 BB with 0.04%, and raise to 27.96 BB
with 29.03%. RL-CFR calls in the example.

Flop stage. Flop is Q♣5♢3♢. There are 17.4 BB in the pot and ReBeL acts first. The strategy of
ReBeL is: check with 80.33%, bet 8.7 BB with 14.94%, bet 17.4 BB with 4.46% and bet 34.8 BB
with 0.26%. ReBeL bets 17.4 BB in the example. The action abstraction selected by RL-CFR is
{F,C, 34.8, A} with 142 mbb/hand extra win-rate, which means that if there is no mini-raise in the
action abstraction there will be a huge loss in this situation. The strategy of RL-CFR is: call with
97.69%, raise to 34.8 BB with 1.73% and all-in with 0.58%. RL-CFR calls in the example.

Turn stage. Turn is 6♢ and RL-CFR has the nuts (strongest hand). There are 52.2 BB in the pot and
ReBeL checks first. The action abstraction selected by RL-CFR is {F,C, 15.11, 64.73, 97.22, A}
with 46 mbb/hand extra win-rate. The strategy of RL-CFR is: check with 0.43%, bet 15.11 BB
with 88.13% and bet 64.73 BB with 11.43%. RL-CFR bets 15.11 BB in the example and ReBeL
folds. RL-CFR wins the 52.2 BB pot. The action abstraction of RL-CFR in this situation is very
reasonable, and a 15.11 BB bet can put many of opponent’s hands in an embarrassing situation.

25After selecting an action abstraction through the action network, we evaluate it using the policy network
and if the evaluation value is negative, we use the default action abstraction.
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