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ABSTRACT

While Large Language Models and their underlying Transformer architecture are
remarkably efficient, they do not reflect how our brain processes and learns a di-
versity of cognitive tasks such as language and working memory. Furthermore,
sequential data processing with Transformers encounters a fundamental barrier:
quadratic complexity growth with sequence length. Motivated by these limita-
tions, our ambition is to create more efficient models that are less reliant on in-
tensive computations. We introduce Echo State Transformers (EST), a hybrid ar-
chitecture that elegantly resolves this challenge while demonstrating exceptional
performance in classification and detection tasks. EST integrates the Transformer
attention mechanisms with principles from Reservoir Computing to create a fixed-
size window distributed memory system. Drawing inspiration from Echo State
Networks, the most prominent instance of the Reservoir Computing paradigm,
our approach leverages reservoirs (random recurrent networks) as a lightweight
and efficient memory. Our architecture integrates a new module called ”Working
Memory” based on several reservoirs working in parallel. These reservoirs work
as independent working memory units with distinct internal dynamics. A nov-
elty here is that the classical reservoir hyperparameters, controlling the dynamics,
are now trained. Thus, the EST dynamically adapts the reservoir memory/non-
linearity trade-off. Thanks to these working memory units, EST achieves con-
stant computational complexity at each processing step, effectively breaking the
quadratic scaling problem of standard Transformers. We evaluate ESTs on a re-
cent challenging timeseries benchmark: the Time Series Library, which comprises
69 tasks across five categories. Results show that ESTs ranks first overall in two
of five categories, outperforming strong state-of-the-art baselines on classification
and anomaly detection tasks, while remaining competitive on short-term forecast-
ing. These results position ESTs as a compelling alternative for time-series clas-
sification and anomaly detection, and a practical complement to transformer-style
models in applications that prioritize robust representations and sensitive event
detection.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have constituted a genuine revolution in the field of artificial
intelligence, offering for the first time a scalable architecture capable of efficiently processing text
while overcoming the inherent constraints of classical Recurrent Neural Networks (RNNs) and their
costly training related to backpropagation through time (Werbos, 1990). This major innovation,
however, comes with a significant drawback: a quadratic complexity that increases with the length
of the sequence to be processed.

Although Transformers break free from RNN formalism and their internal states – that allows infor-
mation to be transmitted from time t to time t + 1 – they still need to access previous information.
To achieve this, rather than using only the current information, they mobilize the entire input se-
quence at each step of the processing, meaning a Transformer has no internal memory per se, but
must process the entire sequence at each time step. This characteristic generates several major prob-
lems. The most obvious concerns the energy and computational costs that inexorably increase as the
conversation with a Transformer lengthens. A second problem lies in the fact that a Transformer,
like a human being, eventually becomes overwhelmed when the sequence becomes particularly long
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(Modarressi et al., 2025). Moreover, having to retain the entire sequence is equivalent to possessing
an ”infinite” working memory, which is considerably far from what is biologically plausible (Bad-
deley, 1992). Indeed, when we humans read a book, we are incapable of memorizing all the words
and punctuation elements that compose it. Instead, we have a ”finite” memory in which we ”com-
press” information, even if it means sacrificing certain aspects. Biological systems show us that
efficient ways to manage memory are possible, thus we take inspiration from Working Memory
models (Strock et al., 2020).

In this paper, we propose to add a Working
Memory block to the standard Transformer
architecture (See Fig. 1). Our method is in-
spired by both Transformers and Reservoir
Computing (Lukoševičius & Jaeger, 2009;
Yan et al., 2024) to exploit the attention
mechanisms characteristic of Transformers,
not on the entire input sequence, but on a
finite set of memory units. Each of these
units has its own dynamics and must retain
a specific part of the information received
as input. Thus, since the number of mem-
ory units is determined at the initialization
of the model and remains constant (unlike
the number of tokens in the input sequence
which continuously grows), the complexity
of the attention mechanism also becomes
constant. During each update step, each
memory unit creates its Queries from the
current input embedding at time t, while
generating Keys and Values based on both
its own state and the states of other mem-
ory units. This mechanism allows each unit
to independently extract from the collective
memory the information it deems relevant
and compare it to the input. Once the mem-
ories are updated, a second attention mech-
anism allows their content to be exploited to
predict the output at time t.

Figure 1: Comparison of standard Transformer
(Decoder-Only) and Echo State Transformer architec-
ture. We add a ”Working Memory” block to the stan-
dard Transformer architecture and apply attention on
it with the ”Previous State Attention” block. This
block computes Keys and Values from the previous
state, and Queries from the input at time t.

2 RELATED WORKS

Numerous approaches have been explored to address the complexity of Transformers. Among them,
many seek to modify, replace, or eliminate the calculation of attention, particularly the softmax
which is the operation requiring the entire sequence to be reprocessed at each time step. Thus,
Performers (Choromanski et al., 2020) estimate the attention matrix with linear complexity using
FAVOR+. Attention Free Transformers (AFT) (Zhai et al., 2021) eliminate self-attention by first
combining Keys and Values with a set of positional biases before multiplying the result with Queries,
achieving linear complexity. Reformer (Kitaev et al., 2020) replaces the attention product with
locality-sensitive hashing offering linearithmic complexity. RWKV (Peng et al., 2023) replaces
attention and MLP blocks with two blocks allowing the mixing of temporal and spatial information,
thus offering a linear solution in time and space. Retentive Network (RetNet) (Sun et al., 2023)
replaces the softmax of attention with an exponential decay applied to the result of the product of
Queries and Keys, allowing three modes of usage including linear complexity inference. Mamba (Gu
& Dao, 2023) proposes an innovative architecture based on selective State Space Models (SSMs)
and allows linear training and linear inference. TimesNet (Wu et al., 2022) reshapes time series into
2D tensors over learned periods and applies lightweight convolutional inception blocks to capture
temporal patterns, which leads to a linear complexity in sequence length.

Other approaches exist that do not seek to modify the attention calculation but rather to redesign
how the input sequence is represented. This is the case with TransformerFAM (Hwang et al., 2024)
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which introduces a feedback loop designed to dynamically create two tokens representing past in-
formation, thus creating an internal memory to process sequences of indefinite length. iTransformer
(Liu et al., 2023) inverts tokenization by treating each variate as a token instead of each time step,
enabling attention to capture cross-variate dependencies while feed-forward networks learn tem-
poral patterns. PatchTST (Nie et al., 2022) splits each univariate series into patches and applies
channel-independent attention, enabling longer lookback windows and improved long-term fore-
casting. Large Memory Model (LM2) (Kang et al., 2025) proposes a memory module capable of
interacting with input tokens and updating itself via gate mechanisms, similar to LSTMs (Hochreiter
& Schmidhuber, 1997), to store and compress past information.

3 ARCHITECTURE INSPIRATION

Our Echo State Transformer architecture draws inspiration from two powerful paradigms in sequen-
tial processing: Transformers and Reservoir Computing. This section briefly introduces the key
components from each that we leverage in our hybrid model.

3.1 TRANSFORMERS

Figure 2: Computation of attention in Transformers exemplified with matrix multiplications
schemas. On the left the computation of Queries, Keys and Values. On the right, the applica-
tion of the attention formula with the previous computed Queries, Keys and Values.

Transformers revolutionized sequence processing by replacing recurrence with attention mecha-
nisms, allowing direct interaction between any positions in a sequence. The core innovation of
Transformers is the self-attention mechanism:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where Q (queries), K (keys), and V (values) are linear projections of the input. This mechanism
computes a weighted sum of values, with weights determined by the compatibility between queries
and keys. Transformers process sequences through multiple layers, each containing a Self-Attention
and Feed-Forward modules. Recent research suggests these feed-forward layers act as key-value
memories (Geva et al., 2020), like one might observe in the brain (Gershman et al., 2025), storing
knowledge acquired during training.

While Transformers excel at modeling complex dependencies and can process sequences in parallel,
they face a quadratic complexity challenge with sequence length and lack an inherent mechanism
for maintaining state across processing steps.

3.2 RESERVOIR COMPUTING

Reservoir Computing, particularly Echo State Networks (ESNs) (Jaeger, 2001a; Jaeger & Haas,
2004) offers an efficient approach to sequential processing through fixed random recurrent networks.
The key dynamics of a reservoir are captured by:

st = (1− α).st−1 + α.f(Win.ut +W.st−1) (2)
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where st is the reservoir state, ut is the input, Win and W are fixed random matrices, f is a non-
linear activation (typically tanh), and α is the leak rate. Two critical parameters govern reservoir
behavior: the spectral radius – defined as the largest absolute eigenvalue of W – controls the Echo
State Property (Yildiz et al., 2012), with values below 1 ensuring stability and values approaching
1 maximizing memory capacity while maintaining predictable behavior; complementing this, the
leak rate (α) regulates how quickly the reservoir state evolves (Jaeger et al., 2007), where lower
values preserve previous states longer and higher values enhance the network’s responsiveness to
new inputs.

Figure 3: Echo State Network is composed of 3 layers: Win treats the input, W computes the state
update and Wout computes the output. Only Wout is trained via linear regression.

Reservoirs excel at maintaining temporal information with minimal parameter tuning and training
data requirements (Lukoševičius & Jaeger, 2009). By only training output weights, ESNs achieve
remarkable efficiency while maintaining powerful temporal processing capabilities (Jaeger, 2001a).
If properly configured, reservoirs can retain temporal information proportional to their size (Ceni &
Gallicchio, 2024). More details can be found in Appendix B.

4 MODEL ARCHITECTURE

Our approach, the Echo State Transformer (EST)1, proposes a hybrid architecture inspired by orig-
inal Transformers and the Reservoir Computing paradigm. The main objective is to overcome the
quadratic complexity inherent to traditional Transformers by introducing a working memory com-
posed of a finite number of units where attention will be applied, instead of applying it to a poten-
tially infinite number of input tokens, thus making the complexity constant in time and space for
inference.

The EST model mainly consists of six distinct blocks: an input block, an attention block on the
previous state, a working memory block, a self-attention block, a feed-forward block, and an output
block. A detailed schema of the architecture is available in the Appendix A.

• Input: This block receives the current token at time t. This token is then transformed into
an embedding, preparing the information for the subsequent layers.

• Previous State Attention: This block allows each unit of the Working Memory to create
a unique information vector intended for it (see Fig. 4). To do this, each unit creates
a query from the embedding coming from the Input Block as well as keys and values
from the state of all memory units, then calculates the attention by adding the residuals
(embedding). The underlying idea is that each memory unit can access its own state as well
as that of other units to identify relevant information in the current input and supplement
its knowledge. The attention mechanism allows weighting the dimensions of the input
embedding according to the relevance of the information to adapt it to each memory unit.

• Working Memory: The working memory (Fig. 5) comprises multiple configurable reser-
voir units derived from Reservoir Computing. Each reservoir — a recurrent network with
fixed random weights — functions as a dynamic system retaining temporal information

1Public git repository : https://anonymous.4open.science/r/EchoStateTransformer/
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Figure 4: This figure display the mecanism of the Previous State Attention block. It produces
Keys and Values from all memory units (Sout) and Queries from the embedding at time t (embt).
Similarly to Transformer and its Multi-Head Attention block, we compute several distinct products
of attention – one per memory unit – that allows each unit to compute its own input vector.

through an echo mechanism. Uniquely, each unit learns its own dynamics parameters (in-
cluding its spectral radius) through backpropagation and composes information vectors
from current inputs and states of all units.
Our approach introduces an adaptive leak rate mechanism that determines how much in-
formation persists between time steps (0 preserves the entire previous state, while values
approaching 1 favor new information). This adaptivity uses a softmax function: scores
calculated from each unit’s information vector are normalized to produce weights between
0 and 1, modulating individual leak rates. This competitive mechanism potentially allows
certain units to maintain fixed information over time by assigning near-zero leak rates.

• Self-Attention: Once the memories are updated, a self-attention layer is applied to all
units of the working memory. Each state vector from the memory units is treated as an
input token would be in Transformers, for which we compute queries, keys, and values.
Attention is then applied and, like Transformers, residual connections from the current
state are added to the result of the self-attention. A linear combination is then applied to
the result to reduce the dimensions (see Appendix A).

• Feed Forward (FF): Like Transformers, this layer allows the integration of knowledge
learned during training (Geva et al., 2020). It is typically implemented using feed-forward
layers that increase their dimension (for example, by a factor of 4) before reducing it to the
initial size (see Appendix A).

• Output Layer: The last layer applies a transformation (potentially the inverse of the em-
bedding matrix) to the output of the Feed Forward to reconstruct the final output.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: This figure displays the mechanism behind the Working Memory block and more par-
ticularly the adaptive leak rate. Each memory unit compute a score from its input vector. Then a
softmax is applied on all of this score to compute the leak rate for each unit.

Like Transformers, the previous state attention, working memory, self-attention, and feed-forward
blocks can be stacked sequentially to form layers that can be repeated multiple times. However,
unlike Transformers, which allow complete parallelization of the entire sequence, ESTs require
sequential training like GRUs and LSTMs and thus, backpropagation through time.

The main innovation of this work lies in the introduction of a working memory system where multi-
ple units, based on the Reservoir Computing paradigm, work in parallel to preserve temporal infor-
mation. Furthermore, the use of an adaptive leak rate allows better control of information retention
over time, compensating for the gradual dissipation of the echo. By allowing each memory unit to
consult the state of others, the model acquires an increased ability to process information taking into
account the global context of the memory. In preliminary works, we tested different architectures
that are not included in this paper2. We observed that each memory unit tends to stabilize around a
characteristic leak rate value, oscillating dynamically in response to input variations. This emergent
property allows each unit to maintain a consistent temporal profile while still adapting to contex-
tual needs. Although we tried other non-linear functions (like sigmoid) to replace the softmax and
remove the competition between units in the adaptive leak rate, the model did not converge with
them.

5 EXPERIMENTS

5.1 BENCHMARK FRAMEWORK

We evaluate our model on the Time Series Library (TSL) benchmark (Wang et al., 2024), which
provides a unified evaluation protocol for deep time series models. TSL covers five task categories,
each comprising multiple tasks, for a total of 69 tasks (all tasks are described in Appendix C):

• Anomaly Detection (5 tasks): assesses sensitivity to rare and critical deviations in temporal
dynamics.

• Classification (10 tasks): tests the discriminative power of the learned representations.

• Imputation (12 tasks): measures robustness in reconstructing missing data points.

2To remain anonymous, our previous work will not be cited here.
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• Long-term Forecasting (36 tasks): evaluates the ability to capture long term temporal
dependencies and predict unseen future values.

• Short-term Forecasting (6 tasks): evaluates the ability to capture short term temporal
dependencies and predict unseen future values.

For each category, TSL specifies standard metrics: Mean Squared Error (MSE) for long-term fore-
casting and imputation, Overall Weighted Average (OWA) for short-term forecasting, Accuracy for
classification, and F1-score for anomaly detection. This large-scale evaluation setting enables a
comprehensive comparison across diverse models and tasks.

5.2 EVALUATION SETUP

We compare the proposed Echo State Transformer (EST) with state-of-the-art baselines present in
Wang et al. (2024) including iTransformer, PatchTST, FEDformer, TimesNet, Mamba, Reformer,
DLinear, and N-BEATS, among others. All experiments strictly follow the training protocols de-
fined in TSL to ensure fair comparison, including optimization strategies, batch construction, and
evaluation methodology. Following the TSL methodology, we tested ten different configurations
(e.g. number of layers, memory units, neurons, connectivity) and retained the best-performing one
for each task. Since EST belongs to the family of Recurrent Neural Networks (RNN), training re-
quires Backpropagation Through Time (BPTT), unlike Transformer-based approaches which rely
on full sequence parallelization. This BPTT implies that every gradients among the whole sequence
have to be retained in memory during training (even for the weights that are not learned) leading to
a high memory footprint (see Appendix F).

6 RESULTS

We evaluate EST across 69 tasks grouped in 5 time series problem categories, comparing against
strong baselines including state-of-the-art models. Figure 6 summarizes the comparative perfor-
mance, revealing EST’s distinctive strengths and architectural insights. EST ranks 1st overall in 2
of the 5 task categories, demonstrating competitive performance across diverse scenarios. For each
task, the optimal configuration (selected among 10) and its performance score are fully reported in
Appendix E.
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6.1 EST ACHIEVES SOTA PERFORMANCE ON CLASSIFICATION AND ANOMALY DETECTION

EST seems to excel at identifying minor variations within complex data streams: it is more sensitive
to weak signals and rare events than other methods. In classification, EST achieves 74.08% average
accuracy, ranking 1st overall among all evaluated models and outperforming leading approaches in-
cluding TimesNet (73.67%), Crossformer (73.17%), and PatchTST (72.50%). Similarly for anomaly
detection, EST secures the top position with an F1-score of 85.25%, maintaining a tight lead over
TimesNet (85.24%) and surpassing FEDformer (84.97%). These results demonstrate EST’s superior
capability in temporal pattern analysis, excelling both at categorical classification and at detecting
deviations from normal behavior.

6.2 COMPETITIVE PERFORMANCE ON SHORT-RANGE FORECASTING

In short-term forecasting, EST achieves an OWA score of 0.929, ranking 5th among evaluated mod-
els. While not leading this category, EST performs competitively with established methods like
Mamba (0.922) and substantially outperforms several baselines including iTransformer (1.030) and
Crossformer (1.075). This suggests EST effectively captures local temporal dependencies over mod-
est prediction horizons.

6.3 ARCHITECTURE INSIGHTS FROM OPTIMAL CONFIGURATIONS

Analysis of the best-performing configurations reveals interesting architectural patterns across task
types. For classification and anomaly detection tasks EST performs best with deeper architectures
of 2-4 layers, suggesting that hierarchical feature extraction benefits pattern recognition. In con-
trast, imputation and short-term forecasting predominantly select shallow 1-layer configurations,
indicating these tasks benefit from very short-term temporal modeling. Additionally, as expected,
certain tasks require greater memory capacity than others. Short-term forecasting tasks consistently
favor balanced configurations where memory dimensions closely match attention computation di-
mensions (e.g., mem64-dim64, mem32-dim32), suggesting that short-term information retention
benefits from symmetric representational capacity. In contrast, tasks requiring long-term informa-
tion retention exhibit a clear preference for substantially larger memory dimensions relative to model
dimensions (e.g., mem128-dim64, mem512-dim128). This pattern is consistent with the expectation
that larger reservoir enable longer information retention, providing the extended temporal context
necessary for these tasks. More broadly, optimal ESTs seems to be usable in various scales, with
a minimum of 4 memory units up to 16 units depending on task complexity. Configurations with
only 2 memory units are effective only in rare cases, typically for simple patterns or when coupled
with high-dimensional memory spaces (e.g., 512mem). These configuration patterns demonstrate
EST’s architectural versatility: the model’s memory profile can be adapted from short-term focused
(balanced dimensions) to long-term specialized (large memory dimensions), while simultaneously
having its feature extraction complexity adjusted through layer depth and model dimensions. This
flexibility allows EST to adapt to different task requirements, leveraging the salient information re-
tention capabilities inherited from Reservoir Computing and the contextual representation learning
derived from Transformer attention mechanisms.

6.4 LIMITATIONS ON RECONSTRUCTION TASKS

EST shows weaker performance on tasks requiring precise value reconstruction. In imputation, EST
achieves an MSE of 0.134, ranking among the least effective compared to specialized models like
TimesNet (0.050), SCINet (0.059), and Stationary (0.057). For long-term forecasting, EST’s MSE
of 0.774 significantly underperforms leading Transformer models such as iTransformer (0.342) and
PatchTST (0.373). This reflects EST’s architectural priorities: EST’s reservoir-based dynamics and
adaptive memory harness the expressivity of high-dimensional random feature mappings to capture
salient patterns (Cuchiero et al., 2022), deliberately trading exact pointwise reconstruction for richer
representational power. Reservoirs are known to successfully capture the underlying attractor of a
dynamical system and reproduce its climate, the long-term statistical structure of the dynamics (Lu
et al., 2018), but not necessarily the exact pointwise reconstruction. The reliance on BPTT for long
sequences may also limit EST’s ability to model complex long-range dependencies required for
extended horizon forecasting.
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7 FLOPS COMPARISON

We compute theoretical FLOPs per forward
pass by summing primitive operations across
shared components (input/temporal embed-
dings, normalization, linear projections,
feed-forward layers, activations, softmax)
and model-specific blocks (e.g., attention
pattern, SSM updates, convolutions). FLOPs
count all additions and multiplications from
embedding/normalization, linear projec-
tions (QKV, FF, heads), activations (GELU,
tanh) and softmax. We exclude dropout,
reshapes/permutes/concats. To focus on scaling
in sequence length, all models in Fig. 7 use
similar depth/width (e.g. number of layers,
neurons), resulting in ≈1M parameters.

The computational complexity analysis reveals
distinct scaling behaviors across different ar-
chitectures as sequence length O(L) increases.
Transformer and PatchTST exhibit quadratic
scaling O(L2) due to their self-attention mecha-
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Figure 7: Theoretical FLOPs vs. sequence length
for models normalized to ≈ 1M parameters.

nism operating over L tokens. This quadratic growth dominates computational costs at longer se-
quences. In contrast, several architectures achieve more favorable scaling properties. Mamba main-
tains linear complexity O(L), with its curve positioned slightly above Reformer. Reformer’s the-
oretical complexity is O(L logL) but in practice the logarithmic term contributes to relatively few
operations compared to the linear term, making it more linear. TimesNet and iTransformer both ex-
hibit hybrid scaling: TimesNet’s FFT operations dominate below ≈ 100 tokens before lightweight
2D convolutions yield linear growth, while iTransformer has nearly constant computational cost (≈
0.11 GFLOPs) for sequences up to ≈ 500 tokens, after which linear scaling emerges due to O(N2)
complexity in the number N of variables (fixed) instead of O(L2) in sequence length. Our pro-
posed EST model similarly achieves O(L) complexity by attending over a fixed number of memory
units instead of time tokens. The curve closely matches other linear methods, particularly Mamba.
This linear scaling property enables EST to handle long sequences efficiently while preserving the
representational benefits of attention-based architectures.

8 CONCLUSION

We introduced the Echo State Transformer (EST), a recurrent architecture that combines attention
over a finite set of working memory units with reservoir dynamics and an adaptive leak rate mecha-
nism. By attending to a fixed set of memory units rather than a growing token sequence, EST attains
linear complexity and maintains a persistent working state that retains the most salient information
from the sequence due to reservoir’s sensitivity on rare events. On the large TSL benchmark (69
tasks across five categories), EST displays a clear task-dependent profile: it achieves state-of-the-
art performance in both classification and anomaly detection, ranking 1st overall in both categories,
while remaining competitive for short-term forecasting (5th overall). In contrast, it lags on long-term
forecasting and imputation, which demand long-horizon extrapolation and precise pointwise recon-
struction. Overall, (1) the results position EST as a leading architecture for time-series classification
and anomaly detection tasks – its adaptive working memory enables robust temporal representations,
making it well-suited for monitoring and detection tasks requiring sensitivity to rare deviations –,
and (2) the results confirm that limiting attention to a fixed set of memory units offers a practical and
powerful solution to the quadratic complexity of the QKV attention used in Transformer models.
Future work will focus on removing BPTT for full sequence parallelization, requiring the removal
of recurrent connection and the linearization of reservoir, potentially preserving discriminative per-
formance while reducing memory costs and accelerating training.

9
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REPRODUCIBILITY

To ensure full reproducibility, we provide the complete codebase on an anonymous GitHub
repository: https://anonymous.4open.science/r/EchoStateTransformer/. This archive contains the
EST model implementation, TSL benchmark integration, computational complexity analysis tools
(FLOPs computation), and all visualization scripts used to generate the figures in this paper. The
comprehensive set of hyperparameter configurations tested across all runs is documented both within
the GitHub repository and in Appendix D.

ETHICS STATEMENT

This work introduces a novel neural architecture, the Echo State Transformer (EST), and evaluates
it exclusively on publicly available datasets from the Time Series Library benchmark. No private,
sensitive, or personally identifiable data were used in this study. The potential societal risks primarily
relate to downstream applications of time-series modeling, such as in healthcare, finance, or critical
infrastructure. While EST demonstrates strong performance in classification and anomaly detection,
there remains a risk of amplifying biases or producing incorrect alerts if deployed without careful
validation. We encourage practitioners to critically evaluate model outputs, consider fairness and
bias mitigation strategies, and assess ethical implications before deployment in critical contexts.

LLM USAGE

We utilized large language models to assist with writing this paper: translation from our native
language to English, phrasing suggestions, and code completion tasks.
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A DETAILED SCHEMA OF THE ARCHITECTURE ECHO STATE TRANSFORMER

Figure 8: Detailed architecture of Echo State Transformer
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B RESERVOIR COMPUTING

Reservoir Computing (RC) (Nakajima & Fischer, 2021) is a computing paradigm inspired by
recurrent neural networks (RNN) that considerably simplifies the learning process. The main idea
is to use a large recurrent neural network, called a ”reservoir”, whose internal connections are fixed
and random. Only the connections between the reservoir and the output layer are trained.

B.1 WHY RESERVOIR COMPUTING?

Reservoir Computing, and specifically Echo State Networks (ESNs), offers several compelling ad-
vantages that address the limitations of standard sequential models. ESNs excel at encoding and
retaining information over extended temporal sequences through their unique internal dynamics,
where recurrent connections within the reservoir maintain a persistent trace of input history (Jaeger,
2001b). This temporal memory capacity scales remarkably well with reservoir size — certain con-
figurations can preserve temporal information proportional to the number of reservoir neurons (Ceni
& Gallicchio, 2024). The computational efficiency of ESNs represents another significant advan-
tage. By limiting training to only the output layer while keeping reservoir connections fixed, ESNs
dramatically reduce both computational requirements and the volume of training data needed com-
pared to fully-learned recurrent neural networks (Lukoševičius & Jaeger, 2009). This reduced train-
ing complexity makes ESNs particularly valuable in resource-constrained environments.

Furthermore, the random matrices at the core of reservoir computing create rich, non-linear dy-
namic systems that effectively project inputs into high-dimensional spaces where complex patterns
become more linearly separable. Our Echo State Transformers model leverages these strengths by
implementing a distributed Working Memory composed of multiple reservoir modules, combining
the efficient temporal processing capabilities of Reservoir Computing with the attention mechanisms
that have made Transformers so effective.

B.1.1 SPECTRAL RADIUS: GUARDIAN OF THE ECHO STATE PROPERTY
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Figure 9: Effect of Spectral Radius on reservoir activity.

The spectral radius, defined as the largest absolute eigenvalue of the reservoir matrix, is critical for
maintaining the Echo State Property (Jaeger, 2001a) (Yildiz et al., 2012). When below 1, this prop-
erty ensures initial conditions’ influence gradually fades. The spectral radius creates a fundamental
trade-off (see Fig. 9): values approaching 1 maximize memory capacity for longer-term depen-
dencies, while lower values enhance stability at the cost of memory. Exceeding 1 progressively
leads to saturation of the reservoir state and pushes the network into chaotic regimes where minimal
input differences produce dramatically different outputs — the ”butterfly effect” — rendering the
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system unreliable for sequential processing. Optimal performance typically occurs at the ”edge of
chaos” (spectral radius just below 1) where computational capacity is maximized without sacrificing
stability.

B.1.2 LEAK RATE: CONTROL OF TEMPORAL DYNAMICS
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Figure 10: Effect of Leak Rate on reservoir activity.

The leak rate α ∈ (0, 1] allows control of the speed at which the reservoir state forgets past in-
formation (Jaeger et al., 2007), acting as a low-pass filter on the temporal evolution of states (see
Fig. 10). A low value of α (close to 0) slows down the network dynamics, allowing it to process
slowly evolving signals or capture longer-term dependencies: the previous state is almost entirely
preserved. Conversely, a high value of α (close to 1) accelerates the dynamics, making the network
more responsive to rapid changes in the input signal: the previous state is almost entirely replaced
by the new state.

B.2 ECHO STATE NETWORK (ESN)

The most popular model of Reservoir Computing is the Echo State Network (ESN) (Jaeger, 2007)
(see Fig. 3). An ESN consists of three distinct parts:

• Input Layer: A random, fixed and sparse matrix that projects input data into the reservoir.
• Reservoir: A random, fixed and sparse matrix that interconnects neurons recurrently.
• Output Layer: A learned matrix that combines the states of the reservoir to produce the

desired output. The weights of this matrix are the only part of the network that is trained.
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C TIME SERIES LIBRARY (TSL BENCHMARK)

All tasks per category are described in the following Table 1, this table is extracted from Wang et al.
(2024).

Table 1: Datasets used in Time Series Library

Task Dataset Dimension Length Domain Size

Classification EthanolConcentration 3 1,751 Alcohol Industry 20.3 MB
FaceDetection 144 62 Face (250 Hz) 789.1 MB
Handwriting 3 152 Motion 3.9 MB
Heartbeat 61 405 Health (0.061s) 87.8 MB
JapaneseVowels 12 29 Voice 1.1 MB
PEMS-SF 963 144 Transportation (1 day) 420.1 MB
SelfRegulationSCP1 6 896 Health (256 Hz) 17.8 MB
SelfRegulationSCP2 7 1,152 Health (256 Hz) 17.7 MB
SpokenArabicDigits 13 93 Voice (11025 Hz) 37.6 MB
UWaveGestureLibrary 3 315 Gesture 3.4 MB

Imputation ETTh1, ETTh2 7 17,420 Electricity (1 hour) 10.4 MB
ETTm1, ETTm2 7 69,680 Electricity (15 mins) 2.6 MB
Electricity 321 26,304 Electricity (1 hour) 95.6 MB
Weather 21 52,696 Environment (10 mins) 7.2 MB

Long-term Forecasting3 ETTh1, ETTh2 7 17,420 Electricity (1 hour) 10.4 MB
ETTm1, ETTm2 7 69,680 Electricity (15 mins) 2.6 MB
Electricity 321 26,304 Electricity (1 hour) 95.6 MB
Weather 21 52,696 Environment (10 mins) 7.2 MB
Traffic 862 17,544 Transportation (1 hour) 136.5 MB
Exchange 8 7,588 Economic (1 day) 623 KB
ILI 7 966 Health (1 week) 66 KB

Short-term Forecasting M4-Yearly 1 6 Demographic 589.5 MB
M4-Quarterly 1 8 Finance 589.5 MB
M4-Monthly 1 18 Industry 589.5 MB
M4-Weekly 1 13 Macro 589.5 MB
M4-Daily 1 14 Micro 589.5 MB
M4-Hourly 1 48 Other 589.5 MB

Anomaly Detection SMD 38 100 Industry (1 min) 436.4 MB
MSL 55 100 Industry (1 min) 58.2 MB
SMAP 25 100 Industry (1 min) 113.0 MB
SwaT 51 100 Industry (1 min) 903.2 MB
PSM 25 100 Industry (1 min) 107.1 MB

Anomaly Detection (5 tasks): Given multivariate sensor streams, the goal is to flag time points
or segments that deviate from regular behavior. Evaluation is by F1-score. Datasets (SMD, MSL,
SMAP, SWaT, PSM) come from industrial or telemetry settings, covering diverse systems where
faults are rare and heterogeneous.

Classification (10 tasks): Each time series is assigned a single label (e.g., class of gesture, health
condition, speaker vowel). The metric is accuracy. The suite spans low to high-dimensional set-
tings (3 to 963 variables) and short to moderate lengths (29–1751 timesteps): EthanolConcentration
(alcohol industry), FaceDetection (face signals), Handwriting (motion), Heartbeat (health), Japane-
seVowels (voice), PEMS-SF (transportation), SelfRegulationSCP1/2 (health), SpokenArabicDigits
(audio), and UWaveGestureLibrary (gestures).

3For the long-term forecasting category, all of those 9 tasks are sampled into 4 different sequence length,
leading to 4 different experiences per tasks (9*4 = 36 tasks).
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Imputation (12 tasks): The objective is to reconstruct missing values in partially observed mul-
tivariate sequences. Performance is measured by MSE on the masked entries. TSL uses electricity
and weather datasets (ETTh1/2, ETTm1/2, Electricity, Weather) with varying dimensions (7–321)
and cadences (15 min to hourly for electricity; 10 min for weather).

Long-term Forecasting (36 tasks): Models must predict extended horizons from historical con-
text; TSL evaluates MSE across multiple horizon settings. The category aggregates nine base
datasets: ETTh1/2, ETTm1/2, Electricity, Weather, Traffic, Exchange, ILI. Those 9 datasets are
sampled at 4 different forecast lengths (96, 192, 336, 720) to reach 36 tasks in total. Series vary
widely in dimension (7–862) and domain (energy, environment, transportation, economics, health).

Short-term Forecasting (6 tasks): Univariate forecasting across the six M4 frequencies (Yearly,
Quarterly, Monthly, Weekly, Daily, Hourly). TSL reports OWA to compare against classical statis-
tical baselines while normalizing across heterogeneous scales and frequencies. These tasks probe
local dynamics, and near-term extrapolation ability.

D ALL 10 CONFIGURATIONS OF OUR EXPERIMENTS

The following table shows the 10 configurations (set of Hyper-Parameters) used in our experiments
with Time Series Library (TSL). All 69 tasks in TSL were tested with the 10 following configuration.

Configuration Layers Memory Memory Model Memory
Units Dimension Dimension Connectivity

Run 1 1 4 100 64 0.05
Run 2 2 4 128 128 0.05
Run 3 4 8 64 32 0.20
Run 4 1 2 512 128 0.025
Run 5 1 4 128 64 0.05
Run 6 2 8 64 64 0.10
Run 7 3 4 32 64 0.25
Run 8 4 2 64 128 0.125
Run 9 2 16 32 32 0.25
Run 10 1 16 64 64 0.125

Table 2: EST hyperparameter configurations explored in the experimental evaluation.
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E BEST CONFIGURATION AND SCORE FOR EACH TASK

Table 3: Best model configuration for Anomaly Detection tasks

Task layer mem units mem dim model dim connectivity F1-Score
anomaly detection SMD 2 4 128 128 0.05 0.7915
anomaly detection PSM 1 16 64 64 0.125 0.9305
anomaly detection MSL 1 4 128 64 0.05 0.8224
anomaly detection SMAP 4 2 64 128 0.125 0.8294
anomaly detection SWAT 4 2 64 128 0.125 0.8889

Table 4: Best model configuration for Imputation tasks

Task layer mem units mem dim model dim connectivity MSE
imputation ETTh1 mask 0.125 1 4 128 64 0.05 0.08205
imputation ETTh1 mask 0.25 1 4 100 64 0.05 0.1328
imputation ETTh1 mask 0.375 1 16 64 64 0.125 0.1676
imputation ETTh1 mask 0.5 1 2 512 128 0.025 0.2120
imputation ECL mask 0.125 1 4 128 64 0.05 0.1883
imputation ECL mask 0.25 1 4 100 64 0.05 0.1940
imputation ECL mask 0.375 1 4 100 64 0.05 0.2001
imputation ECL mask 0.5 1 4 100 64 0.05 0.2037
imputation weather mask 0.125 1 4 100 64 0.05 0.06920
imputation weather mask 0.25 1 4 100 64 0.05 0.04032
imputation weather mask 0.375 1 4 128 64 0.05 0.05309
imputation weather mask 0.5 2 16 32 32 0.25 0.06432

Table 5: Best model configuration for Long-term Forecast tasks

Task layer mem units mem dim model dim connectivity MSE
long term forecast ili 24 2 4 128 128 0.05 2.668
long term forecast ili 36 2 4 128 128 0.05 2.485
long term forecast ili 48 3 4 32 64 0.25 2.357
long term forecast ili 60 3 4 32 64 0.25 2.703
long term forecast Exchange 96 2 8 64 64 0.10 0.1175
long term forecast Exchange 192 3 4 32 64 0.25 0.2060
long term forecast Exchange 336 2 8 64 64 0.10 0.3603
long term forecast Exchange 720 2 8 64 64 0.10 0.9048
long term forecast traffic 96 2 4 128 128 0.05 0.6540
long term forecast traffic 192 2 8 64 64 0.10 1.191
long term forecast traffic 336 2 8 64 64 0.10 1.33
long term forecast traffic 720 3 4 32 64 0.25 1.392
long term forecast ETTh1 96 1 2 512 128 0.025 0.4625
long term forecast ETTh1 192 2 8 64 64 0.10 0.6754
long term forecast ETTh1 336 2 16 32 32 0.25 0.7411
long term forecast ETTh1 720 3 4 32 64 0.25 0.7425
long term forecast ETTh2 96 2 4 128 128 0.05 0.3475
long term forecast ETTh2 192 2 8 64 64 0.10 0.4360
long term forecast ETTh2 336 3 4 32 64 0.25 0.4673
long term forecast ETTh2 720 2 16 32 32 0.25 0.4784
long term forecast ECL 96 2 8 64 64 0.10 0.4258

Continued on next page
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Task layer mem units mem dim model dim connectivity MSE
long term forecast ECL 192 2 8 64 64 0.10 0.4753
long term forecast ECL 336 2 8 64 64 0.10 0.6741
long term forecast ECL 720 2 8 64 64 0.10 0.8829
long term forecast weather 96 1 2 512 128 0.025 0.1810
long term forecast weather 192 2 8 64 64 0.10 0.2309
long term forecast weather 336 2 8 64 64 0.10 0.2848
long term forecast weather 720 1 4 128 64 0.05 0.4101
long term forecast ETTm1 96 1 4 100 64 0.05 0.3549
long term forecast ETTm1 192 2 16 32 32 0.25 0.4605
long term forecast ETTm2 96 1 2 512 128 0.025 0.1879
long term forecast ETTm2 192 2 16 32 32 0.25 0.2712
long term forecast ETTm2 336 2 16 32 32 0.25 0.3385
long term forecast ETTm2 720 2 16 32 32 0.25 0.4383

Table 6: Best model configuration for Classification tasks

Task layer mem units mem dim model dim connectivity Accuracy
classification EthanolConcentration 1 4 128 64 0.05 0.3042
classification FaceDetection 2 16 32 32 0.25 0.6722
classification Handwriting 1 16 64 64 0.125 0.4365
classification Heartbeat 3 4 32 64 0.25 0.7707
classification JapaneseVowels 1 16 64 64 0.125 0.9568
classification PEMS SF 4 8 64 32 0.2 0.8786
classification SelfRegulationSCP1 1 2 512 128 0.025 0.9181
classification SelfRegulationSCP2 2 8 64 64 0.1 0.5889
classification SpokenArabicDigits 1 4 128 64 0.05 0.9882
classification UWaveGestureLibrary 1 16 64 64 0.125 0.8938

Table 7: Short-term Forecast

Task layer mem units mem dim model dim connectivity OWA
short term forecast m4 Monthly 2 4 128 128 0.05 0.928
short term forecast m4 Yearly 1 16 64 64 0.125 0.934
short term forecast m4 Quarterly 1 16 64 64 0.125 0.928
short term forecast m4 Weekly 1 16 64 64 0.125 0.928
short term forecast m4 Daily 1 16 64 64 0.125 0.929
short term forecast m4 Hourly 2 16 32 32 0.25 0.928
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F MEMORY FOOTPRINTS

Figure 11 reports the peak GPU memory usage of different models when trained with 1M parameters
on an NVIDIA Quadro RTX 5000. We observe that recurrent models such as EST suffer from
significantly higher memory requirements (7,035 MB) compared to Transformer-based architectures
such as iTransformer (1,251 MB) or TimesNet (817 MB). PatchTST reaches the highest footprint
(8,615 MB), while lightweight architectures like Mamba (343 MB) and the vanilla Transformer (611
MB) remain more efficient.

This comparison highlights a major trade-off of the EST design: while its recurrent working memory
mechanism provides a static number of operations (FLOPs) per steps, it comes at the expense of
memory efficiency during training.
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Peak Memory Footprints for 1M Parameters Models

Figure 11: Peak memory footprints (in MB) during training for models with 1M parameters, evalu-
ated on an NVIDIA Quadro RTX 5000.
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