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Abstract
Generative modeling of crystalline materials us-
ing diffusion models presents a series of chal-
lenges: the data distribution is characterized by in-
herent symmetries and involves multiple modali-
ties, with some defined on specific manifolds. No-
tably, the treatment of fractional coordinates rep-
resenting atomic positions in the unit cell requires
careful consideration, as they lie on a hypertorus.
In this work, we introduce Kinetic Langevin Dif-
fusion for Materials (KLDM), a novel diffusion
model for crystalline materials generation, where
the key innovation resides in the modeling of the
coordinates. Instead of resorting to Riemannian
diffusion on the hypertorus directly, we generalize
Trivialized Diffusion Model (TDM) to account for
the symmetries inherent to crystals. By coupling
coordinates with auxiliary Euclidean variables
representing velocities, the diffusion process is
now offset to a flat space. This allows us to effec-
tively perform diffusion on the hypertorus while
providing a training objective that accounts for
the periodic translation symmetry of the true data
distribution. We evaluate KLDM on both Crystal
Structure Prediction (CSP) and De-novo Genera-
tion (DNG) tasks, demonstrating its competitive
performance with current state-of-the-art models.

1. Introduction
The discovery of novel compounds with desired properties is
critical to several scientific fields, such as molecular discov-
ery (Bilodeau et al., 2022) and materials design (Merchant
et al., 2023; Zeni et al., 2025). In the case of crystalline
materials, the search space is vast, but only a fraction of it is
physically plausible. The main challenges are to efficiently
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search the space for feasible materials and to accurately
estimate their properties. Conventional approaches usually
combine random structure search methods with ab-initio
Quantum Mechanics (QM) methods (Oganov et al., 2019),
such as Density Functional Theory (DFT) (Kohn & Sham,
1965); however, structural optimization and property evalu-
ation with DFT can be computationally expensive. Recently,
the field has witnessed a paradigm shift where deep genera-
tive models have been introduced to supplement traditional
search methods (Anstine & Isayev, 2023), such as random
search (Pickard & Needs, 2011) or evolutionary algorithms
(Glass et al., 2006; Wang et al., 2010). Deep generative mod-
els learn to approximate underlying probability distributions
from existing material data, and in turn, can be sampled
from to generate novel materials based on the learned pat-
terns.

Among deep generative models, diffusion models have been
successful on a variety of data modalities relevant to the
sciences, ranging from Partial Differential Equations (PDE)
simulations (Lippe et al., 2023; Rozet & Louppe, 2023;
Shysheya et al., 2024) to molecule generation (Hoogeboom
et al., 2022; Xu et al., 2023; Cornet et al., 2024). Unlike
molecules, crystalline materials consist of a periodic ar-
rangement of atoms, typically described by a unit cell, a
parallelepiped that serves as the fundamental building block
repeated to tile the entire space. A unit cell is typically rep-
resented by three vectors that define its edges and the angles
between them, along with the coordinates and species of
the atoms inside it. It can be considered as a multi-modal
data type, specifically a geometric graph combining discrete
and continuous features (Joshi et al., 2023). Notably, the
atomic positions are described by coordinates that lie on
a hypertorus. Dealing with non-Euclidean data in the dif-
fusion setting requires careful consideration: for example,
restricting Brownian motion to a manifold requires incorpo-
rating its geometric structure to ensure trajectories remain
on the manifold, typically using projection or specialized
approximations (Lou et al., 2023). Current diffusion mod-
els for crystals either handle this by working in real space,
through multi-graph representations (Xie et al., 2022), or on
fractional coordinates (Jiao et al., 2023). In addition to this,
the data distribution is governed by inherent symmetries,
including permutation invariance (swapping atom indices
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or lattice bases), translation invariance (shifting atom coor-
dinates), and rotation invariance (rotating atom positions).

When operating on fractional coordinates, the main chal-
lenge is to ensure the periodic translation invariance of the
learned distribution. This is usually enforced by parameter-
izing the score network with a periodic translation invariant
architecture. However, while existing models have success-
fully demonstrated the potential of applying diffusion to
crystalline materials generation, previous work has high-
lighted the existence of a mismatch between architecture
and supervision signal, resulting in a suboptimal training ob-
jective (Lin et al., 2024). While the issue has been acknowl-
edged in the literature, in this paper we show an alternative
way to mitigate this mismatch that is effective at low levels
of noise.

Contributions In this work, we introduce Kinetic Langevin
Diffusion for Materials (KLDM), a novel diffusion model
for crystalline materials generation, where the key innova-
tion resides in the modeling of the fractional coordinates.
Instead of resorting to Riemannian diffusion on the hyper-
torus directly as in previous work (Jiao et al., 2023), we
generalize Trivialized Diffusion Model (TDM) (Zhu et al.,
2024) to model symmetric distributions over coordinates.
Using the structure of the torus, the diffusion process is
offset to auxiliary Euclidean variables representing veloci-
ties. We propose a specific parameterization of the resulting
diffusion process leading to faster training convergence and
improved performance while mitigating a mismatch in the
training objective of previous diffusion models for materials.
Finally, we show that KLDM offers competitive performance
on Crystal Structure Prediction (CSP) and De-novo Genera-
tion (DNG).

2. Background
2.1. Crystalline materials and related symmetries

In this section, we introduce the data modality we are inter-
ested in, along with the relevant symmetries.

Unit cell We are interested in learning the distribution of
crystalline materials, described as the repetition of a unit cell
in 3D-space. We describe a unit cell containing K atoms as
a fully connected geometric graph x,

x = (f , l,a), (1)

where f = (f1, . . . ,fK) ∈ [0, 1)3×K denotes the frac-
tional coordinates, l = (l1, l2, l3) ∈ R3×3 refers to the
lattice vectors of the unit cell, and a = (a1, . . . , aK) ∈ ZK

encodes the chemical composition.

The infinite periodic structure can be represented as,
{
(a′,f ′)

∣∣a′ = a;f ′ = f + k1⊤,k ∈ Z3
}
, (2)

where 1 is a vector of ones with size K, and k = (k1, k2, k3)
translates the unit cell to tile the entire space. The lattice vec-
tors l can also be compactly represented by a 6-dimensional
vector consisting of the three lattice vector lengths and their
interior angles, such that the representation is invariant to
rotation.

Tasks Let p(x) denote the true data distribution over the
unit cells, and let q(x) = 1

N

∑N
i=1 δxi

be the empirical data
distribution defined by the N available samples. The goal of
generative models is to learn an approximate model pθ(x)
of p(x) using q(x). In the realm of crystalline materials
generation, there are two tasks of interest.

Crystal Structure Prediction (CSP) aims at finding low-
energy atomic arrangements (f , l), i.e. stable structures,
for a given atomic composition a. This is framed as a
conditional generation task where a model pθ(f , l|a) is
trained using samples {(f , l,a)}Ni=1 to approximate the
true conditional distribution p(f , l|a). Given a specific
atomic composition a, the model is used to generate
possible coordinates f and lattice parameters l.

De-novo Generation (DNG) aims at discovering novel and
stable materials. The goal is to generate samples from
p(f , l,a). We approximate the distribution by training a
generative model pθ(f , l,a) on samples {(f , l,a)i}Ni=1

and evaluate the samples generated by pθ.

Symmetries of crystalline materials Given a symmetry
group G, a distribution is G-invariant if for any group el-
ement g ∈ G, p(g · x) = p(x), with · denoting the group
action. A conditional distribution is G-equivariant if for any
g ∈ G, p(g · x|g · y) = p(x|y).

A number of transformations leave a material x unchanged,
meaning the true data distribution has inherent symmetries:

Permutation of atom indices

p(f , l,a) = p(g · f , l, g · a), ∀g ∈ SK ; (3)
Rotation of lattice vectors

p
(
f , l,a

)
= p
(
f , g · l,a

)
, ∀g ∈ SO(3); (4)

Permutation of the lattice basis

p(f , l,a) = p(g · f , g · l,a), ∀g ∈ S3; (5)
Periodic translation of fractional coordinates

p
(
f , l,a

)
= p
(
g · f , l,a

)
∀g ∈ T3 ∼= R3/Z3. (6)

We want our model, pθ, to inherit these symmetries. Eq. (3)
is naturally addressed by using graph neural networks, com-
bined with a factorized prior distribution with no depen-
dency on the index. The combination of fractional coordi-
nates and rotation-invariant lattice representations addresses
Eq. (4). Specific neural network architectures or additional
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loss terms can address Eq. (5)—see e.g. (Lin et al., 2024).
Remaining is to handle Eq. (6), we detail how it can be done
in Section 2.3.

2.2. Diffusion models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) are generative models that learn
distributions through a hierarchy of latent variables, cor-
responding to corrupted versions of the data at increasing
noise scales. Diffusion models consist of a forward and
a reverse (generative) process. The forward process per-
turbs samples from the data distribution over time through
noise injection, resulting in a trajectory of increasingly
noisy latent variables (xt)t∈[0,T ]. Given an initial condi-
tion, x0 ∼ p0(x) = pdata(x), the conditional distribution
of (xt)t∈[0,T ] can be characterized by a Stochastic Differ-
ential Equation (SDE),

dxt = f(t)xt dt+g(t) dwt, (7)

where xt ∈ Rd denotes the latent variable at time t, f(t)
and g(t) are scalar function of time t, and wt is a stan-
dard Wiener process in Rd. Due to the linearity of the
drift term, for any t ≥ 0, the corresponding transition
kernel admits a closed-form expression (Särkkä & Solin,
2019). For instance, in the Variance-Preserving SDE (VP-
SDE) setting (Song et al., 2021), where f(t) = − 1

2β(t)

and g(t) =
√
β(t) for a fixed schedule β(t), the ker-

nel writes pt|0(xt|x0) = N (xt|αtx0, σ
2
t I) with αt =

exp(−0.5
∫ t

0
β(s)ds) and σ2

t = 1 − exp(
∫ t

0
β(s)ds), and

the process defined by Eq. (7) converges geometrically
from a low-variance Gaussian distribution centered around
the data to the standard Gaussian distribution pT (xt) =
N (xt|0, I), which can be therefore interpreted as an unin-
formative prior distribution.

The time-reversal of Eq. (7) is another diffusion process
described by the following reverse-time SDE (Anderson,
1982),

dxt =
[
f(t)xt − g2(t)∇xt

log pt(x)
]
dt+g(t) dŵt, (8)

with pt(xt) being the density of xt and dŵt is a time-
reversed Wiener process. Sampling from the prior distri-
bution pT (xt), and simulating Eq. (8) results in a sample
from p(x). In practice, the score ∇xt

log pt(x) is not avail-
able and it is approximated using a score network sθ(xt, t),
whose parameters θ are trained via Denoising Score Match-
ing (DSM),

LDSM = Eλ(t)

[∥∥sθ(xt, t)−∇xt
log pt|0(xt|x0)

∥∥2
2

]
, (9)

where λ(t) is a positive time-dependent weighting function
and the expectation is taken over the joint distribution t ∼
U [0, 1], x0 ∼ p(x), and xt ∼ pt|0(xt|x0).

2.3. Existing diffusion models for fractional coordinates

As previously mentioned, the fractional coordinates define
a hypertorus f ∈ [0, 1)3×K ∼= T3×K . Most existing work
has built upon DIFFCSP (Jiao et al., 2023), which leverages
the score-based framework of Song et al. (2021) extended
to Riemannian manifolds (De Bortoli et al., 2022; Jing et al.,
2022).

In what follows, we present the key ingredients of DIFFCSP
for modeling fractional coordinates.

Transition kernel DIFFCSP implements a specific case
of Eq. (7)—i.e. Variance-Exploding SDE (VE-SDE), with
f(t) = 0 and g(t) =

√
dσ2(t)/dt, where σ(t) =

σ1−t
minσ

t
max with σmin and σmax being hyperparameters.

In practice, as sampling noisy fractional coordinates ft

given f0 using a normal distribution does not capture the
bounded and cyclical nature of p(f), the solution con-
sists in first sampling from the normal distribution f̃t ∼
N
(
f0, σ

2(t)
)

and then wrapping the samples ft = w(f̃t)—
where w(·) = · − ⌊·⌋ is the wrapping function.

The transition kernel corresponding to this two-step proce-
dure corresponds to a wrapped normal distribution,

pt|0(ft|f0) ∝
∑

k∈Z3×K

exp

(
−∥ft − f0 + k∥2

2σ2(t)

)
, (10)

whose gradient can then be approximated by truncating the
series, allowing for training using denoising score-matching.
Due to the wrapping operation, Eq. (10) converges to a
uniform distribution over the hypertorus as t → T .

Denoising score-matching Given the transition kernel
pt|0(ft|f0), the approximate score function can be opti-
mized by minimizing a denoising score-matching objective,
which at time t writes

Lft
= E
f0,ft

[
λ(t)

∥∥∇ft
log pt|0(ft|f0)− sfθ (xt, t)

∥∥2
2

]
, (11)

where f0 ∼ p0(f),ft ∼ pt|0(ft|f0), sfθ (xt, t)
denotes the output of the score network corre-
sponding to fractional coordinates, and λ(t) =
1/Eft∼pt|0(ft|f0)

[
∥∇ft

log pt|0(ft|f0)∥22
]

is a (pre-
computable) scale factor ensuring that the loss magnitude is
constant in expectation across time (Jing et al., 2022; Jiao
et al., 2023).

Invariant approximate distribution As introduced in
Eq. (6), the true data distribution p(x), with x = (f , l,a)
as defined in Section 2.1, is periodic translation invariant—
i.e. unit cells equivalent up to periodic translation shall be
equally likely. In DIFFCSP (Jiao et al., 2023), the learned dis-
tribution pθ(x) is made invariant by combining an invariant
prior - i.e. uniform distribution on the hypertorus - with an
approximate reverse process that is equivariant to periodic

3



Kinetic Langevin Diffusion for Crystalline Materials Generation

translation—i.e. pθ(xt−1|xt) = pθ(g · xt−1|g · xt),∀g ∈
R3/Z3. In practice, this is realized by parameterizing the
score using a neural network that is invariant to periodic
translations—i.e. sfθ (xt, t) = sfθ (g · xt, t),∀g ∈ R3/Z3.
If the learned score sfθ (xt, t) correctly approximates the
score of the true target distribution, then we are guaran-
teed to model a distribution pθ(x) that exhibits the same
symmetries as p(x) from which new samples can be drawn.

3. Kinetic Langevin Diffusion for Materials
generation

We now introduce Kinetic Langevin Diffusion for Materials
(KLDM), and particularize our exposition to the fractional
coordinates f ∈ [0, 1)3×K ∼= T3×K , used to define the
positions of atoms inside the unit cell.

Given the isomorphism between the torus T and SO(2)1,
the fractional coordinates can alternatively be described as
a collection of 2 × 2 rotation matrices. We denote this al-
ternative representation f̂ . Since f̂ is defined on a direct
product of connected compact Lie groups2, we propose to
generalize Trivialized Diffusion Model (TDM) (Zhu et al.,
2024) to operate on geometric graphs similar to those de-
fined in Eq. (1). While TDM in principle allows for proper
treatment of the fractional coordinates out-of-the-box, we
find its direct application to crystalline materials generation
to result in slow convergence and subpar performance. We
consequently propose a set of modifications designed to
facilitate faster convergence and enhance empirical results.

3.1. Trivialized Diffusion Model (TDM) for fractional
coordinates

Building upon previous work on momentum-based opti-
mization (Tao & Ohsawa, 2020) and sampling (Kong & Tao,
2023), TDM is specifically tailored to data defined on Lie
groups, and exploits the particular group structure, specifi-
cally the left-trivialization operation, to effectively perform
diffusion on the manifold via the Lie algebra. The main idea
is to couple the variables of interest defined on the manifold
with auxiliary variables representing velocities defined on
the Lie algebra. More precisely, the fractional coordinates
f̂ , elements of the group G = SO(2)3×K , are coupled with
velocities v̂ ∈ g defined on the Lie algebra g. The latter
corresponds to the tangent space TeG at the identity element
of the group e ∈ G, and crucially can be thought of as a Eu-
clidean space, g ∼= R3×K . In the present setting, velocities

1We provide an intuitive explanation of this correspondence in
Appendix B.1.

2A Lie group is a smooth manifold equipped with a group
structure denoted by G and smooth group operations. We provide
a short informal introduction to Lie groups and Lie algebra in
Appendix A.

v̂ are 2× 2 skew-symmetric matrices, whose anti-diagonal
element, v, is real-valued.

Forward process As the Lie algebra is isomorphic to
Euclidean space, a standard diffusion process can be de-
fined for v̂. Given its coupling with f̂ determined by left-
trivialization (Zhu et al., 2024), the resulting forward pro-
cess is defined as,

{
df̂t = f̂tv̂t dt,

dv̂t = −γv̂t dt+
√
2γ dwg

t ,
(12)

where the Ordinary Differential Equation (ODE) describes
the time evolution of the fractional coordinates f̂t (that lie on
a manifold) through a coupling with the velocity variables
v̂t. The latter evolve according to an SDE similar to that of
Eq. (7), with constant drift f(t) = −γ and constant volatil-
ity g(t) =

√
2γ, and where wg

t denotes a standard Wiener
process on the Lie algebra g. We note that, in principle,
f and g could be generalized to time-dependent functions
but that we consider constant here. In summary, Eq. (12)
corrupts f̂t living on a hypertorus via a standard Euclidean
diffusion process on the auxiliary variables, while guarantee-
ing that the trajectory (f̂t)t∈[0,T ] remains on the manifold at
all times. Eq. (12) converges to a product of easy-to-sample
distributions: a uniform distribution on G, and a standard
Normal distribution on g.

Reverse (generative) process The time-reversal of Eq. (12)
is given by




df̂t = f̂tv̂tdt,

dv̂t =
[
−γv̂t − 2γ∇v̂t

log pt(f̂t, v̂t)
]
dt

+
√
2γ dŵg

t ,

(13)

where t flows backwards and ∇v̂t
log pt(f̂t, v̂t) denotes the

(true) score. The latter is unavailable, but can be approxi-
mated with a neural network sθ(f̂t, v̂t, t) trained using DSM
as in Eq. (11). However, we stress that the gradient is now
with respect to v̂t—i.e. an Euclidean variable, in contrast to
Eq. (11) where it was with respect to ft—see Eq. (17). As
in Eq. (12) there is no direct noise in the forward dynamics
of f̂t, its time-reversal in Eq. (13) does not need score-based
correction and corresponds to the reverse ODE.

Practically, we split the vector field of the generative dynam-
ics in Eq. (13) into two vector fields: one for f̂t where v̂t is
considered fixed—this is a simple linear ODE; and one for
v̂t where f̂t is considered fixed—this is a semi-linear SDE,
as usually encountered in diffusion models.

Discretized update of the fractional coordinates The
ODEs in Eqs. (12) and (13) describe the dynamics associated
with the fractional coordinates. Since they lie on a manifold,
integrating the dynamics from time t to t + dt involves
solving a Riemannian exponential map. Intuitively, this
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operation generalizes the concept of moving on a straight
line to the manifold case. By considering an initial velocity
v̂t, an initial position f̂t and the step-size dt, the update of
the positions can be written as

f̂t+dt = expf̂t
(f̂tv̂tdt) = f̂t expm(v̂tdt), (14)

where the matrix multiplication f̂tv̂tdt returns the tangent
vector in f̂t, and the matrix exponential is the exact solution
of the exponential map (Zhu et al., 2024).

The formalism previously introduced considered f̂ as a
collection of rotation matrices. However, the usual neural
networks used to parameterize the score have been designed
to process fractional coordinates (Jiao et al., 2023; Lin et al.,
2024). We therefore want to work on the hypertorus T3×K

directly, using the original representation of the fractional
coordinates f . Concretely, if we consider the exponential
map defined in Eq. (14) and that f̂ i is a single rotation
matrix by an angle θ ∈ [−π, π), the matrix exponential
corresponds to a periodic translation as follows,

f̂ iexpm(v̂idt) → w(θi + vidt), (15)

where v̂i is a skew-symmetric matrix and vi is its anti-
diagonal element, while w(·) = atan2

(
sin(·), cos(·)

)
is

the wrapping function with atan2 denoting the signed atan
function—see Appendix B.2 for more details. Since θi in
Eq. (15) corresponds to a scaled version of the correspond-
ing coordinate f i, we continue the presentation with all
operations expressed in terms of f .

Transition kernel (Zhu et al., 2024) The transition kernel
corresponding to the forward dynamics of Eq. (12) writes

pt|0(ft,vt|f0,v0) =

WN
(
rt|µrt

, σ2
rt
I
)
· Nv

(
vt|µvt

, σ2
vt
I
)
,

(16)

where rt = logm(f−1
0 ft), WN

(
· |µrt

, σ2
rt
I) denotes the

density of the Wrapped Normal distribution with mean
µrt

= 1−e−t

1+e−t (vt + v0) and variance σ2
rt

= 2t+ 8
et+1 − 4,

while Nv is a Gaussian distribution with µvt
= e−tv0 and

σ2
vt

= 1− e−2t.

Practically, noisy samples ft can be obtained from the tran-
sition kernel in Eq. (16) as follows. First, we sample the
auxiliary variables vt. We then sample rt = logm(f−1

0 ft).
Finally, ft is obtained as ft = f0expm(rt).

The joint distribution in Eq. (16) evolves from the product
p(f) · p(v0), to a tractable limiting distribution that is the
product of a uniform distribution over T3×K in f and a
standard Normal in v.

Denoising score-matching target As the diffusion process
only acts on the (Euclidean) velocity variables, we only need
to compute the score of Eq. (16) with respect to the velocity

variables, vt, unlike the objective presented in Eq. (11)
where the gradient was instead computed with respect to the
coordinates ft. It writes,

∇vt
log pt|0 = ∇µrt

logWN
(
rt|µrt

, σ2
rt
I
) ∂µrt

∂vt
(17)

+∇vt
logNv

(
vt|µvt , σ

2
vtI
)
,

where we shortened pt|0(ft,vt|f0,v0) as pt|0. Eq. (17) is
the target used to train our score network with the DSM
objective defined in Eq. (9).

3.2. Modeling choices

Initial zero velocities Defining p(v0) is a design choice,
and we find that setting the initial velocities to zero,
i.e. p(v0) = δ(v0), to be beneficial. This intuitively corre-
sponds to considering coordinates f initially at rest, at time
t = 0, with noise gradually propagating from the velocities
to the coordinates over the course of the diffusion process. A
similar benefit was also observed by Dockhorn et al. (2022),
for small initial velocities.

Simplified score parameterization While predicting the
full score in Eq. (17) directly is possible, alternative pa-
rameterizations exist—similar to what is done in standard
diffusion models. By carefully inspecting the score expres-
sion, we note that the target writes as a sum of two terms,
where some of the quantities are known,

∇vt log pt|0(ft,vt|f0,v0) (18)

=
1− e−t

1 + e−t
∇µrt

WN
(
rt|µrt

, σ2
rt
I
)
− εv

σvt

,

with εv denoting the reparameterization noise sampled to
obtain vt. When considering zero initial velocities, i.e. v0 =
0, we have that µvt = 0,∀t. Using the relationship, vt =
µvt

+ σvt
εv , the second term in Eq. (18) can be computed

in closed-form—as we have εv = vt/σvt
, and does not

need to be learned. We are then left with a single unknown
term, and the simplified parameterization writes,

svθ (xt, t) =
1− e−t

1 + e−t
sfθ (xt, t)−

vt

σ2
vt

, (19)

where superscript f in sfθ (xt, t) refers to the output of
the score network corresponding to fractional coordinates.
More details are provided in Appendix C.

Empirically, we find the combination of the zero initial
velocities and the simplified parameterization to be ben-
eficial for convergence and performance, as discussed in
Appendix E.

Architecture of the score network As imposed by the sym-
metries inherent to the target distribution, we parameterize
our score network, sθ(xt, t), using a graph neural network
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architecture, with a backbone similar to that of previous
work (Jiao et al., 2023). The sole difference is that the score
network now takes the auxiliary variables, vt, as additional
inputs. The network is made invariant to periodic transla-
tion of ft, by featurizing pairwise differences of fractional
coordinates with periodic functions of different frequencies,
or similarly with shortest distances on the flat torus. More
details about the architecture are provided in Appendix I.

Velocity fields with zero net translation Due to the transla-
tional symmetry of the target distribution - and consequently
the translation invariance of the score parametrization - we
want to prevent velocities (vt)t∈[0,T ] from inducing a net
overall translation of the system at every time step. Since
velocities are defined on the Lie algebra and can therefore be
viewed as Euclidean variables, we consider velocity fields
living in the mean-free linear subspace. This is, in essence,
similar to subtracting the center of gravity when working
with molecules in Euclidean space (Xu et al., 2022; Hooge-
boom et al., 2022), except that it now takes place on the
velocities defined on the Lie algebra.

In practice, this implies that the distribution of velocities,
Nv in Eq. (16), corresponds to a projected Normal where all
samples are mean-free—that is, they satisfy

∑K
k vk = 0, to

account for the constraint on the velocities. We also remove
the mean from the sampled rt, and project the score in
Eq. (17), to ensure that it does not introduce a net translation.
Finally, the corresponding velocity score output svθ (xt, t) in
Eq. (19) - and hence sfθ (xt, t) - is constructed to be mean-
free as well.

Ideally, we would like to preserve the group element g used
to represent the clean sample f0, since the score network
is insensitive to translation. While restricting the velocity
fields to the mean-free subspace prevents global drift, it does
not always ensure that the noisy coordinates, ft, maintain
the mean3 of the original sample, f0.

However, we empirically observe that the mean tends to be
preserved at moderate noise levels (see Figs. 2 and 3). This
helps mitigate the potential mismatch that exists between
the translation-invariant score parameterization and the non-
invariant training target.

This issue has been pointed out in previous. Lin et al. (2024),
for example, proposed a so-called Periodic CoM-free Nois-
ing scheme, in which the noise is carefully designed to
ensure a translation-invariant training target. The resulting
transition kernel is formulated as a von Mises distribution
and estimated numerically via Monte Carlo simulations.

We refer the reader to Appendix D for a longer discussion

3In this case, we are referring to the mean defined on a manifold
and not the Euclidean mean. See Appendix D for a more precise
definition.

and a more detailed analysis.

3.3. Other modalities

Lattice vectors We represent lattices l as 6-dimensional
vectors, collecting side lengths and angles. We follow pre-
vious work (Jiao et al., 2023; Lin et al., 2024) and rely on
standard Euclidean diffusion (VP-SDE) as defined in Eqs. (7)
and (8), with drift and diffusion functions defined by a linear
schedule.

Compositions In the DNG setting, we employ three distinct
representations for atomic compositions a, as per previous
work: continuous diffusion using one-hot encoding (Jiao
et al., 2023); continuous diffusion on analog-bits (Chen
et al., 2023; Miller et al., 2024); and discrete (absorbing)
diffusion (Austin et al., 2021; Jiao et al., 2023).

4. Related work
Early deep generative models for crystal generation lever-
aged image representations (Hoffmann et al., 2019; Court
et al., 2020), ad-hoc frequency space representations (Ren
et al., 2022) or 3D coordinates without considering their ge-
ometric nature (Nouira et al., 2018; Kim et al., 2020; Yang
et al., 2024b).

Since then, several works have leveraged diffusion models
operating on geometric graphs. The seminal approach of
Xie et al. (2022) initially worked in real space, and resorted
to multi-graphs to account for periodicity (Xie & Grossman,
2018). The diffusion process was limited to coordinates,
with fixed lattice parameters and composition predicted by
a VAE. While such a model has shown practical usefulness,
e.g. to find novel 2D materials (Lyngby & Thygesen, 2022),
more recent diffusion models instead defined a (more flexi-
ble) joint diffusion process for coordinates, lattice structure,
and atom types (Jiao et al., 2023; Zeni et al., 2025), and
accounted for periodicity by operating on fractional coor-
dinates. Miller et al. (2024) generalized Riemannian flow
matching (Lipman et al., 2023; Chen & Lipman, 2024) to
the same setup. Sriram et al. (2024) further leveraged the
flexibility of flow matching and used a fine-tuned LLM as a
base distribution. Others (Flam-Shepherd & Aspuru-Guzik,
2023; Gruver et al., 2024; Antunes et al., 2024) also trained
or fine-tuned LLMS on text representation of materials and
demonstrated the ability of such models to generate valid de-
scriptions, sometimes outperforming domain-specific meth-
ods.

Finally, a recent line of work (Jiao et al., 2024; Levy et al.,
2024) has sought to exploit space-group information to re-
strict generation to the smallest asymmetric part of the unit
cell only, including for disordered materials (Petersen et al.,
2025).
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Table 1: Crystal Structure Prediction (CSP) results. Baseline results are extracted from the respective papers. @ indicates
the number of samples considered to evaluate the metrics, e.g. @20 indicates the best of 20. Error bars for @1 represent the
standard deviation over the mean at sampling time across 20 different seeds. Most notably, KLDM compares favorably to the
competing models, achieving performance comparable to or better than state-of-the-art (SOTA) methods.

PEROV-5 MP-20 MPTS-52
MODEL MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓

METRICS @ 1

CDVAE 45.31 0.1138 33.90 0.1045 5.34 0.2106
DIFFCSP (PC) 52.02 0.0760 51.49 0.0631 12.19 0.1786
EQUICSP (PC) 52.02 0.0707 57.59 0.0510 14.85 0.1169
FLOWMM 53.15 0.0992 61.39 0.0566 17.54 0.1726
KLDM-ε (EM) 53.14 ±.6 0.0758 ±.002 61.72 ±.2 0.0686 ±.001 17.71 ±.3 0.2023 ±.005

KLDM-ε (PC) 52.72 ±.8 0.0678 ±.002 65.37 ±.1 0.0455 ±.001 21.46 ±.2 0.1339 ±.002

KLDM-x0 (EM) 52.44 ±.7 0.0698 ±.002 62.92 ±.2 0.0833 ±.002 21.13 ±.2 0.1800 ±.003

KLDM-x0 (PC) 52.14 ±.9 0.0647 ±.002 65.83 ±.2 0.0517 ±.001 23.93 ±.2 0.1276 ±.002

METRICS @ 20

CDVAE 88.51 0.0464 66.95 0.1026 20.79 0.2085
DIFFCSP (PC) 98.60 0.0128 77.93 0.0492 34.02 0.1749
FLOWMM 98.60 0.0328 75.81 0.0479 34.05 0.1813
KLDM-ε (EM) 99.97 0.0152 83.68 0.0532 39.04 0.1865
KLDM-ε (PC) 99.94 0.0226 81.08 0.0440 39.81 0.1462
KLDM-x0 (EM) 99.89 0.0186 82.94 0.0575 37.77 0.1673
KLDM-x0 (PC) 99.92 0.0255 80.18 0.0453 37.10 0.1394

5. Experimental results
5.1. Settings

Tasks and Datasets We now evaluate KLDM on the two
tasks outlined in Section 2.1: Crystal Structure Prediction
(CSP) and De-novo Generation (DNG).

We follow previous work (Jiao et al., 2023) and evaluate
KLDM across 4 datasets: PEROV-5 (Castelli et al., 2012)
including perovskite materials with 5 atoms per unit cell
(ABX3), all sharing the same structure but differing in com-
position; MP-20 including almost all experimentally stable
materials from the Materials Project (Jain et al., 2013), with
unit cells containing at most 20 atoms; and MPTS-52 also
extracted from the Materials Project (Jain et al., 2013), with
unit cells containing up to 52 atoms.

Sampling schemes As DIFFCSP (Jiao et al., 2023) and
EQUICSP (Lin et al., 2024) both rely on a Predictor-
Corrector (PC) integrator (Song et al., 2021), we consider
two different integration schemes for KLDM: the first com-
bines Euler–Maruyama (EM) for the lattice parameters with
an exponential integrator for the velocities, while the second
applies a PC scheme to the velocities while retaining EM for
the other modalities. Details are provided in Algorithms 3
and 4.

5.2. Crystal Structure Prediction (CSP) task

Model setup We present two different models that differ in
terms of the score parameterization for the lattice parameters
l. We consider a model that uses the ε-parameterization
(KLDM-ε) and one using the x0 parameterization (KLDM-
x0). For the latter, we also standardize the value of the
lattice parameters following (Miller et al., 2024).

Metrics We follow the evaluation procedure of Xie
et al. (2022) to assess the quality of the structures gen-
erated by KLDM. We report Match Rate (MR), measuring
the proportion of reconstructions from qθ(f , l|a) that are
satisfactorily close to the ground truth structures as per
StructureMatcher (Ong et al., 2013); and Root-Mean-
Square-Error (RMSE), quantifying the RMSE between coor-
dinates of matching reconstructions and ground truth struc-
tures.

Baselines We compare KLDM to the following recent gener-
ative models: CDVAE (Xie et al., 2022), DIFFCSP (Jiao et al.,
2023), EQUICSP (Lin et al., 2024), and FLOWMM (Miller
et al., 2024).

Results We perform CSP on all datasets and present the
corresponding results in Table 1. We note that this task
constitutes an ideal test bench for measuring the effect of
the novel treatment of the fractional coordinates specific to
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Table 2: De-novo Generation (DNG) results on MP-20. Stability metrics are evaluated using MATTERGEN’s pipeline
(Zeni et al., 2025) with MatterSim-v1-1M (Yang et al., 2024a). Baseline results are taken from MATTERGEN’s own
benchmark. KLDM was trained on the original MP-20 dataset, whereas MATTERGEN-MP* and DIFFCSP* were trained on a
re-optimized version. We report average and standard deviation across 3 sampling seeds. Notably, KLDMwith analog-bit or
discrete diffusion outperforms DIFFCSP in terms of RMSD, energy above the hull, and stability, while being slightly subpar
on RMSD.

RMSD [Å] ↓ AVG. ABOVE HULL [eV/atom] ↓ STABLE [%] ↑ S.U.N. [%] ↑
MATTERGEN-MP* 0.147 0.201 47.05 25.76
DIFFCSP* 0.413 0.189 41.25 20.13
KLDM-x0 (C) 0.371 ±.01 0.269 ±.01 38.62 ±.1 16.67 ±.1

KLDM-x0 (C-AB) 0.296 ±.01 0.187 ±.01 49.84 ±.1 17.91 ±.1

KLDM-x0 (D) 0.283 ±.01 0.155 ±.01 59.21 ±.1 18.52 ±.1

KLDM. On the simpler PEROV-5 dataset, KLDM performs on
par with the compared models for the @1 experiment, and
yields improved results for @20. Notably, the PC sampler
does not enhance sample quality on this dataset. In contrast,
on the more realistic datasets MP-20 and MPTS-52, KLDM
already yields competitive MR for the EM sampler. The
PC sampler further improves performance, improving MR
and reducing RMSE. Additional gains are achieved on these
datasets by standardizing the lattice parameters and adopting
the x0-parameterization for the lattice parameters.

For completeness, we report results on the CARBON-24
dataset in Appendix F, Table 4. The @1 task is inherently ill-
defined, as the dataset consists exclusively of carbon atoms,
allowing multiple distinct structures to satisfy the same
composition. On the @20 task, KLDM compares favorably
to baselines.

5.3. De-novo Generation (DNG) task

Model setup As described in Section 3.3, the CSP model
formulation can be readily extended to the DNG task, by
introducing an additional diffusion process operating on
the atom types, a. To sample from pθ(x), we first sam-
ple the number of atoms K in the unit cell from the em-
pirical distribution observed in the training set, i.e. from
pθ(x|K)p(K) (Hoogeboom et al., 2022).

For the lattice parameters l, we adopt the KLDM-x0 variant,
as it demonstrated the best performance in the CSP task on
the larger datasets. Similarly, we use the PC sampler as it
consistently yielded improved results.

Regarding the atom types a, we compare three approaches
for modeling diffusion over these discrete attributes: (C) con-
tinuous diffusion on one-hot encoded atom types (Jiao et al.,
2023), (C-AB) continuous diffusion on analog bits (Chen
et al., 2023), and (D) discrete diffusion with absorbing
state (Austin et al., 2021; Shi et al., 2024).

Metrics We evaluate generated samples using a machine-
learning interatomic potential, based on the open-source
pipeline from MATTERGEN (Zeni et al., 2025)—i.e. using
MatterSim-v1-1M (Yang et al., 2024a). Sample qual-
ity is assessed in terms of the following metrics: RMSD
between the generated samples and their relaxed structure,
where lower values mean generated structures are closer
to equilibrium; the average energy above the hull, with
lower values meaning that generated materials are closer
to thermodynamic (meta-)stability; stability, measured as
the proportion of samples with an energy above the convex
hull below 0.1 eV/atom; and S.U.N. (stable, unique, novel)
measuring the percentage of generated samples that satisfy
all three criteria, identifying promising candidates. For each
variant of KLDM, we generated 10000 samples, from which
we discarded samples that contained elements not supported
by the validation pipeline.

Baselines We compare KLDM to DIFFCSP and MATTERGEN-
MP on MP-20. For the baselines, we report numbers bor-
rowed from MATTERGEN’s own benchmark (Zeni et al.,
2025). Notably, the baseline models were trained on a
re-optimized version of MP-20 in which certain chemical el-
ements were removed, specifically noble gases, radioactive
elements, and elements with atomic number greater than
84. Additionally, samples with energy above the hull bigger
than 0.1 eV/atom were also filtered out. In contrast, our
model was trained on the original, unfiltered MP-20.

Results The results are summarized in Table 2. Notably,
when relying on analog-bits or discrete diffusion to model
the atom types, KLDM outperforms DIFFCSP in terms of
RMSD, energy above the hull and stability while being
slightly subpar on S.U.N..

Compared to MATTERGEN-MP, KLDM generates structures
that are more thermodynamically stable and closer to the
convex hull on average, but with slightly higher RMSD,
indicating larger deviations from the relaxed geometries.
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Figure 1: Ablation study results. We report the mean and standard error across 6 seeds of the validation Match Rate (MR).
(Left) Impact of the initial velocity distribution variance. A variance of 0 corresponds to the zero-initial velocity case (i.e., a
delta distribution). (Center) Effect of the score parameterization on convergence. (Right) Impact of enforcing zero-net
translation in velocity fields under zero-initial velocities. Notably, all design choices shown contribute to performance
improvements.

It also produces slightly fewer unique and stable samples,
as reflected by a lower S.U.N. score. We attribute this
remaining performance gap to several factors: (1) the more
expressive denoiser architecture used by MATTERGEN-MP,
which operates in real space, (2) its uses of PC sampler for
the lattice parameters, and (3) the impact of dataset pre-
processing in the re-optimized MP-20 used for training.

Additional results using standard proxy metrics are provided
in Appendix G.

5.4. Ablation study

In this section, we analyze the impact of three key design
choices: (1) the distribution of the initial velocities, (2) the
simplified score parameterization in Eq. (19) compared to
the direct parameterization of Eq. (18), and (3) the enforce-
ment of a zero-net translation velocity field.

We find that using zero-initial velocities significantly im-
proves both performance and convergence speed, as shown
in Fig. 1 (Left). This improvement may also stem from the
ability to use the simplified parameterization from Eq. (19),
which is only compatible with zero-initial velocities. As
shown in Table 3, this simplified parameterization consis-
tently yields better final performance across different sam-
pling schemes and datasets, while also accelerating conver-
gence (Fig. 1, Center).

Finally, enforcing a zero-net translation velocity field pro-
vides additional improvements in terms of MR on the valida-
tion set, albeit to a smaller extent. These gains are observed
both when using the direct parameterization (Fig. 4) and
when combining zero-initial velocities with the simplified
parametrization (Fig. 1, Right).

We refer the reader to Appendix E for a more detailed anal-
ysis.

6. Conclusion
We introduced KLDM, a novel diffusion model for periodic
crystal structure generation, whose key innovation lies in
the modeling of the fractional coordinates through a cou-
pling with auxiliary variables representing velocities. We
evaluated KLDM on both the CSP and DNG tasks, where it
performed on par with, or outperformed, several state-of-
the-art (SOTA) models. Notably, on the CSP task, KLDM
demonstrated significant improvements on the real-scale
datasets MPTS-20 and MPTS-52, at a similar computational
cost to the compared models. On the DNG task, it matched
current SOTA performance as evaluated by machine-learning
interatomic potentials. Further validation with DFT simula-
tions is a natural next step to confirm these findings.

Despite its strong performance, there are opportunities for
further improvement of KLDM. Exploring alternative pro-
cesses to noise the velocity variables in Eq. (12) could lead
to better results. Additionally, optimizing the score net-
work architecture to better account for the periodic nature
of crystal structures (Lin et al., 2023) and investigating
modality-specific noise schedules (Qiu et al., 2025) may
result in even further gains. We also envision that incorpo-
rating space-group information (Jiao et al., 2024) or Wyck-
off positions (Levy et al., 2024) could improve practical
performance, particularly on the DNG task.

We believe that KLDM provides a strong foundation for
diffusion-based crystal structure generation. Future work
will focus on targeted material generation with specific prop-
erties, as well as extending KLDM to larger systems such as
metal-organic frameworks (MOFs) by incorporating rota-
tional frame modeling (Kim et al., 2025).
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Impact statement
Our paper presents a generative model for novel crystalline
materials generation. As mentioned in the introduction, the
ability to accurately generate novel compounds with tar-
geted properties has significant implications across multiple
scientific domains, particularly in molecular discovery and
materials design. While advances in materials discovery
might benefit society, from more efficient energy storage to
improved catalysts, we acknowledge the potential for unin-
tended applications. However, the considerable gap between
the model prediction to the successful material synthesis
acts as a natural safeguard. Therefore, in the immediate
term, our work mostly impacts researchers working on the
same topic.
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Organization of the Supplementary Material
Appendix A We provide a short informal introduction to Lie groups and manifolds. We provide intuition behind key
equations Eqs. (12) and (13), and the TDM and KLDM models more broadly.

Appendix B We discuss why data on a torus can be represented either as angles or rotation matrices. We also show
that, in this case, the matrix exponential simplifies to a rotation matrix, enabling a coordinate update that corresponds
to a translation following by a wrapping operation.

Appendix C We derive, step-by-step, the target used to train the score network in KLDM.

Appendix D We analyze how enforcing a zero-net translation constraint affects the mean of the system.

Appendix E We provide an additional discussion and analysis of the ablation study.

Appendix F and Appendix G We present additional results for the CSP and DNG tasks, respectively.

Appendix H We present pseudo-code for all the core algorithms in KLDM.

Appendix I Experimental settings required for reproducibility, along with a brief discussion of the differences between
KLDM and the baseline methods.

A. A primer on Lie groups and manifolds
In this section, we provide an intuitive overview of key concepts used in the main text. For crystalline materials, the
fractional coordinates f , which define atomic positions within the unit cell, lie on a hypertorus: i.e. f ∈ [0, 1)3×K ∼= T3×K .
The hypertorus is a direct product of Lie groups. In the main paper, we introduced Lie groups as smooth manifolds equipped
with a group structure G and smooth group operations. Here, we revisit some of the building concepts underlying KLDM in
more detail, from a Riemannian geometry perspective rather than from the Lie group one.

Lie group In mathematics, a group is denoted by (G, ·), with G being the non-empty set of elements that belong to the
group and · being the group operation that combines any two elements a, b in the group G and results in an element of G.
The group operation · has to satisfy three different properties:

• (a · b) · c = a · (b · c) ∀a, b, c ∈ G (associativity property)

• For every element a ∈ G, there should be an unique element e ∈ G, such that e · a = a and a · e = a (existence of an
unique identity element)

• For every element a ∈ G there is an element b ∈ G such that a · b = e and b · a = e. (existence of an inverse element)

If the group operation · is also commutative, i.e. a · b = b · a ∀a, b ∈ G, then the group is called an Abelian group. This
property holds in the case of the hypertorus T3×K and allows us to define the transition kernel in Eq. (16) in closed-form
(and hence a simulation-free training procedure). For a complete derivation of this, we refer to Zhu et al. (2024).

We can formalize two different operations that can be done with elements of the group G that will be useful to give some
intuition about why data on a manifold can be modeled through quantities defined in Euclidean space. Let us consider two
elements a, g ∈ G of the group. The left translation of g by a is defined as the operation La : G → G which takes g as input
and returns a · g, or equivalently g 7−→ a · g. In the same way, we can define the right translation as Ra : G → G, g 7−→ g · a.

Tangent space Before describing other key elements of a Lie group, we introduce the concept of tangent space, which
stems from the fact that a Lie group is also a manifold. Possible ways to understand the notion of a manifold involve thinking
about it as a hypersurface embedded in a higher-dimensional space or as a collection of points that are somewhat connected
to generate a surface. A tangent space is a vector space containing all the vectors that are tangential to a specific point in the
manifold, i.e. any element g ∈ G in the case of a Lie group. It is usually denoted as TgM for manifolds and TgG for Lie
Groups. The tangent space offers a linearized view of the manifold in the neighborhood of the point g and therefore it is
usually considered as Euclidean space—i.e. TgG ∼= Rd, with d being the dimension of g. If we consider all the elements in
the group G, the set of all the tangent spaces associated with these elements form the tangent bundle, denoted with T M or
T G, depending if we are working with a manifold or a Lie group.
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Lie algebra, left-invariant vector fields and exponential maps The Lie algebra g is defined as the tangent space at the
identity element of the group, e ∈ G: TeG. Since tangent spaces are approximately Euclidean, we treat the Lie algebra g as
Euclidean as well.

To understand how to define the dynamics in Eq. (12) and introduced by Zhu et al. (2024), we first introduce left-invariant
vector fields.

A vector field, X : G → T G, is a function that associates every element of the group g ∈ G to a vector Xg ∈ TgG of the
tangent space at g.

Recall the left-translation operation La : G → G, which maps a group element g ∈ G to a · g ∈ G for any group element
a ∈ G. The differential of this operation, denoted as (dLa)g : TgG → Ta·gG, acts on tangent vectors instead of group
elements. A vector field is left-invariant if:

(dLa)g(Xg) = Xa·g, for any two group elements a, g ∈ G. (20)

Intuitively, this means that the vector field behaves predictably under left-translations. Specifically, if g is translated to a · g,
the vector Xg ∈ TgG will be mapped to Xa·g . Thus, a left-invariant vector looks the same at all points in the group.

In particular, it can be shown that there exists a linear isomorphism between the Lie algebra g and the tangent space of
the identity element e ∈ G, i.e. g ∼= TeG (Arvanitogeōrgos, 2003). This means that an invariant vector field is determined
entirely by its value on the tangent space of the identity element e ∈ G. Using this, we can rewrite Eq. (20) in terms of the
identity element e ∈ G and its tangent space TeG, which is g:

(dLa)e : TeG → Ta·eG = TaG
(dLa)e(Xe) = Xa·e = Xa

(21)

where a ·e = a. Eq. (21) shows that any vector Xe ∈ TeG can be translated to a tangent space Xa ∈ TaG using (dLa)e(Xe).
Now, with both the group element a ∈ G and the tangent vector Xa ∈ TaG, we can use the Riemannian exponential map4

expa : TaG → G to compute the group element a′ ∈ G reached by starting from a with velocity Xa in one unit time. This
map extends the Euclidean notion of motion along a straight line to the manifold.

How does this relate to modeling data living on the torus? We can take advantage of the torus being a Lie group and
use the operations from the previous section. Specifically, we use the Lie algebra g (a Euclidean vector space) and the
operation mapping vectors in g to the tangent space of any point of the manifold (via Eq. (21)). In the forward dynamics of
KLDM (Eq. (12)), we couple fractional coordinates (elements of our Lie group) with velocity vectors in g. Since the torus
is a Lie group, we can map any vector in g the tangent space of any group element. This allows us to define a standard
Euclidean diffusion model over these velocities in g and use Eq. (20) to get the corresponding tangential velocities. By
applying the exponential map, we can update the fractional coordinates, explaining the coupled process in Eq. (12).

The computation of Eq. (21) for the torus is straightforward, as both the vectors in the Lie algebra g and group elements can
be represented as d× d matrices. The differential operation in Eq. (21) simplifies to matrix multiplication (Zhu et al., 2024).
Given a vector Xe ∈ g and an element a ∈ G, the tangent vector in a is simply Xa = aXe ∈ TaG.

Additionally, the Riemannian exponential map, involving constant velocity, has a closed-form solution using the matrix
exponential. The group element a′ reached from a with velocity Xa is given by a′ = expa(aXe) = expa(Xa) =
a expm(Xe), where expm(Xe) denotes the matrix exponential.

B. Sampling from the noising and denoising processes
B.1. Intuition about the correspondence between T and SO(2)

In the following, we provide an intuitive explanation of the isomorphism between T and SO(2). Let us consider a variable
x ∈ [a, b), we are going to work on an alternative representation thereof, that we will call g – a representation in SO(2).

4Note that the exponential map operation can be defined from a Riemannian manifold perspective and from the Lie group one. In the
Riemannian case, we have that it is defined as expa : TaG → G, i.e. it takes a velocity living in the tangent space of an element of the
manifold (which in this case is also a group) and map it to another element of the manifold. The Lie group exponential map instead is a
function expe : g → G that takes a vector in the Lie algebra g ∼= TeG and maps it to the group.
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First, we are going to map x to an angle θ as follows,

θ = 2π

(
x

b− a
− 1

2

)
,

such that θ ∈ [−π, π).

Then, we can construct the representation g as,

g =

[
cos θ sin θ
− sin θ cos θ

]
.

From g, we can readily recover θ,

θ = sign(g0,1) · arccos g0,0,

and in turn x,

x =

(
θ

2π
+

1

2

)
(b− a).

B.2. Update of positions is equivalent to periodic translation

As we have mentioned in the previous section, the update of the coordinate in the forward process can be expressed as
ft = f0 expm(rt) where then rt ∼ WN

(
rt|µrt , σ

2
rt

)
. Therefore, the update involves a matrix exponential operation. In

the case of the torus, we have that the structure of rt can be written as a 2× 2 skew-symmetric matrix of the form:

rt =

[
0 rt

−rt 0

]
, rt ∈ R

In our case, we are interested in computing the matrix exponential of rt. For simplicity, if we assume that rt = 1, we are
interested in computing a matrix exponential with the following structure:

expm (At) = expm

([
0 1
−1 0

]
t

)

This corresponds to the following infinite sum

expm (At) = expm

([
0 1
−1 0

]
t

)
=

[
1 0
0 1

]
+

[
0 t
−t 0

]
+

1

2

[
−t2 0
0 −t2

]
+

1

3!

[
0 −t3

t3 0

]
+

1

4!

[
t4 0
0 t4

]
+ · · ·

which can be rewritten as follows:

expm

([
0 1
−1 0

]
t

)
=

[
1− t2

2 + t4

4! − · · · t− t3

3! +
t5

5! − · · ·
−t+ t3

3! −
t5

5! + · · · 1− t2

2 + t4

4! − · · ·

]

where we can recognize the Maclaurin series for sin(t) and cos(t). Therefore, we can conclude that:

expm

([
0 1
−1 0

]
t

)
=

[
cos(t) sin(t)
− sin(t) cos(t)

]

In forward and backward integration of the dynamics described by Eq. (7) and Eq. (13) the update of the coordinates involves
the computation of a matrix exponential. In the following, we are going to derive step-by-step the closed-form solution for
the matrix exponential, highlighting how this will be equivalent to a translation and a wrap of the current position.
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Forward process In the forward process, assuming a discretization step denoted by dt, we are interested in computing the
following update:

ft = ft−1expm(dtvt)

= ft−1 expm

(
dt

[
0 vt

−vt 0

])
= ft−1 expm

([
0 vtdt

−vtdt 0

])

= ft−1

[
cos vtdt sin vtdt
− sin vtdt cos vtdt

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos vtdt sin vtdt
− sin vtdt cos vtdt

]

=

[
cos θ cos vtdt− sin θ sin vtdt cos θ sin vtdt+ sin θ cos vtdt
− sin vtdt cos θ − cos vtdt sin θ − sin θ sin vtdt+ cos θ cos vtdt

]

=

[
cos(θ + vtdt) sin(θ + vtdt)
− sin(θ + vtdt) cos(θ + vtdt)

]

where we used the rotation matrix representation for the fractional coordinates on the torus, as we explained at the beginning
of this section.

Reverse process In the backward process, instead, we are interested in computing the following update:

ft = ft−1expm(−dtvt)

= ft−1 expm

(
−dt

[
0 vt

−vt 0

])
= ft−1 expm

([
0 −vtdt

vtdt 0

])

= ft−1

[
cos vtdt − sin vtdt
sin vtdt cos vtdt

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos vtdt − sin vtdt
sin vtdt cos vtdt

]

=

[
cos θ cos vtdt+ sin θ sin vtdt − cos θ sin vtdt+ sin θ cos vtdt
− cos vtdt sin θ + sin vtdt cos θ sin θ sin vtdt+ cos θ cos vtdt

]

=

[
cos(θ − vtdt) sin(θ − vtdt)
− sin(θ − vtdt) cos(θ − vtdt)

]

C. Derivation of the target of KLDM

We recall that the transition kernel of our KLDM forward process defined in Eq. (12) can be obtained in closed form and it is
given by (Zhu et al., 2024):

pt|0(ft,vt|f0,v0) = WN
(
logm(f−1

0 ft)|µrt
, σ2

rt
I
)
· Nv

(
vt|µvt

, σ2
vt
I
)
,

where the mean and the variance of the two distributions are the following:

µrt =
1− e−t

1 + e−t
(vt + v0) µvt = e−tv0 (22)

σ2
rt

= 2t+
8

et + 1
− 4 σ2

vt
= 1− e−2t (23)

Intuitively, the normal distribution describes how we should noise the initial velocity v0 to get a sample vt, while the
wrapped-normal distribution implicitly defines how to get a noisy sample for the fractional coordinates ft starting from
f0. The trick is to define rt = logm(f−1

0 ft), and by taking the matrix-exponential on both sides, we can get the following
update rule ft = f0 expm(rt) where then rt ∼ WN

(
rt|µrt , σ

2
rt
I
)

The target score used in the DSM loss (Eq. (9)) for KLDM is ∇vt log pt|0(ft,vt|f0,v0). In the following, we derive it
step-by-step, highlighting at the end the parameterization used to train our score network. The target score can therefore be
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computed as follows:

∇vt
log pt|0(ft,vt|f0,v0) = ∇vt

log
[
WN

(
logm(f−1

0 ft)|µrt
, σ2

rt
I
)
· Nv

(
vt|µv, σ

2
vI
)]

= ∇vt logWN
(
logm(f−1

0 ft)|µrt , σ
2
rt
I
)

︸ ︷︷ ︸
sc coordinates term

+∇vt logNv

(
vt|µv, σ

2
vI
)

︸ ︷︷ ︸
sv velocity term

(24)

We start by deriving the score for the second term sv , which can be expressed in multiple way:

sv =
−vt + µv

σ2
v

= − ε

σv
(25)

We can now focus on the sc term, where for simplicity we define rt = logm(f−1
0 ft) as above:

sc = ∇vt
logWN

(
logm(f−1

0 ft)|µrt
, σ2

rt
I
)
= ∇vt

logWN
(
rt|µrt

, σ2
rt
I
)

= ∇vt log

(
1√

2πσrt

+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

))

= ∇vt log

(
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

))

=
1

∑+∞
k=−∞ exp

(
− (rt−µrt+2πk)2

2σ2
rt

)

︸ ︷︷ ︸
C

∇vt

[
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
∇vt

exp
(
− (rt − µrt

+ 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)
∇vt

(
− (rt − µrt + 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)
∇vt

(
−

(rt − 1−e−t

1+e−t (vt + v0) + 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)1− e−t

1 + e−t

1

σ2
rt

(
rt −

1− e−t

1 + e−t
(vt + v0) + 2πk

)]

=
1

∑+∞
k=−∞ exp

(
− (rt−µrt+2πk)2

2σ2
rt

)
[

+∞∑

k=−∞

1− e−t

1 + e−t

1

σ2
rt

(
rt −

1− e−t

1 + e−t
(vt + v0) + 2πk

)
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)]

=
1

∑+∞
k=−∞ exp

(
− (rt−µrt+2πk)2

2σ2
rt

)
[

+∞∑

k=−∞

1− e−t

1 + e−t

1

σ2
rt

(
rt − µrt

+ 2πk
)
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)]

=
1− e−t

1 + e−t

1
∑+∞

k=−∞ exp
(
− (rt−µrt+2πk)2

2σ2
rt

)
[

+∞∑

k=−∞

1

σ2
rt

(
rt − µrt + 2πk

)
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)]

=
1− e−t

1 + e−t
∇µrt

logWN
(
rt|µrt

, σ2
rt
I
)

=
∂µrt

∂vt
∇µrt

logWN
(
rt|µrt , σ

2
rt
I
)

(26)

Therefore, the target score is given by summing Eq. (25) and Eq. (26) together. If we now assume that the velocities are
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zeros at time t = 0, we can notice that the score sv can be rewritten as follows:

sv =
−vt + µv

σ2
v

=
−vt + e−tv0

σ2
v

= − vt

σ2
v

(27)

where we used the definition of µv = e−tv0 and the fact that we assumed that v0 = 0, resulting in µv = 0.

D. Effect of the zero-net translation velocity field
Mismatch between translation-invariant score parameterization and non-invariant training target As noted by
Lin et al. (2024), there is a potential mismatch between the translation-invariant parameterization of the score and the
non-invariant training target. For instance, a noisy point cloud and its periodic translation are considered equivalent by
the network, but the target scores, as computed in Eq. (18) and used by DIFFCSP (Jiao et al., 2023), will differ. While this
mismatch is averaged out during training and does not prevent the model from learning a useful score (as DIFFCSP performs
well on the tasks), it still affects gradient variance during training.

Constraining the velocity field In Section 3.2, we enforce a velocity field with zero net translation by imposing zero-mean
velocities (

∑K
k vk = 0). Since our score network is periodic translation-invariant, the goal is to remove any translation

component from the dynamics, as the network cannot distinguish between translations.

To illustrate this, consider the simple case of a one-dimensional system with a single atom (i.e. f0 is just one coordinate). In
this scenario, any noisy ft can be seen as a periodic translation of any other f

′

t , and hence even of the clean sample f0 itself.
Without constraining the velocity field, the dynamics defined in Eq. (12) produce noisy samples ft corresponding to periodic
translations of f0, which the network cannot distinguish. By imposing a zero-mean velocity field, the velocity coupled with
f0 must, in this case, be zero, preventing the forward dynamics from introducing an overall translation of the crystal.

Effect of the constraint on forward dynamics To understand the impact of this constraint on the forward dynamics in
the general case, we track the mean of the noisy samples generated by using the transition kernel defined in Eq. (16). Since
our data resides on a torus, the appropriate generalization of the concept of arithmetic mean to non-Euclidean spaces is the
Fréchet mean (Fréchet, 1948). The Fréchet mean ensures that the resulting point lies on the manifold but requires solving an
optimization problem. Given N datapoints {f0, · · · ,fN} ∈ M on a manifold, we define the Karcher means as the set of
solutions to:

fmean = arg min
p∈M

N∑

i=1

d2(p,fi), (28)

where d(·, ·) is the geodesic distance on the manifold. When the optimization yields a unique solution, it is the Fréchet
mean.

We consider a one-dimensional crystal composed of 10 atoms and two different noise levels, namely σ2 = 0.1 and σ2 = 0.7.
We sample 1000 points from the transition kernel defined in Eq. (16). For each sample, we check whether the original
Fréchet mean is preserved when enforcing a zero-net velocity field. As shown in Fig. 2, at low noise levels, the Fréchet
mean is generally preserved, indicating that explicitly ensuring a zero-net velocity field prevents the translation of the whole
system. However, at higher levels of noise, we note that the Fréchet mean jumps between n different values, each of them
separated by 2π

n . Despite this, the noisy samples typically share the same mean as the noiseless reference. In contrast, when
no constraint is imposed on the velocity field (Fig. 3), the Fréchet mean is never preserved for both noise levels, and it varies
continuously. Our approach, which constrains the velocity field, limits the Fréchet mean to a discrete set of possible values,
as opposed to the continuous variation observed without the constraint.

The above analysis shows that sampling from the transition kernel during training can introduce translations, meaning the
mismatch may not be fully mitigated across all noise levels. However, we argue that this mismatch is significantly reduced
at low noise levels when the vector field constraint is enforced, which benefits training (as shown in Appendix E). Enforcing
the constraint also turns the issue of shifting the mean of the system into a discrete problem, rather than a continuous one.
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Figure 2: Effect of sampling from the transition kernel in Eq. (16) with a zero-net translation velocity field.. We consider
a 1D crystal made of 10 atoms and two different noise levels: low noise (sampled from N (0, 0.1), left) and high noise
(sampled from N (0, 0.7), right). For each noise level, we generate 1000 noisy samples. At low noise, enforcing a zero-net
translation velocity field preserves the original mean, preventing any system translation. At higher noise levels, while the
mean is typically conserved, it occasionally shifts between 10 distinct values, each separated by 2π
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Figure 3: Effect of sampling from the transition kernel in Eq. (16) without a zero-net translation velocity field.. We consider
a 1D crystal made of 10 atoms and two different noise levels: low noise (sampled from N (0, 0.1), left) and high noise
(sampled from N (0, 0.7), right). For each noise level, we generate 1000 noisy samples. We observe that the mean is not
preserved at either low or high noise levels, as it changes continuously.
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E. Ablation study
In this section, we analyze the effect of the different design choices of our method. We focus on the initial velocity
distributions, the score parameterization, and the translation-free velocity fields.

Initial-velocity distributions KLDM uses zero-initial velocities, which intuitively corresponds to considering the coordinates
f at time t = 0 as being at rest, allowing the noise to gradually propagate from the velocity to these variables. This also
allows us to use the simplified parameterization for the score formulated in Eq. (19) ablated above. In Fig. 1 (Left), we
compare the choice of using zero initial velocities against having a zero-mean Gaussian distribution with three different
variance values. We note there is a strong benefit in using zero initial velocities, potentially explained by the simplified
parameterization.

Velocity field The last design choice we consider is the enforcement of a velocity field with a zero-net translation. We
analyze the effect of these choices both for zero initial velocities and therefore simplified score parameterization, and in the
case of non-zero initial velocities and direct parameterization. We report results in Fig. 1 (Right). By removing the degree of
freedom of modeling overall translations of the system, we observe a gain, albeit marginal, in terms of validation set match
rate during training in all cases, in particular with non-zero initial velocities, as displayed in Fig. 4.
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Figure 4: Ablation of velocity fields with zero net translation for non-zero initial velocities. (Left) Initial velocities are
sampled from a N (0, 0.1 · I), i.e. σ2

v0
= 0.1. (Center) Initial velocities are sampled from a N (0, 0.5 · I), i.e. σ2

v0
= 0.5

(Right) Initial velocities are sampled from a N (0, 1 · I), i.e. σ2
v0

= 1.0. We report the mean and standard error from the
mean of the validation Match Rate over 6 seeds. We note that regarding the initial distribution variance, there is a benefit
given by enforcing a zero net translation velocity field.

Score parameterization We compare the simplified parameterization of the score formulated in Eq. (19) compared to the
direct parameterization of Eq. (18). We present in Fig. 1, the validation match-rate during training on the MP-20 dataset.
From Fig. 1 (Center), we note that the simplified parameterization leads to faster convergence and better performance. The
direct parameterization slowly makes the gap smaller if trained for long enough. We also compare fully trained models on
MP-20 and MPTS-52 in terms of MR and RMSE on the test set. We note in Table 3, that no matter the sampling scheme, the
simplified parameterization always outperforms the direct one, in addition to being much faster to converge.

Table 3: Impact of the score parameterization on the CSP task performance, on the realistic MP-20 and MPTS-52. The
simplified parameterization introduced in Eq. (19) improves significantly upon the direct parameterization from Eq. (18).

MP-20 MPTS-52
sampler MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓

DIRECT PARAMETERIZATION

EM 56.25 ±.4 0.1071 ±.001 11.55 ±.2 0.2535 ±.004

PC 63.29 ±.2 0.0591 ±.002 15.85 ±.2 0.1666 ±.004

SIMPLIFIED PARAMETERIZATION

EM 61.72 ±.2 0.0686 ±.001 17.71 ±.3 0.2023 ±.005

PC 65.37 ±.1 0.0455 ±.001 21.46 ±.2 0.1339 ±.002
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F. Additional CSP results
Previous work also evaluated their approach on the CARBON-24 (Pickard, 2020) dataset, which consists of carbon-only
materials with 6 to 24 atoms per unit cell. Since all structures are composed solely of carbon atoms, computing the MR@1
on the test set is inherently ill-defined—i.e. multiple distinct structures may satisfy a specific formula.

For completeness, we report results in Table 4, where KLDM performs comparably to existing methods on the @1 task
experiment, but outperforms them on @20. Similar to observations on the PEROV-5 dataset, we find that the PC sampler
does not improve sample quality over the standard EM sampler in this setting.

Table 4: Crystal Structure Prediction (CSP) task results on the CARBON-24 dataset. Baseline results are extracted from the
respective papers. @ indicates the number of samples considered to evaluate the metrics, e.g. @20 indicates the best of 20.
Error bars for @1 represent the standard deviation over the mean at sampling time across 20 different seeds. For this dataset,
the CSP@1 task is ill-defined due to its one-to-many nature, and we only report the obtained values for completeness.

CARBON-24
MODEL MR [%] ↑ RMSE ↓

METRICS @ 1

CDVAE 17.09 0.2969
DIFFCSP (PC) 17.54 0.2759
EQUICSP (PC) − −
FLOWMM 23.47 0.4122
KLDM-ε (EM) 18.04 ±.8 0.3188 ±.008

KLDM-ε (PC) 17.26 ±.7 0.2827 ±.006

KLDM-x0 (EM) 18.58 ±.9 0.3278 ±0.008

KLDM-x0 (PC) 17.69 ±.8 0.2915 ±.007

METRICS @ 20

CDVAE 88.37 0.2286
DIFFCSP (PC) 88.47 0.2192
FLOWMM 84.15 0.3301
KLDM-ε (EM) 90.19 0.2154
KLDM-ε (PC) 85.86 0.1988
KLDM-x0 (EM) 89.66 0.2198
KLDM-x0 (PC) 84.58 0.2011

G. Additional DNG results
In this section, we present additional results regarding the DNG task. These results were computed using the KLDM-ε model
trained on the non-standardized values of the lattice parameters and implemented using the ε-parameterization for their
score. We evaluate samples in terms of validity, coverage, and property statistics. A sample is deemed structurally valid
if all pairwise distances are above 0.5Å, while SMACT (Davies et al., 2019) is used to determine compositional validity,
by checking the overall charge neutrality. The coverage metrics are computed using fingerprints: CrystalNN structural
fingerprints (Zimmermann & Jain, 2020) and Magpie compositional fingerprints (Ward et al., 2016). COV-R (recall) and
COV-P (precision) are obtained by comparing the distances between generated and test fingerprints. Finally, the property
statistics are obtained by comparing distributions of properties, computed on the generated samples and test set respectively:
atomic densities dρ and number of unique elements delem.

We provide results in Table 5, where it can be observed that, unlike for the CSP task, the difference in performance between
the compared methods is less pronounced. Nevertheless, KLDM remains competitive with the other models.
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Table 5: Results for the De-novo Generation (DNG) task. Baseline results are extracted from the respective papers.

VALIDITY [%] ↑ COVERAGE [%] ↑ PROPERTY ↓
STRUC. COMP. COV-R COV-P dρ delem

PEROV-5

CDVAE 100.0 98.59 99.45 98.46 0.1258 0.0628
DIFFCSP 100.0 98.85 99.74 98.27 0.1110 0.0128
EQUICSP 100.0 98.60 99.60 98.76 0.1110 0.0503
KLDM-ε 99.97 98.83 99.60 98.61 0.2970 0.0478

CARBON-24

CDVAE 100.0 – 99.80 83.08 0.1407 –
DIFFCSP 100.0 – 99.90 97.27 0.0805 –
EQUICSP 100.0 – 99.75 97.12 0.0734 –
KLDM-ε 100.0 – 99.90 98.86 0.0658 –

MP-20

CDVAE 100.0 86.70 99.15 99.49 0.6875 1.432
DIFFCSP 100.0 83.25 99.71 99.76 0.3502 0.3398
EQUICSP 99.97 82.20 99.65 99.68 0.1300 0.3978
FLOWMM 96.85 83.19 99.49 99.58 0.2390 0.0830
KLDM-ε 99.88 84.86 98.94 99.50 0.4658 0.1280
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H. Algorithms
This section presents all the algorithms at the core of our method. We show how one can sample the noisy inputs and
the training targets in Algorithm 1, we then present the training loop used to train the parameters of the score network
sθ(ft,vt, lt,at) in Algorithm 2. We then focus on sampling, presenting both a sampling scheme that uses an exponential
integrator for simulating the reverse SDE of the dynamics of the velocities vt and fractional coordinates ft as proposed by
Zhu et al. (2024) while using a classic Euler–Maruyama step for lattice parameters lt and atom type at in Algorithm 3. In
algorithm Algorithm 4, instead, we present how we sample from our model using the predictor-corrector steps as proposed
in (Song et al., 2021).

Algorithm 1 training targets(f ,v, l,a, t): Routine for sampling ft,vt, lt,at from the transition kernels and the
corresponding target scores

Require: task (either CSP or DNG), timestep t, scheduler α(t) and σ(t) for l and a, scheduler αv(t) and σv(t) for v,
scheduler µrt(t,v0,vt) and σrt(t,v0,vt) for r. Initial sample x0 = (f0, l0,a0) and initial velocities v0. In our
experiments we considered v0 = 0 (i.e. initial velocities are 0).
## Sampling vt and ft

Sample ϵv ∼ Nv(0, I), ϵrt
∼ Nv(0, I) ▷ Nv is a normal distribution such that

∑
i vi = 0.

vt = αv(t)v0 + σv(t) · ϵv
if initial velocities are zero then

targetv = −vt/σ
2
v(t)

else
targetv = −ϵv/σv(t) ▷ See Eq. (26).

end if
rt = w(µrt

(t,v0,vt) + σrt
(t,v0,vt) · ϵrt

) ▷ w indicates the wrap function.
ft = w(f0 + rt)
ft = center(ft) ▷ center(·) keeps the center of gravity fixed.
targets = (1− exp(−t))/(1 + exp(−t)) · ∇r(v)Nw ▷ Equivalent computation of Eq. (26).
targetv = targetv + targets
## Sampling lt
Sample ϵl ∼ N (0, I)
lt = α(t)l0 + σ(t) · ϵl
targetl = ϵl
if task is DNG then

## Sampling at

Sample ϵa ∼ N (0, I)
at = α(t)a0 + σ(t) · ϵa
targeta = ϵa
return (vt,ft, lt,at), (targetv, targetl, targeta) ▷ Return both noisy samples and training targets.

else
return (vt,ft, lt), (targetv, targetl)

end if
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Algorithm 2 Training algorithm

Require: score network sθ(t,ft,vt, lt,at), fractional coordinates transition kernel pt|0(ft,vt|f0,v0), lattice parameters
transition kernel pt|0(lt|l0), empirical distribution q(x) = 1

N

∑N
i=1 δxi

and distribution over initial velocities p0(v). In
our experiments we considered p(v0) = δ(v0) (i.e. initial velocities are 0). Losses weights λv, λl, λa. We always used
λv = 1 and λl = 1. For DNG task we require also an atom type transition kernel pt|0(at|a0).
for training iterations do

x0 = {(f0, l0,a0)}Bi=1 ∼ q(x), t ∼ U(t),v0 ∼ p0(v) ▷ B indicates the batch size.
if task is DNG then

(vt,ft, lt,at), (targetv, targetl, targeta) = training targets(f ,v, l,a, t)
outv, outl, outa = sθ(t,ft,vt, lt,at) ▷ The network takes t,ft,vt, lt,at as input and output all the scores.
La = ∥outa − targeta∥22

else
(vt,ft, lt), (targetv, targetl) = training targets(f ,v, l,None, t)
outv, outl = sθ(t,ft,vt, lt,at)

end if
Ll = ∥outl − targetl∥22
outv = (1− exp(−t))/(1 + exp(−t)) · outv − vt/σ

2
vt

▷ Construct the score, see Eq. (19)
Lv = λ(t)∥outv − targetv∥22 ▷ λ(t) computed as Jiao et al. (2023)
if task is DNG then

Ltot = λvLv + λlLl + λaLa ▷ Depending on how we model the atom types, λa has different values
else

Ltot = λvLv + λlLl

end if
Compute gradients of Ltot with respect to θ and perform a gradient step.

end for
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Algorithm 3 Sampling algorithm

Require: trained score network sθ(t,ft,vt, lt,at), N discretization steps, dt = 1/N step-size, prior distributions over
velocities pT (v) = Nv(0, I), over fractional coordinates pT (f) = U(0,1), over lattice parameters pT (l) = N (0, I),
and over atom types pT (a) = N (0, I). We require also the knowledge of the forward drift f(t) and the diffusion
coefficient g(t) of the SDEs describing the evolution of l and a.
## Note: in the paper we use 0 as index for samples at t = 0. However, here it will be a slightly different notation.
Sample from the prior v0 ∼ Nv(0, I), f0 ∼ U(0,1), l0 ∼ N (0, I)
Set f0 = w(f0) ▷ w indicates the wrap function.
if task is DNG then

Sample a0 ∼ N (0, I)
end if
for n = 1, . . . , N do

if task is DNG then
out(n−1)

v , out(n−1)
l , out(n−1)

a = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
else

out(n−1)
v , out(n−1)

l = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
end if
## Update step for v and f
outv = (1− exp(−(1− (n− 1)dt)))/(1 + exp(−(1− (n− 1)dt))) · outv − vt/σ

2
vt

▷ Follow Eq. (19)
Sample ϵv ∼ Nv(0, I) ▷ Nv is a normal distribution such that

∑
i vi = 0.

vn = exp(dt)vn−1 + 2(exp(2dt)− 1)out(n−1)
v +

√
exp(2dt)− 1ϵv ▷ Update on v

fn = w(fn−1 − vndt) ▷ Update on f
## Update step for l
Sample ϵl ∼ N (0, I)

ln = ln−1 − (f(t)− g2(t)s(out(n−1)
l ))dt+

√
dtϵl ▷ EM step for l

if task is DNG then
## Update step for a
Sample ϵa ∼ N (0, I)

an = an−1 − (f(t)− g2(t)s(out(n−1)
a ))dt+

√
dtϵa ▷ EM step for a

end if
end for
if task is DNG then

return A crystalline material sample (fN , lN ,aN )
else

return A crystalline material sample (fN , lN )
end if
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Algorithm 4 Sampling with a single Predictor-Corrector step (PC) similar to Rozet & Louppe (2023, Algorithm 4)

Require: trained score network sθ(t,ft,vt, lt,at), N discretization steps, dt = 1/N step-size, prior distributions over
velocities pT (v) = Nv(0, I), over fractional coordinates pT (f) = U(0,1), over lattice parameters pT (l) = N (0, I),
and over atom types pT (a) = N (0, I). We require the scheduler αv(t) and σv(t) for v and also the knowledge of the
forward drift f(t) and the diffusion coefficient g(t) of the SDEs describing the evolution of l and a. We also require a
hyperparameter τ > 0.
## Note: in the paper we use 0 as index for samples at t = 0. However, here it will be a slightly different notation.
Sample from the prior v0 ∼ Nv(0, I), f0 ∼ U(0,1), l0 ∼ N (0, I) ▷ First steps are similar to Algorithm 3
Set f0 = w(f0) ▷ w indicates the wrap function.
if task is DNG then

Sample a0 ∼ N (0, I)
end if
for n = 1, . . . , N do

if task is DNG then
out(n−1)

v , out(n−1)
l , out(n−1)

a = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
else

out(n−1)
v , out(n−1)

l = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
end if
## Update step for v and f
## Prediction step on velocities v and coordinates f
Compute r = αv(n)/αv(n− 1)
Compute c = (rσv(n− 1)− σv(n))σv(n− 1)

vpred
n = rvn−1 + cout(n−1)

v

f pred
n = w(fn−1 + vpred

n−1dt)
## Correction step on velocities v and coordinates f
if task is DNG then

outv, outl, outa = sθ((1− n ∗ dt),f pred
n ,vpred

n , ln−1,an−1)
else

outv, outl = sθ((1− n ∗ dt),f pred
n ,vpred

n , ln−1,an−1)
end if
outv = (1− exp(−(1− n ∗ dt)))/(1 + exp(−(1− n ∗ dt))) · outv − vt/σ

2
vt

▷ Follow Eq. (19)
Compute δ = τ dim(outv)

∥outv∥2
2

Sample ϵv ∼ Nv(0, I) ▷ Nv is a normal distribution such that
∑

i vi = 0.
vn = vpred

n + δoutv +
√
2δϵv ▷ Update on v

fn = w(f pred
n − vndt) ▷ Update on f

## Update step for l
Sample ϵl ∼ N (0, I)
ln = ln−1 − (f(t)− g2(t)s(outl))dt+

√
dtϵl ▷ EM step for l

if task is DNG then
## Update step for a
Sample ϵa ∼ N (0, I)
an = an−1 − (f(t)− g2(t)s(outa))dt+

√
dtϵa ▷ EM step for a

end if
end for
if task is DNG then

return A crystalline material sample (fN , lN ,aN )
else

return A crystalline material sample (fN , lN )
end if
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I. Experimental details
I.1. Hardware

All experiments presented in this paper can be performed on a single GPU. We relied on a GPU cluster with a mix of RTX
3090 and RTX A5000, with 24GB of memory.

I.2. Architecture

As mentioned in Section 3.2, our score network is parameterized using an architecture whose backbone is similar to that
of previous work (Jiao et al., 2023, DIFFCSP) which enforces the periodic translation invariant by featurizing pairwise
fractional coordinate differences with periodic functions of different frequencies. There are two main differences compared
to the architecture of DIFFCSP: as we are coupling the fractional coordinates with an additional auxiliary variable that
represents the velocity, we need the network to also take this velocity variable vt as additional inputs. The network is then
outputting the score for all the diffusion processes involved in the model: the score related to the velocities, the one for the
lattice parameters, and the one for the atom types. The additional modification we do is to consider a two-layer network
instead of a single layer to predict the score related to the velocities. Regarding the network parameters, we considered 4
message-passing layers for PEROV-5, while we increased them to 6 for the remaining three datasets. In all the experiments,
we considered the hidden dimension to be 512, the time embedding to be a 256-dimensional vector and we used SiLU
activation with layer norm. While the presentation in the paper is done in terms of continuous time diffusion models, the
implementation is done in discrete time to guarantee an apples-to-apples comparison with baselines such as DIFFCSP and
EQUICSP.

DIFFCSP employs a graph-neural network as a score network that adapts EGNN from Satorras et al. (2021) to fractional
coordinates. In the following, we are going to present all the components that form this architecture.

Lattice parameters pre-processing We follow the same pre-processing steps for the lattice parameters (both lengths and
angles) used by Lin et al. (2024, EQUICSP). Lengths are usually defined from [0,+∞) while angles are defined in the (0, π)
interval. However. The diffusion process defined in Eq. (7) operates in the (−∞,+∞) domain, and therefore can result
in unreasonable lattice parameters. Therefore, we use a logarithmic transformation for the lengths, mapping them from
(0,+∞) to (−∞,+∞). For angles, we map them using the following operation tan(ϕ− π/2) from (0, π) to (−∞,+∞).

Components of EGNN Let consider ft,vt, lt,a being the input of our network. The input features are computed by

h
(0)
i = NN(fatom, fpos(t)),

where fatom, fpos are the atomic embedding and sinusoidal positional embedding and NN is an MLP.

Then the input features are processed by a series of s message-passing layers that compute

m
(s)
ij = φm(h

(s−1)
i ,h

(s−1)
j ,v, l,SinusoidalEmbedding(fj − fi))

m
(s)
i =

N∑

j=1

m
(s)
ij

h
(s)
i = h

(s−1)
i + φh(h

(s−1)
i ,m

(s)
i )

where m
(s)
ij and h

(s−1)
j represent the messages at layer s between nodes i and j. φm and φh are two MLPs. Compared to

the DIFFCSP implementation, we want to highlight that we are also passing the velocity v as input.

The SinusoidalEmbedding is a sinusoidal embedding layer defined as

SinusoidalEmbedding(x) := (sin(2πkx), cos(2πkx))Tk=0,...,nfreq
,

with being a nfreq being an hyper-parameter.
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After S steps of message passing, we compute all the different scores by doing the following:

s(i)v = φv(h
(S)
i )

sl = φl

(
1

N

N∑

i=1

h
(S)
i

)

s(i)a = φa(h
(S)
i )

where we want to stress that φv is a 2-layer neural network while φl and φa are single-layer MLPs.

For training, we used the same loss weights that were used by DIFFSCP. We consider λv = 1 and λl = 1 for the CSP
task. For the DNG task, instead, as we consider three different ways for modelling the discrete atom type features, we used
different weights depending on the modelling choice. If we use one-hot encoding for the atom types, we still rely on the
DIFFSCP weights given by λv = 1, λl = 1, and λa = 20. In the case of analog-bits, we used λa = 1, while when using
discrete diffusion for the atom types, we scale the losses using λa = 0.33. The scaling is needed to make the different loss
terms have similar magnitudes.

I.3. Parameters for the KLDM forward process

We kept the drift coefficient γ(t) constant at 1 in all the experiments presented in the paper following Zhu et al. (2024). In
their experiments, they also tuned the time horizon T of the process in Eq. (12) depending on the considered task. In our
experiments for material generation, we kept the time horizon constant at T = 2. In terms of the implementation, as we
implemented everything in discrete time, we discretize the time in the interval [0, 2) for the diffusion process. For lattice
parameters and atom types, we rely on the standard Euclidean diffusion model where the drift and diffusion coefficients are
defined by a linear schedule on the interval [0, 1). We trained all the networks using AdamW with the default PyTorch
parameters, without gradient clipping and by performing early stopping based on metrics computed on a subset of the
validation set: match-rate for the CSP task and valid structures for the DNG task.

Table 6: Dataset hyperparameters

INFO PEROV-5 CARBON-24 MP-20 MPTS-52

Max Atoms 5 24 20 52
Total Number of Samples 18928 10153 45231 40476
Batch Size 1024 256 256 256

I.4. Major difference between KLDM and competitors

In this section, we compare the key differences between our proposed KLDM and the baseline methods discussed in Section 5,
namely DIFFCSP, EQUICSP, and FLOWMM. Among these, we think that DIFFCSP is the closest to our approach. The main
differences are that we model fractional coordinates differently and we use a linear noise schedule, as opposed to their
cosine noise schedule. In addition to that, DIFFCSP employs a matrix representation for the lattice parameters, while we treat
them as a vector of six scalars.

EQUICSP builds upon DIFFCSP with two main modifications: it introduces additional losses to ensure the lattice permutation
invariance of the learned distributions, and it defines a different noising mechanism called Periodic CoM-free Noising
scheme. This scheme ensures that the sampled noise does not induce a translation of the center of mass of f0, thereby
preserving the periodic translation invariance in the target score. In contrast, we define the forward process on the coupling
given by fractional coordinates and associated velocity variables, and we do not account for lattice permutation invariance,
leaving that as a direction for future work.

FLOWMM generalizes Riemannian Flow matching for material generation, which, although closely related to diffusion, is
a different modeling approach. In addition to that, it considers an informed prior distribution over the lattice parameters,
and in the DNG task, it represents atom types using analog bits (Chen et al., 2023), in contrast to DIFFCSP and EQUICSP,
which use a one-hot encoding. We present results by considering the same informed prior and also by using three different
representations for the discrete atom type features. Additionally, for DNG, FLOWMM provides extra inputs to the score
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network that neither KLDM nor the other baselines use. The additional input represents the cosine of the angles between the
Cartesian edges between atoms and three lattice vectors

30


