Under review as a conference paper at ICLR 2025

RL2GRID: BENCHMARKING REINFORCEMENT LEARN-
ING IN POWER GRID OPERATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has the potential to transform power grid operations
by providing adaptive, scalable controllers essential for decarbonization and grid re-
silience. However, despite their promise, today’s RL methods struggle to deal with
complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical
constraints, hindering their application in power grids and other real-world settings.
In this work, we present RL2Grid, a benchmark representing realistic power grid
operations that aims to foster the maturity of RL methods. This work builds upon
Grid20p, a power grid simulation framework developed by RTE France, to provide
standardized tasks, state and action spaces, and rewards within a common inter-
face, and thereby provide a common basis for monitoring and promoting progress.
We evaluate and compare widely adopted RL algorithms across the increasingly
complex grid settings represented within RL2Grid, establishing reference perfor-
mance metrics and offering insights into the effectiveness of different approaches
(including pure RL approaches and hybrid approaches incorporating heuristics).
Our findings indicate that power grids present substantial challenges for modern
RL, underscoring the need for novel methods capable of dealing with complex
real-world physical systems.

1 INTRODUCTION

Power grids play a key role in efforts to combat climate change, necessitating a rapid transition to
low-carbon energy and improved robustness against climate-induced extremes. This requires power
grids to operate under increasing speed, scale, and uncertainty, due in large part to evolving supply and
demand profiles resulting from the integration of variable renewable energy sources and distributed
devices (Li et al., 2023b). This integration creates significant challenges for human operators of
power grids (Marot et al., 2022b), further exacerbated by the limitations of traditional power system
solvers in addressing realistic systems (Chauhan et al.| [2023). Deep reinforcement learning (RL)
offers a promising approach to reshaping power grid operations, having demonstrated impressive
performance in simulated environments such as Atari and Starcraft (Mnih et al.l 2013} |Papoudakis
et al.| 2021)). However, there remain many open challenges that impede the practical application of
RL in real-world environments—such as dealing with complex dynamics and aleatoric uncertainty,
learning long-horizon goals, and satisfying hard physical constraints. We argue that power grids
encompass many of these challenges, which are also open research questions in RL. For these reasons,
investigating realistic power grid tasks from an RL perspective could yield substantial benefits for
both society and the RL research community. However, progress in relevant RL methodologies is
hindered by a lack of standardized benchmarks that can help promote and monitor progress, identify
bottlenecks, and develop insights to address real-world challenges.

To address this gap, we present RL2Grid, an RL benchmark representing realistic power grid
operations. RL2Grid captures a diverse, standardized set of increasingly complex power grid tasks
that entail dealing with the combinatorially large number of possible actions available in typical
grid operations. These tasks are presented within a standard Gymnasium-based interface, alongside
common rewards, state spaces, and action spaces, in order to provide a common basis for comparison.
To ensure the realism of the tasks represented, we build this benchmark upon Grid20p (Donnot}
2020), a well-regarded simulation framework for sequential decision-making in realistic power grids.
We additionally provide a comprehensive empirical comparison of widely adopted RL algorithms
on the tasks captured within RL2Grid. In particular, we evaluate several model-free RL algorithms,
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Figure 1: Top: Example of a discrete topological action to address an overloaded line. Bottom:
Example of a continuous re-dispatching action to address an overloaded line.

as they are frequently used in the literature either as baselines or building blocks for more complex
approaches. RL2Grid extends the well-known CleanRL codebase (Huang et al., [2022)) to include
flexible configurations for algorithm implementation details. Additionally, we integrate a heuristic
module facilitating the seamless incorporation of basic grid operations (e.g., line reconnection and idle
actions) into the training loop of existing algorithms, which we confirm yields a drastic improvement
in performance and sample efficiency across all RL algorithms.

Through RL2Grid, we aim to provide a launching point to foster the maturity of RL methods within
real-world environments such as power grids, notably by providing realistic tasks that encompass
important open questions, and by providing a standardized basis for comparative evaluation and
analysis of paths forward. We further assess the effectiveness of popular learning approaches on the
RL2Grid tasks. Finally, we discuss important open problems in power grids and their relationship to
open problems in RL, as well as highlighting directions for further improving the realism of the power
grid simulators, which is a necessary next step to enable last-mile development and deployment of
the more general methodological advances we hope RL2Grid will promote.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING FORMALIZATION

We consider power grid problems that can be defined as a Markov decision process (MDP), modeled
as a tuple (S, A,P,p,R,~); S and A are the finite sets of states and actions, respectively, P :
S x Ax S — [0,1] is the state transition probability distribution, p : & — [0, 1] is the initial
uniform state distribution, R : S X A — R is a reward function, and v € [0, 1) is the discount factor.
In policy optimization algorithms, agents learn a parameterized stochastic policy 7 : S x A — [0, 1],
modeling the probability of taking an action a; € A in a state s, € S at a certain step . We can also
design value-based algorithms by defining state and action value functions V, and @), which model
the expected discounted return when starting from a state s (and action a for @),;) and following the
policy 7 thereafter as:

o0 o0
Vi(s) =Eq Z’YtR(Shat”SO = 8] , Qr(s,a) =E, lZVtR(Sta a)|so = s,a0 = a|.
t=0 t=0

Given the current state and action, we can also measure how much better or worse the agent performs
compared to its expected performance using the advantage function A (s,a) = Q(s,a) — Vz(s).
In these contexts, agents typically use a greedy policy over the action value or the advantage function
(i.e., they take the action corresponding to argmax over the values). The goal is to find a policy that
maximizes the expected discounted return.

2.2  SETTING: TOPOLOGY OPTIMIZATION AND RE-DISPATCH

RL2Grid considers the general setting of operating a power grid via topology optimization, as well
as re-dispatch and curtailment actions, in order to keep the grid operational over a long horizon. To
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clarify the setting our benchmark addresses, Figure [I]illustrates a simplified power grid scenario.
This grid consists of four substations interconnected by transmission lines (edges), with two power
generators and two loads connected to buses within each substation. Generators produce power to
meet the demands (loads); the power flows through transmission lines, which also leads to power
losses due to resistive heat on the lines; and substations (which may contain multiple buses) can act
as “switches” to direct power flows to an extent. All of these electrical components have physical
limitations; for instance, generators have ramping limits that prevent arbitrary instantaneous changes
in power output, and transmission lines have maximum carrying capacities, with prolonged overloads
potentially causing permanent damage and disconnections. RL has the potential to address such
disruptions in real time, for instance by considering the two following categories of actions:

* Topology optimization (Figure [I] top) involves identifying substations where a bus-split
action—the type of topological action we consider—can mitigate the overload by adjusting
the grid topology (i.e., how elements are currently interconnected in the grid). This ap-
proach is cost-effective for grid operators as it typically involves simple switch activation
However, determining the “optimal” topology from the combinatorial number of possible
configurations is typically infeasible using existing optimization-based solvers.

* Re-dispatch or curtailment (Figure [T| bottom) deals with adjusting the power flow by re-
dispatching or curtailing the power output of fossil and renewable power generators (respec-
tively). However, this method is often economically demanding as it disrupts the normal
operations of third parties controlling the generators and can lead to additional power costs.

2.3 GRID20P

Grid20Op is an open-source simulator designed by RTE France (France’s transmission system opera-
tor) to model sequential decision-making on a power grid (Donnot, |2020). It allows for the testing
of various control algorithms, including RL policies, in relatively realistic scenarios. In particular,
Grid20p models important complexities in the power grid, including realistic non-linear dynamics,
uncertainty deriving from time-varying renewable energy sources, and the massive amount (combina-
torially large number) of grid configurations and actions that exist even in moderately-sized grids.
It then presents various scenarios that simulate typical grid operations, requiring that grids are kept
operational for long horizons in a way that is robust to contingency events (i.e., unexpected failures),
as well as adhering to physical and operational constraints. Contingencies include transmission
line disconnects, deterministic maintenance, and stochastic (“adversarial”’) events such as overloads
(potentially caused by extreme weather conditions). With respect to operational constraints, Grid20Op
imposes operational constraints such as: (i) cooldown periods to prevent immediate reconnection of
disconnected lines, and limits on the frequency of actions on the same line to avoid asset degradation;
(i) limited thermal capacity of transmission lines; (iii) ramp rates on generators that restrict how
much power generation can change between time periods; and (iv) adherence to AC power flow
constraints. Moreover, using external packages like chronix2grid (Marot et al.,2020a), Grid20p’s
scenarios include time series data that model load demands and generator outputs necessary to satisfy
cumulative demand under ideal conditions without line capacity limits.

To date, Grid2Op has been primarily used as the computation engine for the “Learning to Run a
Power Network™ (L2RPN) competitions (Marot et al., 2020bj 2021}; [2022a)). While a number of
RL-based methods have been proposed over the years for L2ZRPN, they fail to provide a common
ground to foster advancements in RL methodologies. For example, each method employs different
grid features as input for the agent and different action spaces of (very) limited size, often without
providing sufficient evidence on how and why these action spaces were considered. For these reasons,
to date, there is no standardized solution that allows RL researchers to easily get started in this field
and compare over an established benchmark. To address this gap, our work builds on Grid2O0p
to provide a benchmark with standardized tasks, state and action spaces, and rewards, as well as
comprehensive evaluation of strong baseline methods; these are critical to provide a common basis
for assessing advances in RL methods (Papoudakis et al.|[2021)) as well as to improve accessibility to
RL practitioners who may have limited prior knowledge of power systems. (See also Appendix [A] for
further discussion on the relationship between L2RPN and our RL2Grid benchmark.)

IThere is some uncertainty (and debate) regarding how frequently each component can be switched safely in
practice, without degrading the underlying equipment.
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Table 1: List of base environments currently supported by RL2Grid. For more details, see the original
Grid20p documentation (Donnot, [2020)).

ID Maintenance Opponent Battery # Subs. # Lines # Gens. # Loads
bus14 v X X 14 20 6 11
bus36-M v X X 36 59 22 37
bus36-MO-v0 v v X 36 59 22 37
bus36-MO-v1 v v X 36 59 22 37
bus118-M v X X 118 186 62 99
bus118-MOB-v0 v v v 118 186 62 91
bus118-MOB-v1 v v v 118 186 62 99

3 RL2GRID BENCHMARK

In this section, we present RL2Grid, a benchmark for RL in power grid operations. We discuss the
main features of the power grid environments presented as part of RL2Grid (which we wrap within a
standardized Gymnasium interface), as well as our approach to standardizing the action and state
spaces and the reward function for these environments in order to create a standardized set of tasks.
We further discuss the set of widely-adopted RL algorithms that we assess as baselines on these tasks,
as well as presenting a heuristic module that enables basic grid operations to be incorporated within
the training loop of existing RL algorithms.

3.1 RL2GRID TASKS

The tasks presented within RL2Grid are designed on top of 7 main “base environments” from
Grid20p. Each of these “base environments” has a double bus system, meaning that every
electrical component (i.e., generator and load) has two possible connections within a substa-
tion. Table E] summarizes the base environments, including their features and the number
of electric components. These environments include various types of contingencies such as
(i) Maintenance (M): Scheduled events that the agent is
aware of (included in the state). During maintenance, a
line is disconnected for a specified period and cannot be
reconnected until maintenance is complete. (ii) Opponent
(O): Unforeseen events (e.g., weather conditions) that cause
a random line to disconnect (Omnes et al.| 2021). The agent
does not know about these events in advance and must react
in real-time, using topological or re-dispatching/curtailment
actions. Once a line is disconnected, it enters a “cooldown”
state, during which it cannot be reconnected for several steps.
Environments may also include storage units (batteries (B)) ~ Figure 2: IEEE 14-bus sample grid.
that can act as both generators and loads. Batteries can store

a given amount of energy, which can be discharged as needed.

Action spaces. For each base environment, we consider two types of tasks based on their action
spaces, resulting in a total of 39 tasks.

(1) Topology (T): Agents can take discrete actions related to topological changes. These include
disconnecting or reconnecting a line, or changing the bus to which an electrical component (load,
generator, battery, or transmission line) is connected in a substation. These actions are virtually free
since they only involve remotely activating a switch. However, they represent a significant challenge
for grid operations, as the number of discrete actions scales exponentially with the number of elements
connected to the substation. Human operators currently modify the grid topology manually based on
historical behaviors; there is no tractable approach to obtain optimal topology optimization solutions
(at scale) as of yet. As analyzed by (Chauhan et al.,|2023)), the number of topological re-configurations
N for a double bus substation comprising of Ny lines, N, generators, N; loads, is:

N = 2Nlincs+Ng+N171 _ 2N9+NL _1.
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For instance, substation #5 of the busi/4 grid (Figure @) has 2 generators, 1 load, and 4 lines (7
elements), resulting in 55 possible actions. In more complex tasks like bus36 and busli 18, a single
substation can have over 65,000 possible topologies.

Given the large discrete action space, we create different versions of the topology environments
(“difficulty levels”), in which different numbers of topology actions are available to the agentE] We
selected the action spaces for these difficulty levels through extensive simulations (48 hours on the
computer cluster detailed in Section[d)) in which we ranked the full set of discrete actions based on
their survival rate for the grid. The survival rate represents how long the grid operates in normal
conditions over an episode—the normalized number of steps for which an action does not cause a
grid collapse (i.e., because the total demand is not satisfied or parts of the grid become disconnected).
Specifically, we uniformly sampled actions from the topological space, and counted the number of
times these actions did not cause a grid collapse over the simulation. After ranking the actions by
survival rate, we take the first Nyions from the ordered action space, where N,.ons differs at each
difficulty level. Each increasing level of difficulty thus features a higher-dimensional discrete action
space. Appendix [C]summarizes the difficulty levels with the corresponding total number of actions.
Considering these levels, RL2Grid has a total of 32 topology-based environments. To motivate our
action ranking method, we also visually analyze the resultant action spaces in Appendix

(i1) Redispatching and curtailment (R): Agents can take continuous actions related to costly dispatch-
ing changes. Costs arise from altering the planned generation schedule of power plants, increased
fuel costs, and financial compensation for renewable energy producers, to name a few examples.
Redispatching actions apply to fossil fuel-based generators, while curtailment actions apply to renew-
able energy-based generators. Batteries, if present, are also considered generators and add continuous
actions for charging/discharging operations. This action space is relatively tractable for RL algorithms
since it involves one continuous action per generator (i.e., N = N,). Thus, we present a total of
7 continuous action-based training environments (one per base environment, in which all possible
redispatching and curtailment actions are available to the agent).

State space. Agents have access to the state of the power grid at each time step. The state includes
common grid features such as production at each generator, load demands, status, capacity, and
cooldown of transmission lines, as well as the current step. Additional features are provided based on
the environment’s characteristics (e.g., maintenance, opponent events, batteries) and the action space.
For example, in the topological case, the state includes the topological vector, the connection status
of lines, overflow status, and substation cooldowns. In the continuous case, the state includes target
and actual dispatches, curtailment, and generator ramping limits. An exhaustive list and description
of the features that comprise the state is discussed in Appendix [D}

Reward. The reward function is designed to encourage the agent to keep the grid operational for as
long as possible while minimizing: (i) the capacity of the transmission lines (i.e., how much they
are used), (ii) changes to the topology (only for the topology action space); (iii) costs related to
re-dispatching operations. Appendix [C.2]provides an exhaustive description of this reward function.

3.2 RL2GRID BASELINES

We assess the performance of a number of RL methods on the above tasks. In particular, we select a
set of methods that are commonly used in the RL literature and serve as building blocks for more
complex algorithms. These methods are discussed in more further depth in Appendix

DQN (Mnih et al., [2013) approximates the @-function, using an e-greedy policy at training time.
Due to its value-based nature, a DQN agent can only consider discrete (topological) actions.

PPO (Schulman et al.| 2017) directly approximates a policy by learning its parameters using a
computationally tractable clipped objective. By learning different probability distributions, a PPO
agent can deal with continuous (re-dispatching) and discrete (topological) actions.

SAC (Haarnoja et al.,|2018)) uses different networks to learn a policy and two value functions that
mitigate positive bias in value estimates. An SAC agent can deal with the same action types as PPO.

2We did not consider splitting the environment into difficulty levels for expensive re-dispatching actions, due
to the limited size of this continuous action space.
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Figure 3: Recovery-based heuristic method designed for RL2Grid. When a line surpasses the capacity
threshold, the RL agent picks actions to address the risky situations. In the other case, the heuristic
computes the recovery actions to revert the current grid configuration to its original one. We operate
on a maximum of one substation per each step, which resembles realistic grid operations.

TD3 (Fujimoto et al.| 2018)) is similar to SAC, but uses multiple networks to learn a deterministic
policy and can only deal with continuous actions.

3.3 HEURISTIC-GUIDED RL

Given the complexity of the topological actions, we introduce two baseline heuristics to assist RL
agents’ operations. These heuristic-guided approaches have been employed in various forms in
previous work (Donnot, 2020; Marot et al., [2020b), but there is no widely adopted solution that:
(i) can be easily used by RL practitioners, and (ii) has been benchmarked across different tasks to
establish a standard for comparison and evaluation.

We refer to the first heuristic as “idle,” as it does not perform any operation on the grid when
line capacities are below the safety threshold of 95%. The second heuristic is a “recovery policy,
(Figure[G.J3) as it restores the grid’s original topology or performs idle actions when line capacities are
below the safety threshold of 95%. In more detail, when line capacities exceed the safety threshold,
the RL agent selects and executes an action based on the current state to bring the grid back to normal
operation. When the grid operates normally (i.e., all line flows are under the safety threshold), the
recovery policy takes over. If the grid is in its original topology, the heuristic performs an idle action
to proceed with the simulation without changes. Otherwise, the heuristic calculates the actions needed
to revert each substation to its original configuration. Considering realistic operational limits (i.e.,
change at most one substation per step), the heuristic first recovers the substation that is most different
from its original configuration.

s

Importantly, the recovery actions do not disrupt RL agent training; instead, they emulate typical
human operator behavior. Under normal conditions, system operators prefer to maintain the starting
topology. Therefore, it is challenging for an RL agent to learn to restore the original topology in
high-dimensional action spaces. For this reason, we anticipate that RL baselines augmented with the
recovery policy will drastically improve performance and sample efficiency.

4 EXPERIMENTS

This section presents a comprehensive evaluation of the performance of DQN, PPO, SAC, and TD3
in 18 representative environments of our benchmark. In particular, we tested DQN, PPO, and SAC
on the discrete topological action space for the busi4, bus36-MO-v0, busl18-M, busl18-MOB-v0
over all levels of difficulty (i.e., with increasingly bigger action spaces). Moreover, we tested PPO,
SAC, and TD3 in the continuous re-dispatching action space of these environments.

Our experiments address the following key questions: (i) Can common model-free RL methods deal
with high-dimensional power network operations? (ii) What is the impact of integrating existing
task-level knowledge as an heuristic-guided policy within these real-world tasks?

Implementation Details. Data collection is performed on Xeon E5-2650 CPU nodes with 64GB
of RAM, using CleanRL-based implementations for the baselines (Huang et al.| 2022). Complete
hyperparameters are in Appendix [F| Due to the considerable number of algorithms and environments
considered, we report the average return smoothed over the last 500 episodes of 5 runs per method.
Shaded regions represent the standard error. Additionally, we set a strict time limit on the nodes
used for data collection, set to 36 hours. As such, different algorithms have different computational
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Table 2: Average survival rate of the grid obtained by baseline RL algorithms (Std.) and their heuristic
versions (H.(N) for the idle heuristic, H.(R) for the heuristic that restores the grid to its original
topology) in representative environments (difficulty 0) with topological actions for DQN, PPO, SAC.

DQN PPO SAC
Env. Diff. St«d. H(N) H(R) Std. H(N) H(R) Std. H.N) H.R)
bus14 0 0.07 039 045 046 095 094 0.04 0.19 0.15
bus36-MO-v0 0 0.09 0.14 0.19 0.12 0.17 029 0.08 0.10 0.13
bus118-M 0 0.06 0.17 0.18 007 0.13 0.18 0.15 0.18 0.19

bus118-MOB-v0 0 0.08 0.19 0.27 0.10 0.18 028 0.07 0.15 0.19

Table 3: Average survival rate of the grid obtained by baseline RL algorithms in representative
environments with continuous re-dispatching actions (Cont.) for PPO, SAC, TD3.

PPO SAC TD3

Env. Diff. Cont. Cont. Cont.
bus14 0 0.17 0.001 0.06
bus36-MO-v0 0 0.08 0.02 0.01
bus118-M 0 0.18 0.003 0.01

bus118-MOB-v0 0 025 0.08 0.07

requirements, and some of the baselines run for more time steps than others. For example, the
heuristic-guided methods are much more computationally demanding than the baselines given that
they often have to check and compute the reverting actions for the power network, and thus run for
considerably fewer steps than the baselinesE] Given the computational resources used, Appendix
addresses the associated environmental impact and our efforts to offset estimated CO2 emissions.

5 RESULTS

Table 2 shows the preliminary results of our evaluation for topological action spaces. We indicate
with Std. the original model-free baseline, and with H. the baseline augmented with the heuristics
described in Section [3.3] For these topological cases, we report the results for the first level of
difficulty (i.e., considering 50 discrete actions), and refer readers to the Appendix for the complete
results and training curves. Table 3 shows the results for the re-dispatching action spaces

Overall, we notice that all model-free algorithms struggle to deal with the complexities of power
network operations described in Section 2] Considering the lower number of training steps, we also
notice that the heuristic-guided versions of the baselines typically achieve higher performance, despite
being not nearly sufficient to operate the grid for long periods of time. These results further motivate
the need for further advancements in RL algorithms that can contend with the complex dynamics and
aleatoric uncertainty, long-horizon goals, and hard physical constraints represented within these tasks.
By providing a common ground to the community, we hope to foster further research on these fronts.

6 RELATED WORK

There have been several attempts to develop benchmarks for sequential decision-making in power
system operations, but they often focus on smaller-scale problems and/or simplified setups (Chen
et al.| [2022)). Examples include python-microgrid for simulating microgrids (Henri et al.| [2020)),
CityLearn for demand response and urban energy management (Vazquez-Canteli et al., [2020), and
gym-ANM for active network management in small electricity distribution networks (Henry & Ernst,
2021). RL environments and algorithms for electric vehicle (EV) charging and electricity markets

3We refer to the appendices for exhaustive details about the training runs.
“We recall the continuous action space only has one level of difficulty since it only considers one action for
each generator.
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have also been introduced (Zhang et al.l 2020). Recently, SustainGym spanned diverse tasks ranging
from EV charging to carbon-aware data center job scheduling (Yeh et al., 2023). The ARPA-E GO
Competition provides a realistic, large-scale benchmark for power grid operations (ARPA-E} 2023),
but is more-so geared towards offline optimization approaches than online sequential decision-making.
On the methodological side, recent contributions in the field include works on cascading failure
mitigation, demand response optimization, and real-time grid control using RL (Matavalam et al.,
2022} Lehna et al., 2023} van der Sar et al.||2024). Nonetheless, these works are more geared towards
methodological advancements rather than proposing a benchmark. For this reason, we refer the reader
to recent reviews for details on RL applications in power grid operations (Li et al., 2023bza)).

7 TACKLING THE CHALLENGES OF POWER GRIDS WITH RL

Applying RL in power grids presents numerous open problems, each offering significant opportunities
for advancing both grid operations and RL methodologies (Marot et al., |2022b)). While we address a
subset of these challenges via our benchmark, there remains ample room for future work.

7.1 RL METHODOLOGIES OF IMPORTANCE FOR POWER GRIDS

Different RL techniques have the potential to be beneficial in addressing open problems in power
grids. However, there are also potential risks — e.g., with respect to safety, reliability, and robustness —
that are important to address. In the following, we summarize interesting avenues for future research
to both realize the potential of RL in power grid operations and mitigate its risks.

Safe RL. Safety is paramount in power grid operations. Safe RL methods aim to ensure that learning
and control policies adhere to strict safety constraints, preventing actions that could lead to blackouts
or equipment damage (Donnot, 2020). Ensuring safety while optimizing performance is a critical area
of research (Garcia & Fernandez, |2015)). In particular, incorporating Constrained Markov Decision
Process (C-MDP) representations, which explicitly handle constraints, can be particularly beneficial
for ensuring that solutions adhere to physical and operational limits (Liu et al.|[2021).

Human-in-the-loop. Effective grid management often requires human expertise and intervention.
Incorporating human supervision, interaction, and feedback into RL systems allows for a synergistic
approach where human operators and Al systems work together to optimize grid operations (Marot
et al.| 2022b). This collaboration can enhance decision-making and build trust in Al-driven solutions.

Hierarchical control and multi-agent learning. Power grids operate across multiple hierarchical
levels, from individual substations to entire regions. Effective coordination within and across these
levels is crucial for maintaining efficient and reliable grid operations. Hierarchical RL methods can be
developed to manage these multi-level control tasks, in a way that addresses the scale and complexity
inherent in grid operations (Pateria et al.| |2021)). Another promising direction is the use of multi-agent
representations. Given the vast and distributed nature of power grids, scalability can be enhanced by
dividing the grid into distinct areas or agents, each responsible for its own operations. Multi-agent
RL (MARL) frameworks can enable these agents to learn and coordinate actions (Papoudakis et al.|
2021)), to improve overall grid performance while managing local contingencies more effectively.

Robust RL. The integration of renewable energy sources introduces significant variability and
uncertainty into power grids, leading to non-stationary environments. RL algorithms need to adapt to
these evolving dynamics to ensure stable and efficient grid operations despite fluctuating supply and
demand profiles. Handling non-stationarity is thus a critical research direction (Moos et al., [2022).

Model-based RL. Model-based RL methods leverage models of the grid dynamics to improve
learning efficiency and policy performance. These methods can provide more accurate predictions
and better generalize across different scenarios, leading to faster and more robust solutions (Luo et al.
2022). Additionally, the AlphaZero algorithm, which combines tree search with deep learning, has
shown remarkable success in games like chess and Go and could offer new strategies for handling
complex, sequential decision-making tasks with high-dimensional spaces (Liu et al.| 2023).

Better representations. Improving model representations for RL in power grids can also lead to more
efficient learning and better policy performance. Leveraging Graph Neural Networks (GNNs) offers
a potential avenue for advancement. Power grids can be naturally represented as graphs, with nodes
representing buses and edges representing transmission lines. GNNs can effectively model these
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structures, capturing the spatial and topological dependencies inherent in power grids. Integrating
GNNs with RL algorithms can enhance the representation and learning of grid dynamics.

Non-RL approaches. While RL holds great promise, it is also essential to consider non-RL ap-
proaches such as optimization solvers, which are relevant particularly for problems with well-defined
optimization objectives and constraints. In addition, exploring hybrid methods that combine RL with
traditional optimization techniques can yield powerful tools for complex grid management tasks.

7.2 IMPROVING REALISM OF POWER GRID ENVIRONMENTS

While RL2Grid aims to promote initial advancements in RL methodologies of relevance to power
grids, it is important to acknowledge that this is only a first step. Notably, building on these
advancements to develop “last-mile” deployed solutions will require further improvements in the
realism of power grid environments. We highlight several important directions in this regard.

Scalability. Realistic power systems akin to those managed by operators like RTE France, National
Grid ESO, and 50Hertz may capture hundreds to thousands of buses. To ensure that RL solutions are
applicable to real-world scenarios, improving the size and scale of grid environments is essential.

Real data. Grid2Op (and thus, RL2Grid) relies on realistic but synthetic data, which already provide
significant challenges for RL. After scaling up RL to deal with the challenges provided by RL2Grid,
future environments should address current privacy issues and publicly release real grid data to design
to bridge the gap with real power grid operations.

N-1 security. In real operations, grid operators must ensure the system can withstand failure of any
single component. Rather than modeling failures via random opponents, environments should handle
this exhaustively and/or through adversarial agents tailored specifically to the method being tested.

Topology vs re-dispatch. Different grid operators handle the relationship between re-dispatch
and topology optimization differently. Future benchmarks should reflect this heterogeneity in how
different power grids are managed. Moreover, Grid2Op’s current approach of disconnecting lines
after unaddressed overloads does not fully capture real-world practices, where operators attempt to
prevent overheating at all costs. Incorporating more realistic consequences for unaddressed overloads,
such as system costs, can improve the fidelity of benchmarks. Additionally, grid operators cannot
switch every element to every busbar, and there are limits on the number of connected components
per substation. Reflecting these constraints can lead to more practical and applicable RL solutions.
Storage assets also play an increasingly important role in grid operations. Future benchmarks should
accurately model storage and clarify the extent of control grid operators have over these assets.

Phase-shift transformers. Phase-shift transformers, currently modeled as integer variables in the
action space, should be represented more accurately to reflect their operational impact. Maintenance
activities also vary significantly, with Type A involving physical presence at the site and Type B
allowing remote interventions. Differentiating these types of maintenance activities in benchmarks
can provide a more accurate representation of real-world constraints.

8 CONCLUSIONS

Power grids are essential in combating climate change, requiring a transition to low-carbon energy and
enhanced resilience against climate-induced extremes. The integration of variable renewable energy
sources introduces complexities and uncertainties in grid operations, posing significant challenges for
human operators and traditional power system solvers. Our work aims to foster progress towards
these challenges by introducing RL2Grid, a benchmark designed to bridge the gap between current
grid management practices and methodological research in RL. RL2Grid provides a standardized
interface for power grid environments, featuring common rewards, state spaces, and action spaces
across a pre-designed set of diverse and complex grid tasks in order to provide a common ground for
monitoring and promoting progress. We perform a comprehensive evaluation of the performance of
DQN, PPO, SAC, and TD3 on RL2Grid tasks, including versions augmented with domain-informed
heuristics aimed at improving performance and sample efficiency, and find that there is still significant
room for improvement in the performance of these methods. By offering a standardized platform
for RL research in the context of power grids, RL2Grid aims to accelerate algorithmic innovation
towards improving power grid operations amidst the evolving challenges posed by climate change.
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A  RELATIONSHIP OF RL2GRID TO L2RPN TASKS AND SOLUTIONS

In this section, we clarify the relationship of the tasks presented within RL2Grid, as well as the
baseline methods evaluated, to the tasks and solutions presented within the Learning to Run a Power
Network (L2RPN) competition series.

Tasks. RL2Grid employs all the main Grid20p “base environments” (which are likewise employed
in L2RPN). However, the solutions developed for L2ZRPN relied on different customized components.
Every competition relied on different time series, making effective comparisons far from trivial. For
these reasons, on top of the standardization proposed in our work, we have made some underlying
changes to the base environments to better reflect the current and future challenges of RL research.
Examples include (i) episodes with longer horizons (i.e., an RL2Grid episode models a month of grid
operations, ~8000 steps, compared to weekly episodes of most prior work); (ii) making the tasks as
uniform as possible (i.e., by integrating curtailment operations in all Grid2Op tasks); (iii) enabling
simulation steps inside the Gymnasium interface (a feature added in our code revision, which is
not currently available in Grid2Op). These decisions were driven by our goal of ensuring that our
benchmark is accessible, standardized, and provides a clear starting point for researchers who may
not be familiar with the nuances of these competitions and power grids.

Baselines. Due to the different choices of input features and action spaces considered by different
methods submitted to the L2RPN challenges, it was not possible to directly benchmark these
specific methods on the RL2Grid tasks. However, the baselines chosen are representative of the
methods submitted to past LZRPN competitions, in addition to representing commonly-used methods
within the RL community as a whole. In particular, within the L2RPN submissions, a common
approach was to incorporate heuristics. These heuristics varied significantly between methods and
pushed us to design one that mimicked human operations in real grid operations. We developed
this heuristic in collaboration with power system operators who have contributed to our work,
incorporating fundamental insights from previous solutions while keeping the focus on standardization
and benchmarking.

B RL BASELINES

In this section, we briefly introduce the baseline RL algorithms employed in our evaluation, referring
to the original papers for exhaustive details about these methods (Mnih et al.,|2013};|Schulman et al.,
2017; Haarnoja et al., |2018}; |Fujimoto et al., 2018).

DQN (Mnih et al., 2013). A DQN agent uses a neural network to approximate the action value
function () by taking as input the state of the environment and outputting ()-values for every possible
action. During training, the agent uses an e-greedy policy to select random actions or follow the
greedy policy on these ()-values, according to a linearly decaying probability €. The @ network is
thus updated to minimize the difference between predicted (-values and a target derived from actual
rewards and future (Q-values. To deal with overestimation, we use Double-DQN (van Hasselt et al.|
2016) and decouple action selection from action evaluation using a target () network. Due to its
value-based nature, a DQN agent can only consider discrete (topological) actions.

PPO (Schulman et al., 2017). A PPO agent uses its neural network to directly approximate a policy.
The agent learns the policy parameters by simplifying the TRPO (Schulman et al.| |2015)) algorithm,
using a computationally tractable clipped objective. This clipping mechanism prevents large changes
to the policy that could destabilize the training. At a high level, such a surrogate objective balances
policy improvement and limits the divergence between policy updates. To drive the policy training,
PPO also learns an advantage function to determine how much better (or worse) taking an action is
compared to the expected value. By employing different probability distributions as a policy, a PPO
agent can deal with both continuous (re-dispatching) and discrete (topological) actions.

SAC (Haarnoja et al|2018). Similarly to PPO, a SAC agent learns different networks to maintain
a policy and two value functions that mitigate positive bias in value estimates. Overall, the agent
maximizes both the expected return and the entropy of the policy. The entropy term encourages ex-
ploration by promoting stochastic policies, which helps prevent premature convergence to suboptimal
policies. In terms of actions, the SAC agent can deal with the same action types as PPO.
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TD3 (Fujimoto et al.l 2018). A TD3 agent learns multiple networks similarly to SAC. However,
unlike the stochastic policies learned by PPO and SAC, TD3 learns a deterministic policy and can
only deal with continuous actions. To encourage exploration, the agent does not maximize the entropy
of the policy but adds noise to the output of the policy network.

C ENVIRONMENTS

As discussed in Section 3] here we introduce the different levels of difficulty for the topological-based
environments, as well as the reward function employed in all the tasks. Each increasing level of
task difficulty corresponds to a higher dimensional discrete action space. Table[C.1| summarizes the
difficulty levels and the corresponding total number of actions.

C.1 ACTION SPACES ANALYSIS

In this section, we visually analyze the action spaces of one representative environment for each
power grid size (i.e., bus14, bus36-MO-v0, bus118-M).

For each difficulty level, Figures[C.T} [C.2] and [C.3|show the percentage of actions considered for each
substation within the action space. The x-axis lists the substation IDs in descending order based on
the number of available actions. The y-axis represents the ratio of actions used in the action space to
the total number of available actions for each substation. Consequently, the highest difficulty level
indicates that the action space includes all possible actions for all substations. Overall, this analysis
suggests that the substation with the most electric components (i.e., the most possible topologies) is
best suited to handle contingencies.

bus14 - 0 bus14 - 1
00

0
30
20
- lnln
0 0

51 3 48 2120 6 9 101 13 7 5 1 3 4 8 2120 6 9 101 137
Substation ID

Actions (%)

N
3

Figure C.1: Percentage of actions considered for each substation within the action space for bus14
(discrete) topological tasks (difficulty level is indicated with the number on the top left).

Table C.1: Action space sizes for the considered environments. Left: Difficulty for environments with
a (discrete) topology-based action space. Right: (continuous) re-dispatching and curtailment tasks.

# Actions per difficulty level

Topology (T) Redispatching and curtailment (R)

0 1 2 3 4 0
bus14 50 209 - - - 6
bus36-M 50 302 1829 11071 66978 22
bus36-MO-v0 50 302 1829 11071 66978 22
bus36-MO-v1 50 302 1829 11071 66978 22
bus118-M 50 308 1903 11744 72461 69
bus118-MOB-v0 50 309 1914 11849 73328 69
bus118-MOB-vl 50 309 1915 11852 73357 69

13



Under review as a conference paper at ICLR 2025

bus36-MO-vO - 0 bus36-MO-v0 - 1

R ]
o - v e a2 oo o ~

16232621 9293335 1 4 7 1322272832121418 0 2 3 5 6 8 10111517 1920 24 2531 34 30 16232621 9 293335 1 4 7 1322272832121418 0 2 3 5 6 8 10 111517192024 2531 34 30

bus36-MO-v0 - 2 bus36-MO-v0 - 3

16232621 9 203335 1 4 7 1322272832121418 0 2 3 5 6 8 10 111517 1920 24 25 31 34 30 16232621 9203335 1 4 7 1322272832121418 0 2 3 5 6 8 10 111517 192024 25 31 34 30

16

12
10

Actions (%)

o - e & oo o o~

bus36-MO-v0 - 4

00
| ‘I‘ll““ll““l““‘ “““““I‘l‘
0
0
0

16232621 9 203335 1 4 7 1322272832121418 0 2 3 5 6 8 10 11 1517 1920 24 25 31 34 30

8

Substation ID

Figure C.2: Percentage of actions considered for each substation within the action space for bus36-
MO-v0 (discrete) topological tasks (difficulty level is indicated with the number on the top left).

Figures %and@]then presents the data collected during the action ranking mechanism described
in Section

As a sanity check, Figure [C.4] shows an example of the uniform sampling strategy used to select
which action to simulate at each simulation step. The x-axis shows the total number of actions for the
bus14 (discrete) topological task; the y-axis indicates the number of times each action was sampled
during the ranking process.

Figure shows the final ranking of the actions for the three representative environments. The
x-axis shows the total number of actions for each task; the y-axis indicates the average survival rate
of each action during the ranking process. Crucially, most of the actions are relevant (i.e., with a high
survival rate) in the tasks, motivating the increasing levels of difficulty we proposed for the (discrete)
topological environments.

C.2 REWARD

To promote the survival of the grid, the agent gets a cumulative positive constant Ryive for each
step, normalized by the total length of a training episode (normalized € [0, 1]). The capacity reward
Reapacity 1s based on how many lines are used (the lower the better and goes negative in case of
overflow) and is set to a fixed penalty value for disconnected lines (normalized € [—1, 1]). The costs
component R.oy assigns a cost to re-dispatching action and penalizes energy losses (normalized
€ [—1,0]). Finally, the topology component Riopology incentivizes the agent to revert to the original
topology by computing the distance of the current grid to the one at time 0 (normalized € [0, 1]). The
total reward R an agent gets at each step is then a weighted sum:

W Rionolo if topology actions,
R = aRguwive + BRcapacity + N Reost + topology P . gy .
0 otherwise.
D STATE SPACE

Regardless of the task, at a certain time-step ¢t an agent gets the following set of features:
[t,Genp, GengLoadp, Loady, p, Cooldowni,es]. Additionally, based on the nature of the task, the
agent can observe additional features as follows:
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Figure C.5: Average survival rate of the action spaces after the ranking process time.

 Storage: when the task has batteries (see Table, the agent gets [Storagecharge, Storagepowerlg,
Storagepower, Storageg|.

Such a distinction is useful to reduce the size of the space the agent can observe when there are
features that are not relevant to a specific task. For example, if an agent uses only discrete actions
(topology) then everything related to target dispatch, actual dispatch, and storage is irrelevant as they
will not change. Likewise, if an agent uses only continuous actions, it is not necessary to include
features related to “topology” as they will not be modified. Additionally, all the features related to
voltage (e.g., voltage for generators, loads, . . . ) and reactive values (e.g., reactive power for generator,
loads, .. .) can be neglected.

For the interested RL practitioner, we refer to the original Grid20p documentation for exhaustive

descriptions of these features 2020).

E ENVIRONMENTAL IMPACT

Despite each training run being “relatively” computationally inexpensive due to the use of CPUs,
the experiments of our evaluation led to cumulative environmental impacts due to computations that
run on computer clusters for an extended time. Our experiments were conducted using a private
infrastructure with a carbon efficiency of ~ 0.275 kgfv?,ffq, requiring a cumulative ~720 hours of
computation. Total emissions are estimated to be ~= 20.79kgCO2eq using the Machine Learning
Impact calculator, and we purchased offsets for this amount through Treedom. We do not directly
estimate or offset other categories of environmental impacts (such as water usage or embodied
hardware impacts), though recognizing that these are additionally important to consider.

F HYPERPARAMETERS

Table [F.1] lists the hyperparameters considered during our initial grid search and the final (best-
performing) parameters used for our experiments.
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Table F.1: Details of the grid search used to find the best-performing hyperparameters for each
algorithm in the topological (T) and re-dispatching (R) cases.

Algorithm Parameter Grid search Chosen value (T - R)
Shared N° parallel envs 10 10
Learning starts 20000 20000
Time limit 48 hours 48 hours
Max gradient norm 10, 20, 50 10
Discount v 0.9, 0.95, 0.99 0.9
Batch size 64, 128, 256 128
@ 0.1,0.3,0.6 0.1
B 0.1,0.3,0.6 0.3
n 0.1,0.3,0.6 0.3-0.6
w 0.1,0.3,0.6 0.3
DQN Train frequency 20, 100, 1000 20
Target network update 500, 1000, 10000 1000
Buffer size 100000, 250000, 500000, 1000000 500000
Learning rate 0.003, 0.0003, 0.00003 0.0003
e-decay fraction 0.3,0.50.7 0.5
PPO N° steps 10000, 20000, 50000 20000
N° update epochs 20, 40, 80 40
Actor learning rate 0.003, 0.0003, 0.00003 0.0003 - 0.00003
Critic learning rate 0.003, 0.0003, 0.00003 0.0003 - 0.00003
e-clip 0.1,0.2,0.3 0.2
SAC Train frequency 20, 100, 1000 20
Actor delayed update 2,4 2
Noise clip 0.5 0.5
Buffer size 100000, 250000, 500000, 1000000 500000
Actor learning rate 0.003, 0.0003, 0.00003 0.0003 - 0.00003
Critic learning rate 0.003, 0.0003, 0.0003 0.0003 - 0.00003
Entropy regularization 0.2 0.2
Noise clip 0.5 0.5
TD3 Actor delayed update 2,4 2
Buffer size 100000, 250000, 500000, 1000000 500000

Actor learning rate
Critic learning rate
-

Policy noise
Exploration noise

0.003, 0.0003, 0.00003
0.003, 0.0003, 0.00003
0.005, 0.0005

0.2

0.1

0.0003 - 0.00003
0.0003 - 0.00003
0.005

0.2

0.1
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G OMITTED FIGURES IN SECTION 5

Figure [G.1] shows the training curves for the (discrete) topological action spaces. Due to the
strict time limit imposed on the computation nodes (see Section 4) and the different computational
requirements of the algorithms, not all the baselines perform the same number of steps in the time
limitﬂ Additionally, despite the grid search of Table some baselines achieved lower performance
than expected (e.g., SAC and DQN in the busi4 scenarios). We will keep working on the benchmark

to find better parameters, run longer experiments, and keep the following Figures updated.

== SAC = PPO = DQN
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Figure G.1: Average survival rate for the discrete topological case in busi4, bus36-M, busl18-M,
bus118-MOB-v0 using the SAC, PPO, and DQN baselines. We indicate the difficulty level (ranging
from O to 3) next to the environment identifier.

>The demands and limited performance of the topological baselines led us to exclude the results with the
complete action space (i.e., difficulty set to 4).
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Figure[G.2] shows the training curves for the (continuous) re-dispatching action spaces.
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Figure G.2: Average survival rate for the continuous re-dispatching case in busi4, bus36-M, bus118-
M, busl18-MOB-v0 using the SAC, PPO, and TD3 baselines.

Figure [G.3] shows the training curves for the recovery (R) and idle (I) heuristics applied to our
topological bus14 scenario.

— PPO-R == SAC-R = DQN-R = PPO-| == SAC-| = DQN-I

0 A \/
08 pAne

Avg. Survival Rate

Step (M)

Figure G.3: Average survival rate for the discrete topological case in busi4 using the PPO, SAC, and
DQN baselines with the recovery (R) and idle (I) heuristics.
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