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Abstract

Time series forecasting has extensive and signif-
icant applications in various fields such as trans-
portation, energy, finance, etc. In recent years,
time series foundation models have emerged
prominently in the prediction field due to their
ability to achieve accurate predictions with min-
imal fine-tuning or even in zero-shot scenarios.
Among these models, TabPFN and its derivative
TabPFN-TS stand out as notable examples. This
paper introduces a TabPFN-based time series pre-
diction method that capitalizes on the intrinsic pe-
riodicity of data. Experimental evaluations across
multiple time series datasets reveal that our pro-
posed method outperforms TabPFN-TS. This out-
come validates the efficacy of incorporating data
periodicity into TabPFN-based time series pre-
diction. The code of our method can be found
here:

1. Introduction
Time series forecasting is a crucial research area in machine
learning, attracting extensive attention from both academia
and industry. Traditional methods such as ARIMA and
ETS can perform satisfactorily when the data scale is small.
However, they often struggle to handle complex time series
patterns. Although deep learning methods can achieve good
results with large-scale data, they typically rely on a vast
amount of training data, complex model architectures, and
have limited generalization capabilities.

The rise of foundation models has opened up new avenues
for time series prediction. TabPFN (Hollmann et al., 2023;
2025), a foundation model designed for tabular data, trans-
forms complex prediction tasks into tabular regression tasks.
Combined with feature engineering, it demonstrates perfor-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

mance comparable to or even superior to professional time
series models in zero-shot prediction scenarios. TabPFN-TS
(TabPFN for Time Series) (Hoo et al., 2025), developed
based on TabPFN, is specifically tailored for time series
prediction. It converts time series data into tabular form and
uses calendar features of timestamps, such as sine-cosine
encodings of year, month, and day, along with running in-
dices as input features, enabling TabPFN to process time
series data.

However, TabPFN-TS is highly dependent on external times-
tamp calendar features during feature engineering, showing
deficiencies in mining the internal periodicity of time series
itself. When dealing with non-standard cycles (e.g. semester
cycles in universities), since the model fails to fully consider
the intrinsic periodic laws of the data during feature con-
struction, it has difficulty capturing complex and variable
periodic patterns, thus restricting the application scope of
TabPFN-TS to a certain extent.

This paper presents a TabPFN-based time series prediction
method based on the intrinsic periodicity of data. By analyz-
ing the spectral characteristics of time series through FFT,
extracting the periods corresponding to the frequencies with
the highest amplitudes, and constructing input feature ma-
trices based on these periods, the method enables TabPFN
to more accurately capture the internal periodic patterns of
data, thereby improving prediction performance. Experi-
mental results on multiple datasets show that our proposed
method outperforms TabPFN-TS, offering a promising al-
ternative for time series prediction using TabPFN.

2. Related Work
2.1. Traditional Time Series Prediction Methods

Traditional methods like ARIMA (AutoRegressive Inte-
grated Moving Average) and ETS (Error, Trend, Seasonal)
are grounded in statistical theories, predicting by fitting the
trend and seasonal components of data. These methods
are simple in principle and efficient in computation. How-
ever, they have limited capabilities in modeling non-linear
patterns and complex cycles. Their prediction accuracy sig-
nificantly declines, especially when the data contains high
noise or shows variable patterns.
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Figure 1. The overall working framework of our method.

2.2. Deep Learning Models

Deep learning models such as DeepAR (Salinas et al., 2019),
TimesNet (Wu et al., 2023), and several Transformer-based
models including PatchTST (Nie et al., 2023), GPT4TS
(Zhou et al., 2023), iTransformer (Liu et al., 2023), TimeXer
(Wang et al., 2024), etc., automatically extract time se-
ries features through neural networks and can handle high-
dimensional and non-linear data. Nevertheless, these meth-
ods require a large amount of labeled data for training, have
numerous model parameters, incur high training costs, and
are prone to overfitting in small dataset scenarios.

2.3. Foundation Models

In recent years, the application of foundation models in
the time series field has gradually increased. Models like
Chronos (Ansari et al., 2024), Lag-Llama (Rasul et al.,
2024), TimesFM (Das et al., 2024), Moirai (Liu et al.,
2024a), Moment (Goswami et al., 2024), Timer (Liu et al.,
2024c) and Timer-XL (Liu et al., 2024b), etc., achieve zero-
shot prediction through pre-training on large-scale time se-
ries datasets. TabPFN-TS, on the other hand, takes a differ-
ent approach. By transforming time series problems into tab-
ular regression tasks, leveraging timestamp features and the
generalization ability of TabPFN, it achieves zero-shot pre-
diction with much smaller parameter size and outperforms
professional models on multiple datasets. However, its fea-

ture engineering is solely based on external timestamps,
failing to utilize the data’s intrinsic periodic characteristics.

3. Methodology
3.1. Overview

This paper proposes a TabPFN-based time series predic-
tion method that capitalizes on the data’s intrinsic periodic-
ity. The method seeks to demonstrate the effectiveness of
TabPFN in time series prediction tasks by integrating the
intrinsic periodic patterns within time series data and refin-
ing the construction of input feature matrices.The method
mainly consists of four core steps: First, divide the given
time series to obtain subsequences for fitting and predic-
tion; second, use the Fast Fourier Transform to extract key
periodic information from the historical sequence; third,
construct input feature matrices and label sequences based
on the extracted periods; finally, input the constructed data
into the TabPFN model for prediction, and evaluate the pre-
diction results. The overall working framework is illustrated
in Figure 1.

3.2. Problem Definition

Consider a time series L = [x1, x2, . . . , xN ]. The ob-
jective is to forecast its terminal subsequence ytest =
[xN−m+1, . . . , xN ], which has a length of m. To begin,
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Table 1. MAE comparison of our method and TabPFN-TS on the test datasets. The optimal performance is highlighted in bold, and the
second-best performance is underlined. The lengths l and m are shown as integer multiples of the period length.

monash tourism monthly (period=12) m4 hourly (period=24)
item id 0 item id 1 item id 0 item id 1

m: 2x m: 1x m: 2x m: 1x m: 2x m: 1x m: 2x m: 1x

TabPFN-TS 144.48 200.06 14435.49 9574.02 27.34 24.07 379.12 118.52

Ours l: 1x 182.68 268.59 7321.70 7946.79 23.31 23.15 220.93 160.81
l: 2x 183.21 187.26 9131.62 8408.83 33.93 14.34 148.63 194.97
l: 3x 155.97 231.12 13747.95 10455.99 23.39 27.06 197.43 70.83
l: 4x 214.78 199.16 19525.28 10603.79 17.41 21.97 208.44 71.88

partition L into a historical sequence R = [x1, . . . , xN−m]
and the target prediction sequence ytest (denoted as question
mark in Figure 1). Here, R is used to construct the input
feature matrices Xtrain, Xtest and ytrain used in TabPFN.

3.3. Periodic Feature Extraction

Apply the Fast Fourier Transform to the historical sequence
R, converting the time-domain signal into a frequency-
domain representation to obtain the spectrum. In the spec-
trum, the amplitudes corresponding to different frequencies
reflect the intensity of the frequency components in the orig-
inal time series. Select the k frequencies {f1, f2, . . . , fk}
with the highest amplitudes, and calculate the corresponding
periods {Ti = 1/fi | i = 1, 2, . . . , k} according to the re-
ciprocal relationship between period and frequency. These
periods reflect the periodic patterns of the data.

3.4. Feature Matrix Construction

Selection of ytrain: Extract a subsequence with a length of
l from the end of R as ytrain = [xN−m−l+1, . . . , xN−m].
Note that both ytrain and ytest are one-dimensional column
vectors.

Construction of Xtrain and Xtest: For each element yj in
ytrain and ytest, extract historical values from R at intervals
of Ti according to the extracted period Ti to form feature
vectors. Specifically, for each element yj , for each period
Ti(i = 1, 2, . . . , k) in turn, trace back along the histori-
cal sequence R starting from the position corresponding
to yj until reaching the beginning of R. Extract all the
values at the positions separated by period Ti during the
tracing process. Each set of extracted values for a single
period forms a feature sub-vector. Combine these feature
sub-vectors to create a feature vector containing multiple
elements for each period, resulting in a total feature vector
with a length related to the number of traced elements and
periods. Combine the feature vectors corresponding to all
elements to form the two-dimensional matrices Xtrain and
Xtest. Here, Xtrain is used for model fitting and Xtest is used
to generate prediction results. It should be emphasized that,

according to the construction rules, each column in Xtrain
and Xtest will be composed of sequential elements from R.
Columns containing ytest values within Xtest (if any) must
be excluded. This step is to prevent the model from having
prior knowledge of ytest.

3.5. Prediction with TabPFN

Feed the constructed Xtrain and ytrain into TabPFN for fitting.
Subsequently, input Xtest into TabPFN to generate the pre-
dicted values ŷtest. Finally, compare the prediction results
ŷtest with the true values ytest by calculating MAE (Mean
Absolute Error).

4. Experiments
4.1. Experimental Design

Test Datasets: We followed the same experimental datasets
as those utilized by TabPFN-TS (Hoo et al., 2025) in their
script in Google Colab . Consistent with the procedures
described in the script, we selected the time series datasets
monash tourism monthly and m4 hourly. Similarly,
we picked the first two time series from each of these
datasets, denoted as item id 0 and 1.

Comparison Method: This paper mainly compares with
TabPFN-TS, which constructs the feature space by perform-
ing sine-cosine encoding on the calendar features of times-
tamps and combining it with running indices, serving as the
basis for time series prediction.

Parameter Configuration: In this preliminary study, pa-
rameter k was set to 1 empirically. But note that k can
be fine-tuned according to the characteristics of different
datasets. The lengths l and m of ytrain and ytest, respectively,
were configured as integer multiples of the period length.
Specifically, the prediction length m was set to 1-multiple
and 2-multiples of the period length, while the length of ytrain
ranged from 1 to 4 times the period length. For TabPFN
model, we utilized version 2.0, configured it for regression
tasks, and set the output type to ”mean”.
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(a) monash tourism monthly (item id 0, 2x periods) (b) monash tourism monthly (item id 1, 2x periods)

(c) m4 hourly (item id 0, 2x periods) (d) m4 hourly (item id 1, 2x periods)

Figure 2. Prediction results visualization of our method and TabPFN-TS.

4.2. Experimental Results

In this section, the experimental results are presented in two
parts to evaluate the performance of the proposed method.

4.2.1. MAE COMPARISON WITH TABPFN-TS

The proposed method was compared with TabPFN-TS us-
ing MAE as evaluation metrics across the test datasets. Ta-
ble 1 summarizes the comparative results, where the opti-
mal performance is highlighted in bold, and the second-best
performance is underlined. The period values were com-
puted via the Fast Fourier Transform (FFT). Specifically,
for the monash tourism monthly dataset, the identified
period is 12, and for the m4 hourly dataset, the period
is 24. From the results, except for a slight inferiority of
our method compared to TabPFN-TS in the first case, our
method outperforms TabPFN-TS in all other cases.

4.2.2. PREDICTION RESULTS VISUALIZATION

Figure 2 illustrates the prediction results of our method and
TabPFN-TS, providing a visual comparison between the
predicted and actual time series values. A prediction length
of 2-multiples period was chosen. The best results obtained

by our method were selected for presentation. For the spe-
cific case of monash tourism monthly with item id 0,
although the MAE of our method is marginally higher than
that of TabPFN-TS, the two prediction curves are almost
overlapping. While in all other cases, our method shows
better performance.

5. Conclusion
This paper presents a TabPFN-based time series prediction
method that capitalizes on the intrinsic periodicity within
data. By extracting the dominant periods of time series
through FFT and constructing feature matrices, a new mode
of time series prediction based on TabPFN is explored. The
experimental results demonstrate that the proposed method
outperforms TabPFN-TS.

Given that the work in this paper is still in its preliminary
stages, future research endeavors will encompass compre-
hensive experiments across a more extensive and diverse
datasets. We will also investigate in more detail the utiliza-
tion of parameter k and incorporate a wider variety of co-
variates like timestamp features used in TabPFN-TS, along
with weather and other relevant factors to enable practical
application in real-world time series forecasting.
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