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ABSTRACT

The discovery of druggable and structurally distinct allosteric sites across vari-
ous protein classes has introduced new avenues for small molecules to modulate
protein activity and, hence, cellular functions. Ligands that target allosteric sites
may provide advantages like enhanced selectivity and often exhibit the possibility
of targeting existing drug-resistant mutations. However, recent deep learning ap-
proaches show limited effectiveness in predicting allosteric sites, as demonstrated
in the present study. We compare the performance of two deep learning meth-
ods, PUResNetV2.0 and VNEGNN, with Fpocket, a traditional geometry-based
method and P2Rank, a geometry and machine learning ensemble approach.

1 INTRODUCTION

Proteins contain different types of functional sites that play critical roles in their biological activities-
two key types being orthosteric and allosteric sites. Orthosteric sites are the primary binding sites
where substrates or inhibitors directly interact with the protein, often leading to a functional or
catalytic response. Allosteric sites, in contrast, are located distally from the orthosteric site and reg-
ulate protein function by binding to effectors that induce conformational changes (Christopoulos,
2002; Lu et al., 2019). Identifying these sites is essential for drug discovery. Multiple in silico ap-
proaches to predict ligand-binding sites (LBS) on three-dimensional protein structures have emerged
in the past years, employing various approaches from geometry-based techniques like usage of
grids, spheres, or tessellations; energy-based methods, conservation-based methods, template-based
as well as ensemble methods (Xia et al., 2024; Zhao et al., 2020). While existing computational
methods predict multiple LBS, predicting allosteric sites is still faced with significant challenges.
In this study, we compare the performance of four popular methods for LBS prediction- Fpocket
(Le Guilloux et al., 2009), P2Rank (Krivák & Hoksza, 2018), VNEGNN (Sestak et al., 2024) and
PUResNetV2.0 (Jeevan et al., 2024). Fpocket is a geometry-based method, P2Rank a geometry
and machine learning-based method, while VNEGNN and PUResNetV2.0 are deep learning (DL)
methods. While all methods perform comparably on orthosteric sites of our dataset, the DL meth-
ods perform worse on allosteric sites. Our study provides compelling evidence to question if DL
approaches truly outperform traditional geometry-based methods, especially on allosteric LBS.

2 METHODS

All human proteins from the Allosteric Database (ASD) with binding sites of known allosteric func-
tion were compiled (He et al., 2024). An additional 22 proteins with experimentally reported ortho-
and allosteric sites were added to the dataset after a manual search of recent PDB entries, which
were not included in the ASD. The protein structures with complexed orthosteric and allosteric lig-
ands were downloaded from RCSB PDB (Berman et al., 2000), stripped of water molecules and
ions. The ligands were then removed to generate a ”clean” PDB structure used for pocket predic-
tion. The Fpocket, P2Rank and VNEGNN methods were installed and run according to instructions
on the GitHub repositories. PUResNetV2.0 predictions were obtained from the webserver. The
predicted sites were manually verified with the ground truth. The results for each protein with all
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binding sites and predictions are saved as PyMOL session files (DeLano et al., 2002) accessible at
https://doi.org/10.5281/zenodo.14977798.

3 RESULTS Table 1: Model Recall Comparison

Ligand Binding Site Type

Model All Orthosteric Allosteric

PUResNet 0.460 0.845 0.223
VNEGNN 0.328 0.707 0.096
Fpocket 0.954 0.983 0.936
P2Rank 0.789 1.000 0.659

A manually curated dataset of 60 proteins with
152 LBS was compiled to evaluate the differ-
ent prediction methods. Out of 152, 58 sites
were orthosteric, while 94 were allosteric in na-
ture. The predictions were counted as true pos-
itives if the predicted pocket completely or par-
tially overlaps the ligand in the PDB structure.
An example of the ligand-bound protein struc-
ture overlayed with prediction visualizations is
shown in Figure 1, and additional examples are provided in Appendix A1. A comparison of the
models’ predictions is summarized in Table 1 based on recall, considering it is impossible to obtain
true negatives and false negatives without experimental support. A detailed site-wise comparison
is included in Appendix A2. The geometry-based Fpocket ranks highest in predicting ligandable
cavities on the protein across all types of pockets, as well as for predicting allosteric sites. How-
ever, P2Rank proves to be the superior method in predicting orthosteric sites. The more recent deep
learning based PUResNetV2.0 and VNEGNN are not state-of-the-art for LBS prediction.

Figure 1: The tyrosine protein kinase ABL1, represented in green, complexed with asciminib (at the
allosteric or A-site) and nilotinib (orthosteric or O-site), with the reference PDB structure 5MO4,
overlayed with predictions of (a) PUResNetV2.0, (b) VNEGNN, (c) Fpocket and (d) P2Rank pre-
dicted pockets. The ligands are shown in blue, and the predicted pockets are shown in violet.

4 DISCUSSION

Despite the advanced capabilities of DL, which is quoted for its ability to model complex patterns,
the results from this study suggest that DL techniques struggle to accurately predict allosteric LBS.
PUResNetV2.0 may often predict allosteric sites that are present in close proximity to the orthos-
teric site, while distant sites are missed. The poor performance of VNEGNN and PUResNetV2.0
may be attributed to the absence of extensive, high-quality training data. In contrast, methods that
rely on surface topology and shape analysis show more robust performance possibly due to their
reliance on inherent structural features. DL methods typically require large amounts of annotated
examples to generalize effectively, and the relatively small number of experimentally validated al-
losteric sites available for training further exacerbates this issue. Allosteric regulation often involves
conformational changes that are difficult for models to capture, as these changes may not be directly
observable from static protein structures alone. Without sufficient diversity in training examples,
DL models may fail to learn the subtle patterns necessary for accurate allosteric LBS prediction.
The high structural and functional group complexity inherent in the allosteric mechanisms may also
be inadequately represented, which leads to DL methods being unable to fully capture such intricate
biological processes. Geometry-based methods excel by detecting physical pocket characteristics
and conformational flexibility without being overly dependent on training data. DL methods may
improve on allosteric prediction by integrating molecular dynamics features, expanding allosteric
datasets and explicitly modeling structural flexibility. The findings from this study highlight the
need for investigation into the limitations of deep learning approaches and emphasize that, in certain
contexts, traditional methods may still offer competitive performance in allosteric site prediction.
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A APPENDIX

A.1 EXTENDED FIGURES

Figure 2: The beta2 adrenoceptor, represented in green, complexed with allosteric (A-site) and
orthosteric (O-site) ligands shown in blue, with the reference PDB structure 5X7D, overlayed with
predictions of (a) PUResNetV2.0, (b) VNEGNN, (c) Fpocket and (d) P2Rank predicted pockets.
The predicted pockets are shown in violet.

Figure 3: The caspase-1, represented in green, complexed with allosteric (A-site) and orthosteric
(O-site) ligands shown in blue, with the reference PDB structure 2FQQ, overlayed with predictions
of (a) PUResNetV2.0, (b) VNEGNN, (c) Fpocket and (d) P2Rank predicted pockets. The predicted
pockets are shown in violet.

Figure 4: The mu-type opioid receptor-G protein complex, represented in green, complexed with
allosteric (A-site) and orthosteric (O-site) ligands shown in blue, with the reference PDB structure
8K9L, overlayed with predictions of (a) PUResNetV2.0, (b) VNEGNN, (c) Fpocket and (d) P2Rank
predicted pockets. The predicted pockets are shown in violet.
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Figure 5: The G-protein-coupled receptor 40 (GPR40), represented in green, complexed with al-
losteric (A-site) and orthosteric (O-site) ligands shown in blue, with the reference PDB structure
5KW2, overlayed with predictions of (a) PUResNetV2.0 (no pocket predicted), (b) VNEGNN, (c)
Fpocket and (d) P2Rank predicted pockets. The predicted pockets are shown in violet.

A.2 DETAILED COMPARISON OF PREDICTIONS ON EACH LIGAND BINDING SITE

Table 2: Summary of proteins, ligand types, and binding infor-
mation. Abbreviations: PUR—PUResNetV2.0, VNN—VNEGNN,
FPK—FPOCKET, P2R—P2RANK, O—Orthosteric, A—Allosteric, 1-
Correct, 0-Incorrect.

# Gene PDB Multi- LBS LBS Ligand PUR VNN FPK P2R
ID Base mer Index Type Bound

1 CDK2 8VQ4 No 1 O JWS 1 1 1 1
-CCNE1 2 A A1AC5 0 0 1 1

2 GBA1 8P3E Yes 1 O WYC 0 1 1 1
2 O WYC 0 0 0 1
3 O PN8 1 1 1 1
4 O PN8 1 1 1 1
5 A WSI 0 0 0 0

3 PTPN2 9C56 No 1 O 527 1 1 1 1
2 A FRJ 0 0 1 0

4 MALT1 8V4X Yes 1 A A1A 1 0 1 1
2 A A1A 1 0 1 1
3 A A1A 1 0 1 1
4 A A1A 1 0 1 1

5 MOR 8K9L No 1 O 7V7 1 1 1 1
2 A VV9 0 0 1 1

6 MAT2A 8XAM Yes 1 O SAM 1 1 1 1
2 O SAM 0 1 1 1
3 A XRH 0 0 1 1
4 A VUO 0 0 1 0

7 KCNC1 8QUC Yes 1 O PCF 0 0 1 1
2 A WY9 0 0 1 1

8 ABL1 5MO4 No 1 O STI 1 1 1 1
2 A AY7 0 0 1 1

9 CNR1 8IKH No 1 O FMN 1 1 1 1
2 O 8D0 1 0 1 1
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# Gene PDB Multi- LBS LBS Ligand PUR VNN FPK P2R
ID Base mer Index Type Bound

3 A Q2L 0 0 1 0
10 ADRB2 5X7D No 1 O CAU 1 1 1 1

2 A 8VS 0 0 1 1
3 A M3J 0 0 1 0
4 A KBY 0 0 1 0

11 AKT1 4GV1 No 1 O UCB 0 1 1 1
2 A 0XZ 1 0 1 1

12 AMD1 3EPA No 1 O MAO 0 1 1 1
2 A PUT 0 0 1 1

13 AD 2PIQ No 1 O TES 1 1 1 1
2 A 17W 0 0 1 0
3 A RB1 0 0 1 0

14 ALB 2BX8 No 1 A MYR 0 0 1 1
2 A MYR 0 0 1 1
3 A MYR 0 0 1 1
4 A MYR 0 0 1 1
5 A RWF 1 1 1 1
6 A AZQ 0 1 1 1
7 A MYR 0 0 1 1
8 A MYR 0 0 1 0

15 AURKA 5DN3 No 1 O ATP 1 1 1 1
2 A 5DN 0 0 1 0

16 BRAF 1UWH No 1 O ACP 1 1 1 1
2 A 0LI 1 1 1 1

17 CASP1 2FQQ No 1 O Q2Y 1 1 1 1
2 A F1G 0 0 1 1

18 CASP7 1SHJ Yes 1 A NXN 0 1 1 1
2 A 8YM 0 0 1 1
3 A NXN 0 1 1 1
4 A SE1 0 0 1 1

19 CPS1 5DOU Yes 1 O ADP 1 1 1 1
2 O ADP 1 0 1 1
3 A NLG 0 0 1 1
4 A 374 0 0 1 1

20 CRF1R 4K5Y Yes 1 A 1Q5 1 0 1 1
2 A 1Q5 1 0 1 1

21 CTSK 5J94 No 1 O INA 1 1 1 1
2 A 6HM 0 0 0 0

22 DHPS 6PGR Yes 1 A 8XY 1 0 1 1
2 A 8XY 1 0 1 1

23 EP300 6PF1 No 1 O COA 1 1 1 1
2 A OJ7 1 0 1 1

24 FDPS 5DGM No 1 O ZOL 1 1 1 1
2 A 7AM 1 0 1 0
3 A 7AM 0 0 1 0

25 FFAR1 5KW2 No 1 O MK6 0 1 1 1
2 A 6XQ 0 0 1 1

26 FLT3 4RT7 No 1 O P30 1 1 1 1
2 A CXS 0 0 0 0

27 GLS 5JYO Yes 1 O GLU 1 0 1 1
2 A ZBS 0 1 1 1
3 A 63J 0 1 1 1

28 GMDS 5IN4 Yes 1 O GDP 1 0 1 1
2 O NAP 1 1 1 1
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# Gene PDB Multi- LBS LBS Ligand PUR VNN FPK P2R
ID Base mer Index Type Bound

3 A 6CK 0 0 1 1
29 GRM5 5CGC No 1 O MES 0 0 1 1

2 A 51D 1 1 1 1
30 H3C1 6IQ4 No 1 A XIS 0 0 1 0

2 A D0X 0 0 1 0
31 HBB 4ROL Yes 1 O HEM 1 0 1 1

2 A KOH 0 0 1 1
32 HRAS 5ZC6 No 1 O GNP 1 1 1 1

2 A KBF 0 0 1 0
33 IDH1 4UMX Yes 1 O NAP 1 1 1 1

2 A 59D 0 0 1 1
34 IDH3 6L57 Yes 1 O NAI 1 1 1 1

2 A CIT 1 0 1 1
35 KDM4A 5D6W No 1 A 92Y 1 0 1 1
36 KIF11 6HKX Yes 1 O ADP 1 1 1 1

2 A 4A2 0 0 1 1
3 A GCE 1 0 1 1

37 KIF18A 5OCU No 1 O ATP 1 0 1 1
2 A 9V5 0 0 1 0

38 TUBB 5OCU No 1 O GDP 1 0 1 1
2 A TA1 0 0 1 0

39 ALOX5 6NCF No 1 O ACD 1 1 1 1
2 A AF7 0 0 1 1

40 MYH7 4PA0 Yes 1 O CRO 0 0 1 1
2 A 2OW 0 0 1 1

41 NRAS 8VM2 Yes 1 O GTP 1 1 1 1
2 A EZZ 0 0 1 0

42 P2RX3 9IK1 Yes 1 O ATP 1 0 1 1
2 A 128 0 0 1 1
3 A A1L 1 0 1 1
4 A PG4 0 0 1 1

43 PAK1 4ZJI Yes 1 O 4OQ 1 0 1 1
2 A 59U 0 0 0 1

44 PANK3 3MK6 Yes 1 O AN2 1 0 1 1
2 A PKZ 0 0 1 1

45 PARP1 6BHV Yes 1 O DQV 1 0 1 1
2 A 09L 0 0 1 0

46 PCSK9 6U3X No 1 A 63 1 0 1 1
47 MAPK14 8X3M No 1 O LBE 1 1 1 1

2 A B8Z 0 0 1 1
48 PGYB 5IKP No 1 O PLP 1 1 1 1

2 A AMP 0 0 1 1
49 PIK3CA 9C15 No 1 O GNP 1 0 1 1

2 A 70S 0 0 1 0
3 A A1A 0 0 1 1
4 A 71K 0 0 1 1
5 A FB1 0 0 1 0

50 PGC1A 3GN8 No 1 O MOF 1 1 1 1
2 A EPE 0 0 1 0
3 A TLA 0 0 1 1

51 PTPN1 5T19 No 1 O IX1 1 1 1 1
2 A DOP 0 0 0 0

52 PTPN5 6H8R No 1 O CIT 1 1 1 1
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# Gene PDB Multi- LBS LBS Ligand PUR VNN FPK P2R
ID Base mer Index Type Bound

2 A FWB 0 0 0 1
53 PTPN11 5XZR No 1 O JZG 1 1 1 1

2 A 50D 1 0 1 0
3 A DZV 0 0 1 0

54 DUSP3 8TK3 No 1 O PO4 1 1 1 1
2 A I2X 0 0 1 0
3 A I2X 0 0 1 0

55 SIRT1 5BTR Yes 1 O 4I5 1 1 1 1
2 A STL 0 0 1 1
3 A 8QF 0 0 1 0

56 SIRT6 5MFP Yes 1 O AR6 1 1 1 1
2 A 8L9 0 0 1 1

57 SMO 5L7I Yes 1 A VIS 1 1 1 1
58 THRB 2PIN Yes 1 O 4HY 1 1 1 1

2 A LEG 0 0 1 1
59 TTR 5EZP Yes 1 O IPJ 1 0 1 1

2 A AJU 0 0 1 1
3 A 04B 0 0 1 0

60 SMYD3 6YUH No 1 O SAM 1 1 1 1
2 A POW 0 0 1 0
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