
1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

FASTRM: AN EFFICIENT AND AUTOMATIC EXPLAIN-
ABILITY FRAMEWORK FOR MULTIMODAL GENERATIVE
MODELS

Gabriela Ben Melech Stan, Estelle Aflalo∗, Man Luo, Shachar Rosenman, Tiep Le, Shao-Yen
Tseng, Vasudev Lal
Intel Labs, Santa Clara
{gabriela.ben.melech.stan, estelle.aflalo, man.luo,
shachar.rosenman, tiep.le, shao-yen.tseng, vasudev.lal}@intel.com

Sayak Paul
Hugging Face, India {sayak}@huggingface.co

ABSTRACT

Large Vision Language Models (LVLMs) have demonstrated remarkable reason-
ing capabilities over textual and visual inputs. However, these models remain
prone to generating misinformation. Identifying and mitigating ungrounded re-
sponses is crucial for developing trustworthy AI. Traditional explainability meth-
ods such as gradient-based relevancy maps, offer insight into the decision process
of models, but are often computationally expensive and unsuitable for real-time
output validation. In this work, we introduce FastRM, an efficient method for pre-
dicting explainable Relevancy Maps of LVLMs. Furthermore, FastRM provides
both quantitative and qualitative assessment of model confidence. Experimen-
tal results demonstrate that FastRM achieves a 99.8% reduction in computation
time and a 44.4% reduction in memory footprint compared to traditional relevancy
map generation. FastRM allows explainable AI to be more practical and scalable,
thereby promoting its deployment in real-world applications and enabling users to
more effectively evaluate the reliability of model outputs.

1 INTRODUCTION

Large Vision Language Models (LVLMs) have emerged as the next family of powerful foundation
models that further advance AI applications. LVLMs have shown promising performance enhance-
ments in a wide range of applications such as healthcare Huang et al. (2023); Meskó (2023); Li et al.
(2024), autonomous-driving systems Liao et al. (2024); Cui et al. (2024), education Bewersdorff
et al. (2024), and virtual assistants Team et al. (2023); OpenAI (2024). However, despite their im-
pressive capabilities, LVLMs are often constrained due to the opaqueness of their decision-making
process and susceptibility to generating hallucinations, describing cases when the model produces
responses that are not supported by any information given in the input, but instead are drawn from
the language priors within the LLM Li et al. (2023b); Liu et al. (2024); Bai et al. (2024). To ad-
dress this challenge, explainability methods have sought to provide insight into the reasoning behind
responses as a means to validate model outputs and mitigate future hallucinations.

Some common approaches to explaining model decisions include gradient-based visualization meth-
ods like Grad-CAM Selvaraju et al. (2017) and relevancy maps Chefer et al. (2021c). These methods
have proven to be very useful in providing insight into the generation process of LVLMs Stan et al.
(2024a); Zhang et al. (2024b), as well as improving visual aptitude Chefer et al. (2022).

Gradient-based relevancy maps are valuable for understanding model predictions but are computa-
tionally expensive and memory-intensive, especially for large models with long output sequences,
making deployment in real-time or resource-constrained scenarios challenging. To tackle these chal-
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lenges, we introduce a novel probing module for LVLMs, enabling the prediction of explainable
relevancy maps without reliance on gradient-based methods. This approach seeks to distill the ex-
plainability properties of relevancy maps into a proxy model. Such inherently explainable model
outputs are crucial for ensuring the reliability and safety required for the broad adoption of LVLMs.

Our contributions are threefold: (1) We introduce a novel approach to enhancing model interpretabil-
ity by distilling insights from a high-performance explainability method into a simpler alternative
with lower computational and memory demands. This approach differs from existing techniques
that distill the complex model into an inherently interpretable one. (2) Our model is able to provide
on-the-fly explanations that can be used to judge the validity of model decisions dynamically, en-
hancing its practicality and making it more deployable in real-world scenarios. (3) We introduce a
novel metric to quantify model uncertainty based on the entropy of outputs of our model.

2 RELATED WORK

Explainable methods In their study, Ras et al. (2021) introduce three dimensions to classify
explainable methods: model distillation, intrinsic methods, and visualization methods. Model dis-
tillation such as Ribeiro et al. (2016) offers a way to provide explanations alongside the model’s
outputs by mimicking the input/output behavior. In general, the distillation method is interpretable
by nature. Intrinsinc methods (such as Hendricks et al. (2016)) make use of a model that has been
specifically created to render an explanation along with its output. An additional explanation “task”
can be added to the original model and jointly trained along with the original task providing the ex-
pected explanation. Here, the explainable method is by itself a black box but helps to understand the
model behaviors. Lastly, visualization methods identify input features causing a maximum response
influencing the model’s output. Methods include perturbation-based and gradient-based techniques
( Mahendran & Vedaldi (2016); Dabkowski & Gal (2017); Simonyan et al. (2014)). Our work posi-
tions itself at the intersection of the 3 types of methods enunciated above. We propose to extend a
black box LVLM to render a visual explanation by distilling from interpretable methods.

Relevancy Map Based Interpretability Several methods have been proposed to actively guide
models by regularizing their attributions across various tasks, including classification Ross et al.
(2017); Gao et al. (2022a;b), visual question answering Selvaraju et al. (2019); Teney et al. (2020),
segmentation Li et al. (2018), and knowledge distillation Fernandes et al. (2022). These methods
aim not only to enhance performance but also to guarantee that the model is ‘right for the right
reasons’ Ross et al. (2017). For transformer-based architectures, relevancy maps have proven to be
effective tools for providing interpretable explanations of model predictions Chefer et al. (2021a);
Zhang et al. (2024c); Stan et al. (2024b). These explainability techniques play a crucial role in eluci-
dating model decision-making processes, often revealing that models may disregard certain objects
Chefer et al. (2021b) or fail to attend to relevant input regions Stan et al. (2024a). The approach
proposed by Chefer et al. (2021c) utilizes attention maps from each attention layer along with their
gradients to generate relevancy maps. However, this method incurs significant memory overhead
and increases inference latency, rendering it less suitable for resource-constrained environments.

Confidence Score Previous methods for estimating model confidence include entropy-based mea-
sures applied to the models output probabilities, often requiring calibration due to sensitivity to
distribution shifts Tu et al. (2024); Yona et al. (2022). Alternatively, consistency-based assessment
methods, which evaluate model responses to semantically equivalent question rephrasing Khan & Fu
(2024), or vision perturbation Zhang et al. (2024a), require multiple inferences through the LVLM.
Fang et al. (2024) introduced a method to assess visual uncertainty of each image token by projecting
it into the text space. Our method offers an efficient way to assess model confidence both qualita-
tively through the generated relevancy maps, increasing interpretability and quantitatively through
the computation of their entropy.

3 METHOD

In this work, we introduce FastRM, a framework for efficiently predicting relevancy maps that high-
light image regions attended to by a model during response generation. Specifically, FastRM fea-
tures a lightweight proxy module that mimics the overall behavior of the relevancy maps introduced
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by Chefer et al. (2021c), which we denote as the Baseline throughout this paper. An high-level
overview of FastRM is shown in Figure 1. Unlike conventional methods that require storing all
attention weights and computing their gradients with respect to model outputs, our model offers a
fast way to estimate the relevancy map with a reduced memory footprint and latency.

Figure 1: Overview of FastRM. Given an input, the LVLM produces hidden states for
each generated token. Then, FastRM generates the relevancy map RFastRM which is
subsequently compared to RGT obtained after binarizing the baseline relevancy map.

Dataset Creation To train our FastRM models, we utilized the VQA training dataset Goyal et al.
(2017). For each input question, we generated the answer and for each output token, we save both
the relevancy map R, as computed in Chefer et al. (2021c), and the final hidden states H .

Given that the input sequence consists of Nin tokens and the output sequence consists of Nout

tokens. The total length is thus N = Nin + Nout. We denote the relevancy scores matrix of
all tokens up to output token i as Ri with dimensions (Nin + i,Nin + i). For example, R0 will
represent the relevancy scores of all input tokens and is of shape (Nin, Nin).

Each row j of the relevancy matrix represents the relevancy scores of token j +1 with respect to all
previous j tokens. We denote this vector of length j as the relevancy map of token j+1. Specifically,
the last row of Ri, Ri[−1, :], will represent the relevancy map of the output token i to all previous
input and output tokens (Nin + i. Since we focus on the relevance of the output tokens to the visual
input modality, we utilize only the relevancy scores associated with the input vision patches of each
relevancy map. For LLaVA types of architecture, the number of patches is 24x24=576. This results
in an output of size (1, 576).

Since over 90% of image tokens have relevancy scores below 5% of the maximum, as shown in
Figure 2(a), this means that fewer than 10% have significant scores. This highlights the need to focus
only on the most relevant tokens, as lower-scored ones are often background noise. To address this,
we applied a threshold to binarize our input, referred to as “labeling threshold”, aiming to prioritize
the prediction of the image’s relevant portions while minimizing emphasis on less significant areas.

For a relevancy map associated with a token at position j, the labeling threshold is applied as follows:

RGTj =

{
1 if R[−1,j]V ≥ max(R[−1,j]V )× threshold
0 otherwise

(1)

Where Rv is the relevancy with respect to the visual tokens, while the “labeling threshold” is defined
empirically and set to 0.3 (see ablations below). As the labeling threshold increases, fewer pixels
are considered during training, causing the maps to focus on smaller but more significant regions of
interest. Figure 1 shows the data collection pipeline. Our training dataset contains 100,000 samples,
representing 10,000 queries from VQA, with each query averaging 10 tokens per response.

FastRM Model FastRM consists of a normalization layer followed by a single-head self-attention
layer. FastRM processes the last hidden states of an LVLM to predict the corresponding visual rele-
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(a) Relevancy distribution (b) Output Lengths

Figure 2: Left: Distribution of image patches relevancy scores for the baseline and FastRM-7.
Showing patches with relevancy scores exceeding 5% of the maximum relevancy value for each
image, while the inset shows the full distribution. Right: shows the distribution of the output lengths.

vancy map. It employs an attention layer to compute and output the attention scores. We formulate
the task as a classification problem for each image patch. Our model predicts the probability of a
patch being relevant to the model decision. Our approach depends solely on the representation of
the final hidden state. Since the original implementation of the relevancy maps from Chefer et al.
(2021c) places more emphasis on the attention scores of the last hidden states, we hypothesize that
the last hidden state, derived from these attention scores, would contain sufficient information to
produce these maps. We can thus save memory and only use the last hidden states instead of storing
all of the attentions and their gradients during runtime. A diagram of the model is shown in Figure
1.

FastRM was trained on a dataset of 100k samples, where each sample is a tuple of (last hidden state,
vision relevancy vector) as described above. First, the last hidden state was normalized, then passed
through FastRM, generating attention scores. We then extract the scores of the current generated
token with respect to the image tokens that we processed with a sigmoid activation. For training,
We used the Adam optimizer with a learning rate of 2× 10−5, and a batch size of 128. The training
was conducted for 3500 steps using cross-entropy loss.

4 RESULTS

Relevancy maps highlight the image regions a model focuses on when generating an answer, im-
proving interpretability and trust. FastRM enhances this by providing an efficient and easy-to-use
method for generating relevancy maps during inference and interpreting decision-making, see code
snippet Figure 8. When the model attends to the relevant region of the image, we can have greater
confidence in the accuracy of the answer. This hypothesis will be measured quantitatively in this
section. We showcase the validity of FastRM on the LLaVA family of LVLMs Liu et al. (2023)
and apply our method on the variants LLaVA-v1.5-7B and LLaVA-v1.5-13B to produce models
which we name FastRM-7 and FastRM-13, respectively. The difference between the FastRM-7 and
FastRM-13 architectures lies in the hidden sizes of the attention layer, which are 4096 and 5120,
respectively. Experiments will be carried out for 10,000 randomly selected samples from VQA
validation set. In this section, we provide both quantitative and qualitative evaluations, along with
ablations studies.

Quantitative We computed the accuracy and F1 score of FastRM by comparing the binarized la-
bels with the predicted output obtained by applying different classification thresholds. The labeling
and classification thresholds are distinct and serve different purposes. The labeling threshold is em-
ployed during the data preprocessing stage to define the relevance of data points, directly influencing
the ground truth labels the model learns from. Changes in this threshold alter the training examples.
In contrast, the classification threshold is set at inference time to determine how the model’s proba-
bility score output is converted into a final prediction to decide whether the image token is relevant
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or irrelevant. Optimizing the classification threshold enables achieving the highest F1 score, without
modifying the underlying model.
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Figure 3: Performance of LLaVA v1.5-7B: Accuracy and F1 score of FastRM-7 and FastRM-13
across different classification thresholds.

The results in Figure 3(a) indicate that both FastRM-7 and FastRM-13 achieve the highest accu-
racy for the threshold of 0.5. This suggests that our model is well-calibrated and that the output
probabilities are close to the true likelihood of the image token being relevant. FastRM-13 has an
overall higher accuracy compared to FastRM-7. Since our predictions are imbalanced as described
in Figure 2(a), we also need to measure performance in terms of recall/precision. Figure 3(b) shows
how the F1 score behaves for different classification thresholds. For FastRM-13, the best F1-score
is reached for a threshold between 0.4 and 0.5 meeting the accuracy results. For FastRM-7, as we
increase the threshold beyond 0.4, our model becomes more conservative in predicting the relevant
tokens, requiring higher confidence to label a token as relevant. Since we prioritize high recall, the
optimal classification threshold should be 0.4. Indeed, we aim to ensure that our model does not
miss any relevant tokens, even if it means allowing some tokens to be labeled as relevant when they
are not. That way, we can make sure that the model is focusing at least on the correct areas, ensuring
it attends to the right places, even if some of the attention is misplaced. This is crucial for tasks
where capturing all pertinent information is essential (e.g. medical image analysis).

To evaluate the generalizability of our proxy model, trained on the VQA training dataset, we ex-
panded the evaluation to two additional datasets: a 10,000-sample subset from the GQA validation
dataset Hudson & Manning (2019) and POPE Li et al. (2023a) which contains 9,000 samples. Ta-
ble 1 presents the accuracy and F1 score per model across benchmarks for a decision threshold of
0.5. Notably, the accuracy and F1 scores are higher for GQA and POPE compared to the in-domain
dataset, VQA, on which FastRM was trained. This indicates strong generalizability and demon-
strates that our model does not overfit. Figure 10 in the Appendix presents the perturbation-based
evaluations for FastRM-7 and shows similar behaviors to VQA, fulfilling its role in identifying re-
gions that are crucial for the model’s answers.

To demonstrate that the output generated by FastRM is indeed correlated with the model’s focus on
the image, we conducted positive and negative-perturbation based experiments by masking image
patches based on their relevancy values. The underlying intuition is that masking the most rele-
vant image patches should significantly degrade performance, and masking the least relevant ones
should have minimal impact. To enforce concise, VQA-style responses, we added to the prompt the
following: Answer the question using up to two words. We set the decoding tem-
perature to 0, to ensure deterministic outputs. We then incrementally removed image patches and
computed VQA accuracy. In positive perturbation, image patches are removed in order of highest to
lowest relevance, whereas in the negative version, they are removed from lowest to highest.

We compared our approach with the following methods: random removal of image patches, Grad-
CAM as introduced by Selvaraju et al. (2017), and relevancy maps computed based on attentions
and their gradients as presented by Chefer et al. (2021b), referred to as the ”Baseline” throughout the
paper. For random selection, we performed five experiments and reported the average performance.
Figures 4(a) and 4(b) illustrate the results of masking different percentages of image patches. As we
progressively mask image tokens selected by different methods, our method leads to a large degra-
dation in performance for the positive perturbations. This indicates that FastRM selects the most
relevant image patches more effectively compared to the other methods. Our method consistently
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(a) PP - FastRM-7 (b) PP - FastRM-13 (c) NP - FastRM-7 (d) NP - FastRM-13

Figure 4: Perturbation-based evaluation. For positive perturbation, PP (smaller AUC is better). For
negative perturbation, NP (larger AUC is better).

(a) Labeling threshold (b) Training dataset size (c) Number of training steps

Figure 5: Ablations studies for FastRM-13. The figure shows how the labeling threshold, the training
data size and the number of training steps affect the PP-based evaluation. Smaller AUC is better

Accuracy F1 Score
VQA GQA POPE VQA GQA POPE

FastRM7 0.981 0.999 0.99 0.57 0.66 0.63
FastRM13 0.993 0.996 0.998 0.72 0.81 0.84

Table 1: Accuracies and F1 Scores for FastRM7 and FastRM13 across benchmarks.

results in a greater performance drop than the random selection and GradCAM methods. However,
we notice a sensitively slower performance drop than the baseline. This slightly lower performance
is expected when dealing with model distillation and introduces a trade-off between memory/speed
and accuracy. Similarly, we also performed negative perturbation-based evaluations, in which mask-
ing the least relevant image patches is expected to have a minimal effect on accuracy. Figures 4(c)
and 4(d) show a comparison between FastRM, GradCAM, baseline, and random removal. We ob-
serve that as we mask the least probable relevant patches of the image, FastRM’s accuracy decrease
is comparable with that of the baseline and slower than both random and GradCAM. Indicating
FastRM is robust to the removal of less probable relevant patches, and on par with the baseline.

Qualitative We see a clear correlation between the sigmoid activated FastRM outputs and the
baseline, as shown in Figure 6 for both LLaVAv1.5-7B and LLaVAv1.5-13B. This suggests that the
model has learned to predict the intensity of the relevancy scores on its own, likely capturing the
underlying patterns of relevance in a way that goes beyond the binary values. This supports our
initial hypothesis that the last hidden states contain enough information to capture the patterns of the
relevancy map.

Latency and Memory Efficiency We evaluated the gain in latency and memory footprint on 1000
samples from VQA with a maximum of generated tokens of 100. We first measured memory foot-
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Figure 6: Qualitative comparison between the baseline, FastRM-7 and FastRM-13. The relevancy
maps corresponding to the token highlighted in red from the answer.

(a) Latency (in sec) according to the number of
output tokens

(b) Memory (in Gb) according to the number of
output tokens

Figure 7: Latency and memory footprint for LLaVA v1.5-7B

print and latency using the original computation of the relevancy maps as stated in Chefer et al.
(2021c) using LLavA-v1.5-7b and we compared it with FastRM-7. Figure 7(a) shows an exponen-
tial increase in latency as the number of output tokens increases while our method shows a minimal
increase. Specifically, generating 10 and 100 output tokens takes respectively around 15 seconds
and 14 minutes with the baseline method, while FastRM takes just 0.35 seconds for 100 output to-
kens. Considering that most queries for VQA require between 10 to 30 tokens to answer, as shown
in Figure 2(b), FastRM significantly accelerates the process, making it a more efficient solution for
typical output lengths. VQA involves short questions needing brief answers, but for benchmarks
requiring longer answers, the computation time difference will be even greater. On average, the
latency for computing the relevancy map using the original calculations is 620 times greater than
with our method, representing a 99.8% reduction in time. Figure 7(b) also demonstrates a 44%
memory reduction on average compared to the baseline during the entire generation phase. All the
experiments described in this section were conducted on one NVIDIA A100.

Ablation studies We conducted ablation studies to assess the impact of labeling threshold, dataset
size, and training steps for both FastRM-7 and FastRM-13 performance. We performed positive
perturbation experiments based on their relevancy values probabilities and evaluated the VQA ac-
curacy. We focused on the first 20% of token removal, as this is where we expect to observe the
steeper drop. We focus on ablations for FastRM-13, as FastRM-7 shows less significant differences
across the ablated metrics. Figure 5(a) demonstrates the effect of different labeling thresholds on
performance, revealing that a threshold of 0.3 yields the best performance. We trained FastRM-13
with different dataset sizes of 500, 5k, 50k, and 100k samples. 5(b) indicates that the larger training
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set lead to better performance. Finally, 5(c) shows that longer training leads to better performance.
In the latest ablations, FastRM-7 exhibits a similar behavior.

1 model = LVLM. f r o m p r e t r a i n e d ( )
2 proxy = FastRM ( )
3
4 o u t = model . g e n e r a t e ( i n p u t s )
5 f o r l h s in o u t .

l a s t h i d d e n s t a t e s :
6 rm = proxy ( l h s )

Figure 8: Python code snippet

Figure 9: Entropy as a measure of uncertainty

Quantifying model confidence We hypothesize that a more concentrated model is more likely
to generate a correct answer, as it is probably focusing on the relevant area. We quantified this
intuition by computing the entropy of the relevancy maps produced by FastRM. On a subset of 10k
samples from the VQA validation dataset, where LLaVA-7b had an accuracy of 74%, we generated
relevancy maps using FastRM-7 and computed their entropy. To estimate the probability density
function of the entropy values, we applied Kernel Density Estimation (KDE). Figure 9 displays
the histogram of the resulting values, highlighting the distribution differences when accuracy is 0
and 1. Once the KDE has been applied, we can compute the entropy as described in H(X) =

−
∑N

i=1 p(xi) log p(xi) where xi are the relevancy scores and N the number of patches.

The threshold (red dashed line in Figure 9) was determined as the arithmetic mean of the means of
both distributions. According to the Figure, when the entropy of the relevancy map is below the
threshold (representing 63% of the set), the model is highly likely to be correct. However, when
the entropy exceeds this threshold (37% of the set), predicting the expected result becomes more
challenging. To validate this hypothesis, we measured the false positives (FP) and true positives
(TP) in this region across 10k samples (different samples from those used to generate the threshold).
In this situation, a TP means that we expected the answer to be correct and it is, while FP means that
we expected it to be correct when it is not. In the region below the threshold, we hypothesize that
the model accuracy will be 1. We observe 84% of true positives (we expected the model accuracy
to be 1 and it is) against 16% of false positives (we expected the model accuracy to be 1 and it is
not). This result indicates that below the threshold, we can have greater confidence in the model’s
correctness. However, in the region above the threshold, we find 59% of false negatives and 41% of
true negatives. This suggests that when the entropy is in this range, the model has nearly an equal
chance of making a correct or incorrect prediction. We conducted the same experiments on the GQA
and POPE benchmarks to assess the method’s generalizability. We found that below the thresholds,
set using the same technique, we can be confident of the model’s correctness in 83% of cases for
GQA and 86% for POPE.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work we introduced FastRM, a lightweight model distilled from an explainable metric that
improves memory efficiency and reduces latency, enabling real-time model decision qualitative in-
terpretation. FastRM also provides a way to measure the confidence of a model correctness, crucial
for high-stakes scenarios like healthcare and autonomous driving. The limitations include the model
being designed solely to provide a probability of a token’s relevance, rather than offering exact
relevancy maps. Future work could explore applying our approach to other architectures beyond
LLaVA models and to other explainability methods that produce saliency maps. Moreover, integrat-
ing FastRM during LVLM training would lead to improved vision-language grounding, while its
low latency and memory footprint enable seamless feedback integration.
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A APPENDIX

A.1 ADDITIONAL QUANTITATIVE RESULTS

To assess the generalizability of our proxy model, which was trained on the VQA training dataset, we
tested the FastRM proxy on two additional datasets: a 10,000-sample subset of the GQA validation
dataset and POPE, which consists of 9,000 samples. We compare the performance of FastRM to the
baseline model, random removal of image patches, and GradCAM, as shown in Figure 10.

(a) PP on POPE (b) PP on GQA (c) NP on POPE (d) NP on GQA

Figure 10: Perturbation-based evaluation of FastRM-7 on POPE and GQA.
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