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Abstract— We present a modern formulation of Embodied
Question Answering (EQA) as the task of understanding an
environment well enough to answer questions about it in natural
language. An agent can achieve such an understanding by either
drawing upon episodic memory, exemplified by agents on smart
glasses, or by actively exploring the environment, as in the
case of mobile robots. We accompany our formulation with
OpenEQA – the first open-vocabulary benchmark dataset for
EQA. OpenEQA contains over 1600 high-quality human gener-
ated questions drawn from over 180 real-world environments.

In addition to the dataset, we provide an automatic LLM-
powered evaluation protocol that has excellent correlation with
human judgement. Using this dataset and evaluation protocol,
we evaluate several state-of-the-art foundation models and find
that they significantly lag behind human-level performance.
Consequently, OpenEQA stands out as a straightforward,
measurable, and practically relevant benchmark that poses
a considerable challenge to current generation of foundation
models. We hope this inspires and stimulates future research
at the intersection of Embodied AI, conversational agents, and
world models.

I. INTRODUCTION

AI agents are entering the physical world through de-
vices like smartphones, smart glasses, and robots. To best
assist non-expert users, Embodied AI (EAI) agents need a
natural language interface and ”common sense” grounded
in human-centric perception and understanding. We posit
that Embodied Question Answering (EQA) is both an
essential capability for EAI agents and an intuitive way to
probe an agent’s understanding of the world. EQA involves
answering a question posed in natural language, requiring
visual understanding (see fig. 2).

EQA can be studied from an episodic memory (EM-EQA)
perspective or through active exploration (A-EQA), depend-
ing on the EAI agent platform. EM-EQA is particularly
relevant for devices like smart glasses which cannot move au-
tonomously, but can process the episodic memory generated
by human wearers to answer questions. This can enhance
the memory of users, improve perceptual capabilities and
understanding, and provide general world knowledge.
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TABLE I: OpenEQA vs existing benchmarks. OpenEQA
has multiple modalities, real scenes, active agents, and auto-
mated scoring.

Modalities 2* Open
Vocab 2* Real

Scenes 2* EM
(video) 2*A(ctive) 2* LLM

Scoring

RGB Depth Camera

EQA-v1 [1] ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✖
MP3D-EQA [2] ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖
MT-EQA [3] ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✖
IQA [4] ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✖
SQA3D [5] ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖
ScanQA [6] ✔ ✔ ✔ ✖ ✔ ✔ ✖ ✖
RoboVQA [7] ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖
SEED-Bench [8] ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖
MMBench [9] ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✔

OpenEQA (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

The intersection of perception and language has long been
a fertile ground for research in AI. While the broad problem
of EQA [1], [3] and VQA [5], [6], [10] have been studied
extensively, our approach and benchmark differ significantly
along axis such as input modalities, scenes/scans of real-
world spaces, and open-vocabulary questions and answers,
as illustrated in table I. In particular, OpenEQA is the first
open-vocabulary benchmark for EQA, and supports both the
episodic-memory and active settings.

A. Our Contributions

a) Benchmark: We introduce a modern EQA formu-
lation and a concrete evaluation benchmark (OpenEQA)
containing 1600+ questions across over 180+ real-world
environments and photo-realistic simulations.

b) Evaluation: The open-vocabulary nature of our
benchmark increases the complexity of evaluating answers
generated by various models. We utilize LLMs [11], [12]
to score answers and find, through a double blind study,a
strong correlation between our LLM-Match metric and hu-
man preferences.

c) Baselines: We provide baseline results and imple-
mentations, including GPT-4V [13] and Socratic use of
LLMs [11], [12] that leverage captioning models [14] or
generated scene-graph representations [15].

II. BENCHMARK AND EVALUATION

This section presents the EM-EQA and A-EQA problem
statements, how they are instantiated in OpenEQA, the
dataset collection process, and the evaluation metrics.



Spatial Reasoning

Q: Can another cookie jar
fit on the cookie jar shelf?

A*: Yes

Functional Reasoning

Q: Where can I store the
house key?
A*: The lockbox on the door

World Knowledge

Q: Does this house have 
forced air heating?

A*: No

Object Localization

Q: Where is the checkers 
board?

A*: Entryway table

Object State Recognition

Q: Is the microwave
door propped open?

A*: No

Object Recognition

Q: What is left of the
kitchen pass through?

A*: A bicycle

Attribute Recognition

Q: What colors is the
kitchen backsplash?

A*: Black
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Fig. 1: Example questions and dataset statistics of OpenEQA. The episode history H provides a human-like tour of a
home. EQA agents must answer diverse, human-generated questions Q from 7 EQA categories, aiming match the ground
answers A∗. Tours are collected from diverse environments including home and office locations (not shown above). Additional
dataset examples are in appendix XIII. Dataset statistics (right) break down the question distribution by video source (top),
question category (middle), and episodic memory vs active setting. Note that, by design, the HM3D questions are shared
across the EM-EQA and A-EQA settings.

A. Episodic-Memory Question Answering

The EM-EQA task targets scenarios where EAI agents,
leverage episodic memory to address queries without real-
time exploration. Here, the task structure is denoted as
(Q,H,A∗), with Q being an open-ended question, H repre-
senting the agent’s historical observations, and A∗ indicating
the human-annotated correct response. The agent aims to
produce an answer, A, based on its episodic memory that
mirrors the accuracy of A∗. The function signature that
is expected for the agent is described in algorithm 1 in
appendix IV.

B. Active Embodied Question Answering

The A-EQA task addresses scenarios where an agent
independently performs exploratory actions to respond to
questions (e.g. ‘Q: Do we have canned tomatoes at home? A:
Yes, I found canned tomatoes in the pantry.’). Our benchmark
considers questions that require only navigation actions, in
principle, this can be extended to mobile manipulators in
order to incorporate actions like opening doors and drawers.
The task is defined by (Q,S,A∗), where Q and A∗ are
the query and its correct answer and S symbolizes the
simulation’s initial state and responses are assessed in terms
of accuracy and action efficiency. For the agent’s function
specifics, refer to Algorithm 1 in appendix IV.

C. OpenEQA Dataset Collection and Validation

To establish benchmarks for EM-EQA and A-EQA, we
collect a human-generated dataset of (Q,H,A∗) using
videos [16] and 3D scans of real-world environments [17],

[18], [19], [20]. This dataset aims to reflect realistic inquiries
users might pose to AI assistants in devices like smart glasses
or robot helpers.

a) Data Sources: We collected episode histories H
from two sources: ScanNet [16] and HM3D [17], [18].
For ScanNet, we utilized RGB-D data captured from hu-
man explorations, specifically selecting 90 validation scenes
and 10 test scenes. In the case of HM3D, we defined a
heuristic exploration policy to simulate human behavior and
constructed episode histories for 87 validation scenes. For
details, consult appendix II.

b) Question Generation: By having human annotators
view H and generate questions about the environment,
we identified seven primary EQA question categories that
encapsulate typical user inquiries, ranging from object recog-
nition to spatial and functional reasoning (illustrations of
the question categories are provided in fig. 1). The final
OpenEQA dataset is centered around these categories, ensur-
ing a diverse range of questions. Additional details on the
dataset collection and interface can be found in appendix II.

c) Dataset Validation: Each question-answer pair un-
derwent rigorous validation by two annotators to ensure clar-
ity, answerability, and correctness. The final dataset consists
of 1636 validated questions following the statistics in fig. 1.

d) Dataset Splits: Validated (Q,A∗) pairs are applica-
ble to both EM-EQA and A-EQA since S is recorded in
addition to H for simulated scenes and A-EQA agents are
initialized at the same start state S that was used to generate
the episodic memory H for EM-EQA.



e) Additional Object Localization Answers: Recog-
nizing the complexity of the object localization category
questions, which may have multiple correct answers, we
collected additional responses to capture a broader spectrum
of plausible answers.

D. LLM-Match: Evaluating Correctness of Answers

While the open-vocabulary nature makes EQA realistic,
it poses a challenge for evaluation due to multiplicity of
correct answers. One approach to evaluation is human trials,
but it can be prohibitively slow and expensive. We use an
LLM to evaluate the correctness of the answers produced by
EQA agents. Specifically, we adapt the evaluation protocol
introduced in MMBench [9] to the EQA task. Given a
question Qi, human annotated answer A∗

i , and model output
Ai, the LLM is prompted to provide a score σi ∈ {1, . . . 5}.
On this scale, 1 indicates an incorrect response, 5 is a correct
response. We calculate an aggregate LLM-based correctness
metric (LLM-Match) as:

C =
1

N

N∑
i

σi − 1

4
× 100% . (1)

LLM-Match is ilustrated in fig. 4 detailed in appendix III,
and validated against human judgement in section V.

E. Evaluating Efficiency for A-EQA

In A-EQA, we also evaluate the efficiency of the agent,
which measures how quickly the agent answered the question
and favors agents that perform targeted exploration. We
measure efficiency by weighting the correctness metric σi

by the normalized length of the agent’s path li/max(pi, li),
where pi is the timesteps taken by the agent and li is the
timesteps taken in a ground truth path that is sufficient for
answering the question Qi. Formally, our efficiency metric
is defined as:

E =
1

N

N∑
i

(σi − 1)

4
× li

max(pi, li)
× 100%, (2)

III. EQA AGENTS

This section outlines the EQA agents we evaluate, focus-
ing on their use of foundation models (LLMs and VLMs)
without additional tuning. We categorize agents as follows:
(1) blind LLMs [11], [12], (2) Socractic LLMs w/ frame
captions [21], (3) Socractic LLMs w/ scene-graph repre-
sentations [15], and (4) VLMs that can directly process
multiple frames (e.g. GPT-4V [13]); human performance is
also studied for comparison. For a visual depiction of the
different agents refer to fig. 5.
Blind LLMs. Rely solely on textual prompts and questions,

ignoring visual context i.e. A = LLM([ω,Q]) where ω is a
generic prompt; and provide a baseline for knowledge or
guess-based responses. We use GPT-4 and LLaMA-2-70B.
Socratic LLMs w/ Frame Captions. Utilize an image

captioning model (e.g. LLaVA [21], [14]) to generate
text captions of a subset of frames s1, . . . , sk from the
episode history H . This text captions augment the context

of an LLM (GPT4 [11], LLaMA-2-70B [12]) as A =
LLM([ω, z1, . . . zK , Q]) to provide the final answer.
Socratic LLMs w/ Scene-Graph Captions. Construct an

object-centric scene-graph representation G of H , by de-
tecting objects in the scene, extracting its 3D locations
using pose and depth information, and creating sematic
descriptions by utilizing captioning models. We study two
methods: ConceptGraph [15] and Sparse Voxel Map (SVM).
Once a textual scene graph G is generated, we use it for
EQA as A = LLM([ω,G,Q]).
Multi-Frame VLMs. Process frames and textual queries

simultaneously, i.e. A = MultiFrameVLM([ω,Q,H]). We
uniformly extract a subset of 50 frames from H and provide
it to GPT-4V in addition to prompts for generating the
answer; details in appendix V.
Human Agent. We run a study with human participants

to establish human-level performance metrics on our bench-
mark. Each human annotator is provided with a video of the
episode history H and asked to answer all of the questions
Q for that scene.
Agents for A-EQA. We adapted all agents to the active
exploration setting by generating their observational history
with a simple task-agnostic baseline implemented through
frontier exploration. Efficiency in exploration remains an area
for future improvement.
Force-A-Guess when Agents Abstain. Agents are forced to
make a guess rather than abstainining to answer to ensure
that each agent has at least an informed random chance to
answer correctly a question; this avoids automatic failure
for models that are overly conservative when full context
to answer a question is missing. Details of this protocol
are in appendix VII and an analysis of the effects of this
procedure are in appendix VIII.

IV. EXPERIMENTAL RESULTS ON OPENEQA

We present evaluation results of agents described in sec-
tion III in table II, our main observations are the following:

1) Humans achieve excellent performance on the bench-
mark (>85%), confirming the validity of the benchmark and
evaluation metrics.

2) Multi-frame VLMs outperform other agents. Suggest-
ing that a tight integration of perception and language may
significantly benefit EQA.

3) We find that blind LLMs are surprisingly strong base-
lines, suggesting a large degree of regularity in the world
given that some questions can be “guessed” without explicit
visual context of a specific environment. We note that early
works in VQA [22] found similar results.

4) All agents with access to perceptual information in the
form of frame captions or scene-graphs outperform blind
LLMs.

5) When comparing the performance of agents in EM-
EQA and A-EQA, we generally observe lower scores in A-
EQA, underscoring the challenging nature of the A-EQA
benchmark and the importance of efficient exploration in
interactive settings.



TABLE II: LLM-Match and efficiency scores on
OpenEQA. EM-EQA results are broken down by data
source. A-EQA results include both correctness (Eq. 1)
efficiency (Eq. 2) scores.

EM-EQA A-EQA

# method ScanNet
eq. (1)

HM3D
eq. (1)

ALL
eq. (1)

HM3D
eq. (1)

HM3D
eq. (2)

Blind LLMs
1 GPT-4 32.5±1.2 35.5±1.7 33.5±1.0 35.5±1.7 -
2 LLaMA-2 27.9±1.2 29.0±1.7 28.3±1.0 29.0±1.7 -

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 45.4±1.3 40.0±1.8 43.6±1.1 38.1±1.8 7.0±0.4

4 LLaMA-2 w/ LLaVA-1.5 39.6±1.3 31.1±1.8 36.8±1.1 30.9±1.8 5.9±0.4

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ CG 37.8±1.3 34.0±1.7 36.5±1.0 34.4±1.8 6.5±0.4

6 LLaMA-2 w/ CG 31.0±1.2 24.2±1.6 28.7±1.0 23.9±1.6 4.3±0.3

7 GPT-4 w/ SVM 40.9±1.3 35.0±1.8 38.9±1.0 34.2±1.8 6.4±0.4

8 LLaMA-2 w/ SVM 36.0±1.3 30.9±1.8 34.3±1.0 29.9±1.7 5.5±0.4

Multi-Frame VLMs
9 GPT-4V∗ 51.3±2.5 46.6±3.1 49.6±2.0 41.8±3.2 7.5±0.6

Human Agent 87.7±0.7 85.1±1.1 86.8±0.6 85.1±1.1 -

Figure 10 breaks down performance on EM-EQA by
the question categories described in section II-C. Among
all the categories, functional reasoning is the easiest for
EQA agents, followed by object state recognition and world
knowledge. EQA agents suffered the most on object local-
ization and spatial understanding questions. To our surprise,
agents that use scene-graph representations are no better than
frame-captioning agents, even on spatial reasoning questions.
This suggests that more work is needed to incorporate space
understanding and geometry into large models.

V. ANALYSIS AND DISCUSSIONS

Human Alignment and Robustness of LLM-Match.
In section II-D we introduced the LLM-Match metric. We
now test it along two axis: (1) How closely aligned is
the LLM-Match metric with human evaluators? (2) How
sensitive is the LLM-Match metric towards specific choice
of prompts and the LLM?

To answer the question on human alignment, we designed
an experiment to measure the agreement between LLM-
Match metric and human evaluators. We uniformly sampled a
subset of 300 questions from the dataset. To ensure coverage
of the answer distributions, we sampled responses from
blind LLaMA-2, GPT-4V, and human annotated answers.
In a double blind study, we asked 4 human evaluators to
score the 300 responses using an evaluation prompt similar
to the one used by LLM-Match. We found a Spearman’s
ρ = 0.909 between human and LLM evaluation (bootstrap
CI=(0.883,0.928), N=9999), indicating excellent agreement
with human judgement. For reference, human evaluators
correlated with each other in ρ ∈ [0.91, 0.93]. Essentially,
LLM-Match agrees with human evaluation nearly as much
as human subjects do with one another.

To answer the question of LLM-Match robustness, we

designed an experiment to test sensitivity under small per-
turbations to the prompt (see appendix XI). Table VIII
in appendix XI shows that changing the LLM’s role in
the system prompt does not significantly change results, the
scores have a tight correlation with a Spearman’s ρ > 0.95.
Similarly, Table IX in appendix XI shows analogous results
ρ > 0.95 for changing the description of a ‘5’ from ‘perfect
match’ to ‘contains correct answer’, ‘similar to a reasonable
person’, or ‘reasonable professional’. Sensitivity to seed and
temperature has negligible impact as well. Finally, we vary
the LLM used for scoring and find that GPT4 has excellent
agreement with human judgement, but GPT-3.5 and LLaMA-
2 have significantly lower correlation (ρ<0.7). Thus, for
now, we recommend using GPT4 for LLM-Match.
Force-A-Guess. As discussed in section III, when studying
Socractic LLMs augmented with perceptual information, we
found that agents often abstained from answering (e.g. ‘Not
enough information to answer the question.’). Our LLM-
Match metric does not give preferential scoring for absten-
tion. Thus, we defaulted to the answer from the blind LLM
powering an agent when it abstained. In appendix VIII, we
provide statistics on the frequency of abstencion, and study
performance without defaulting to a blind LLM. In general,
we find that GPT-4-based Socratic agents abstain frequently
(up to 55%), and thus, rely heavily on the blind LLM-based
score correction that we apply in our benchmark evaluations.
By contrast, GPT-4V and LLaMA-2 based models do not
abstain as often (up to 12%), and thus the differences
between the two variants is minimal.

VI. CONCLUSION

We introduce OpenEQA, the first realistic benchmark
to study open-vocabulary EQA in both episodic memory
and active settings. OpenEQA includes challenging, human-
generated, open-vocabulary questions that require under-
standing an environment and answering question in natural
language. Our benchmark is primarily enabled by (1) videos
and scans of real-world indoor environments and (2) LLMs
that can be used for scoring open-ended answers in an
efficient and reliable manner, as we demonstrated through
our analyses. We use OpenEQA to benchmark various state-
of-the-art foundation models and their combinations. This
includes approaches that leverage image captions, scene-
graphs, and multi-frame VLMs. Ultimately, we find a large
gap between the best models (GPT-4V at 49.6%) and human-
level performance (at 86.8%). In particular, for questions
that require spatial understanding, the aforementioned agents
perform similarly to blind LLMs, suggesting that further
improvement on perception and semantic grounding is nec-
essary before EQA agents are ready for real-world domains.
In an era where LLMs are smashing hard QA tasks (e.g.
SAT math exams), OpenEQA stands out as a straightforward,
quantifiable, and practically relevant benchmark that poses
considerable challenge to the current generation of founda-
tion models. We thus believe OpenEQA is well positioned to
serve as barometer for tracking future progress in multimodal
learning and scene understanding.
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APPENDIX

APPENDIX I
RELATED WORK

The intersection of perception and language [6], [23], [8],
[24], [25], [26], [27], [28], [29] has long been a fertile
ground for AI research. Prior works studying perception
and language have proposed Visual Question Answering
(VQA) benchmarks, such as VQA-v1 [22], VQA-v2 [30],
OK-VQA [31] and A-OKVQA [32], that focus on answer-
ing questions from a single image. Later works extended
question answering tasks to videos [33], [34], [35] and 3D
scenes [5], [10], [6], [23]. These include benchmark such
as VideoQA [33], SQA3D [5] and ScanRefer [10]. While
conceptually similar to our EM-EQA setting, these prior
benchmarks focused on singular and narrow themes such
as situated reasoning, object localization, object recognition,
activity recognition, temporal window localization, and fu-
ture forecasting [36], [37], [8], [34], [35], [38], [5], [10].
Another closely related line of work is prior benchmarks on
Embodied QA [1], [2], [3], [39] and is conceptually similar
to our A-EQA setting. They focus on leveraging RGB-D
to accomplish navigation tasks in simulation [2], in which
the agent must seek out multiple target locations or objects
sampled from a closed vocabulary set [3] Our work takes
inspiration from such prior works [1] and modernizes it to
be relevant in the current era of foundation models. To our
knowledge, our benchmark is the only one that incorporates
all elements of a real-world use case for EQA: (1) The study
of both episodic memory and active settings to accommodate
for a wide variety of embodied agents like smartphones
and mobile robots, (2) High quality real-world datasets with
broad and non-templated questions, and (3) Embracing open-
vocabulary interactions with users. In addition, our baselines
use modern foundation models trained on vast internet data,
enabling world knowledge beyond the reach of methods
trained solely on simulated interactions.

LLMs have been used to scale the size of benchmarks
either with their use for question and answer generation [8]
or during evaluation time [9], [40]. Evaluation of open-
vocabulary answers remains an open problem in AI. While
the gold-standard remains human evaluations, they are time-
consuming and expensive. An automatic evaluation process
is desirable for benchmarking, quick iteration of research
ideas, and model selection. We setup such a process by
taking inspiration from recent works that study if LLMs
can be used as an evaluation proxy in place of human
raters [9]. Through a randomized control trial, we found
a high correlation between human ratings and GPT-4, as
evidenced by a Spearman correlation coefficient of 0.909.

APPENDIX II
OPENEQA BENCHMARK DETAILS

This section provides further details on the construction
of the OpenEQA benchmark (section II-C). Specifically,
we describe the process for generating human-like episode
histories H for EM-EQA (appendix A), the interface for

collecting question-answer pairs (Q,A∗) (appendix B), and
the interface used to validate the dataset (appendix C).

A. Generating Episode Histories H

Episode histories H provide agents with observations of
the environment, and are used for the EM-EQA split of
OpenEQA in both ScanNet and HM3D environments. The
ScanNet dataset was originally collected by people who were
asked to scan indoor environments with an RGB-D camera.
We use the initial 30 seconds (or 600 frames) of these human
trajectories from ScanNet as EM-EQA episode histories H .

HM3D consists of scanned 3D environments, but does not
come with pre-collected environment tours. Thus, we gen-
erate episode histories H using a two-step, semi-automated
process. First, we generate a shortest-path trajectory from a
starting location xsrc to a destination xdst in the environ-
ment. We select locations such that the geodesic distance
between xsrc and xdst is > 10m and the path curves
(enforced by the criteria that thegeodesicpathdistance ≥
1.1×Euclideanpathdistance). Under these constraints, the
paths typically traverse multiple rooms in the environment.
To collect an episode history H , an agent travels along the
path, while scanning the scene every 1m by rotating up to
180◦. These scans are intended to mimic human-like explo-
ration behavior. After collecting the trajectories, we manually
inspect each trajectory to ensure they properly explore the
scene; we exclude trajectories with extended periods closely
facing walls. This process results in one episode history H
for 63 different HM3D validation environments.

B. Collecting Question-Answer Pairs (Q,A∗)

We use a Google Form to collect question-answer pairs
(Q,A∗) annotations from 8 different AI researchers. Specif-
ically, the annotators watch a video of a given episode
history H , and generate questions for the 7 categories listed
in section II-C. In the form, each category is described and
one to two good and bad example questions are provided.

C. Interface for Dataset Validation

After the initial collection of question-answer pairs Q,A∗,
we ask two independent people to validate each question.
Specifically, the validators are shown an episode history H
and a corresponding question Q on a simple HTML page.
They are asked to provide an answer or mark the question as
invalid (i.e. ambiguous or unanswerable). For the subset of
object localization questions, we ask the validators to provide
two answers for each questions because referring expressions
often have multiple valid options (e.g. an object may be both
‘left of the sink’ and ‘right of the stove’). We remove any
question marked invalid by either validator.



Question: 
What is below the white plastic 
storage bin?

Answer:
Two microwaves.

RGB

Depth

Question: 
Where did I leave my paper bag?

Answer:     
Near two microwaves and a 

plastic drawer.

Question: 
Where can I get some pop drinks?

Answer:     
Buy some from the vending machine 

near the corner of the laundry room
[R | t]
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Fig. 2: Illustration of an episode history along with questions and answers from our OpenEQA benchmark, which
contains 1600+ untemplated questions that test aspects of attribute recognition, spatial understanding, functional reasoning,
and world knowledge. In episodic-memory EQA (EM-EQA), agents parse a sequence of historical sensory observations, and
in active EQA (A-EQA), agents must explore real-world scanned environments to gather information to answer questions.
Natural language answers are scored using our proposed LLM-Match metric, which showed excellent agreement with human
scoring.

APPENDIX III
LLM-BASED EVALUATION DETAILS

OpenEQA questions often require open-ended answers,
we use an LLM to evaluate correctness of answer produced
by EQA agents. We prompt an LLM to compare human
annotated answer A∗

i and model output Ai given a question
Qi and output a score σi on a scale of 1 to 5. On this scale,
1 indicates an incorrect response, 5 is a correct response and
intermediate values represent different levels of similarity.
Since questions can often have multiple correct answers,
we also provide extra answers to the LLM prompt during
scoring. We show the LLM prompt in Figure 3. Given the
scores σi, we calculate an aggregate LLM-based correctness
metric (LLM-Match) using Equation eq:em-eqa-metric.

APPENDIX IV
EQA AGENT FUNCTION SIGNATURES

In this section, we describe the function signature that is
expected from an agent by OpenEQA benchmark.

Box 1 describes the function signature for the EM-EQA
task. An agent is expected to produce a text answer to a
question based on an episode history. The episode history
generally consists of RGB, depth, camera pose, and camera
intrinsic information. The benchmark does not prescribe
any specific way to use the history. A variety of different
approaches and representations of the history can be pursued
by researchers, such as point clouds, NeRFs, or instance
maps. Since all methods have the same set of episode history
information at their disposal, it allows for a fair comparison
of methods. The final natural language answer is evaluated
using LLM-Match metric described in section II-D and
appendix III.

Similarly, Box 1 also describes the expected function
signature for A-EQA task. Here, an agent does not receive an

episode history and must generate its own experience through
exploration. To allow standardization, we provide access to
the simulation environment and start state as part of the
benchmark. The state allows for instantiating an environment
and fixing the starting location of the agent and various
objects. We do not prescribe a specific navigation API
for the benchmark, researchers are free to pursue different
abstractions such as atomic navigation actions or navigation
skills, as long as it doesn’t use any privileged simulation
information. The final answer is evaluated for correctness
using LLM-Match, and the efficiency (see section II-E) is
computed using the number of atomic actions taken by the
agent (to allow for standardization).

APPENDIX V
BASELINE AGENT DETAILS

This section provides additional details and LLM prompts
for the blind LLM baseline (appendix A), Socratic LLM
w/ Frame Captions example (appendix B), and GPT-4V
(appendix C).

A. Blind LLM Prompt and Details

The prompt used for both our LLaMA-2 and GPT-4 blind
LLM baselines is illustrated in fig. 6. We use the 70B
parameter version of LLaMA-2 that is fine-tuned for chat,
and the gpt-4-0613 version of GPT-4.

B. Socratic LLM w/ Frame Captions Example

Figure 7 shows how Socratic LLM w/ Frame Captions
baseline produces an answer to a question given K frames
sampled from episodic memory H . We use LLaVa-1.5
to generate image captions. We use the 70B parameter
version of LLaMA-2 that is fine-tuned for chat, and the
gpt-4-0613 version of GPT-4 for large language model.



Fig. 3: Prompt used for LLM-Match scoring. The placeholders {question}, {answer}, {extra answers}, and
{prediction} are replaced by the question Q, ground truth answer A∗, additional answer, and the agent’s predicted
answer A, respectively. Note that the extra answers are only available for object localization questions. When not available,
corresponding sections of the prompt are omitted.

You are an AI assistant who will help me to evaluate the response given the question, the correct answer, and
extra answers that are also correct. To mark a response, you should output a single integer between 1 and 5
(including 1, 5). 5 means that the response perfectly matches the answer or any of the extra answers. 1 means that
the response is completely different from the answer and all of the extra answers.

Example 1:
Question: Is it overcast?
Answer: no
Extra Answers: [’doesn’t look like it’, ’no’,’ it’s sunny’]
Response: yes
Your mark: 1

Example 2:
Question: Who is standing at the table?
Answer: woman
Extra Answers: [’a woman’, ’a lady’, ’woman’]
Response: Jessica
Your mark: 3

Example 3:
Question: Are there drapes to the right of the bed?
Answer: yes
Extra Answers: [’yes, there are drapes’, ’yeah’, ’the drapes are to the right of the king bed’]
Response: yes
Your mark: 5

Your Turn:
Question: {question}
Answer: {answer}
Extra Answers: {extra answers}
Response: {prediction}

Human annotated answer 
A*

“Two microwaves”

Episodic Memory H

“microwave”

Generated answer A 

(Open Vocabulary)

Scoring Prompt

Prompt: …

EQA Agent

LLM Scorer

(Automatic eval)

Question Q

“What is below the white  
plastic storage bin?”

Metrics

Fig. 4: Illustration of LLM-Match evaluation and workflow.

C. GPT-4V Details

Given an episodic memory H , we draw K frames and
pass it to GPT-4V (through the API) in addition to question
Q and prompt ω. We use chain-of-thought prompting in ω.
We choose K = 50 for EM-EQA and K = 75 for A-EQA.
Figure 8 shows the prompt ω and the input format passed to
GPT-4V.

APPENDIX VI
SPARSE VOXEL MAPS

For building SVM, we use K uniformly-sampled frames
from the episode history H . K varies across difference
scenes but the principle is to find the minimum number of
K (for reducing the run-time memory consumption) to cover
the whole environment. We process each sampled frame with
the following two steps:
Step 1. Detecting object views in the frame using Detic.
Each object view v is a tuple of ⟨c, b⟩, where c is the 2D

image crop of the object and b is the 3D bounding box in the
world coordinate system. We first extract object masks from
the frame by setting the vocabulary for Detic to more than
500 household object categories. Then we get the image crop
c around each detected mask with an additional margin. We
then use depth information to get a 3D point cloud where
we run DBSCAN [41] to further filter out background points,
and compute the bounding box b. Note that we only consider
depths that are in the range of [0.1m, 4m].
Step 2. Associating each object view v with a global object
instance o. Most objects will be detected in more than one
frame, and a main goal of SVM is to de-duplicate object
views to create global object instances. Each global object
instance o is a tuple of ⟨C, b∗⟩, where C is a list a image
crops (i.e., c) from multiple viewpoints (i.e., v), and b∗ is
a re-computed 3D bounding box from a concatenated point
cloud of different views. For matching v to o, SVM considers
3D bounding box overlapping and CLIP [42] embedding
similarity.

After SVM is constructed, we then select the best crop
from C per global instance o, where the object mask takes
up the largest number of pixels. Each selected crop is passed
to LLAVA-1.5 [21] to get the textual description, and all the
descriptions with the instances’ 3D coordinates (center of the
bounding box b∗) are wrapped in a prompt for an LLM to
answer the question Q. Limited by the LLM’s capacity, we
only consider topN (N = 75) instances ranked by the CLIP
similarity between their visual feature and Q from all the
instances we detect in SVM.
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A: A chalkboard with various writings 
and drawings, a bulletin board, and 
a cork board are hanging on the wall 

perpendicular to the windows

A: A bulletin board with 
various papers and drawings

A: A chalkboard, bulletin 
board, and a cork board

Fig. 5: EQA Agents (Left) Socratic LLMs w/ Image Captions generates captions for frames from episodic memory and
provides it as context to an LLM to generate answer. (Middle) Socratic LLMs w/ Scene-Graph Captions leverage an object-
centric scene-graph representation of episodic memory, which includes captions of object-centric crops and their 3D locations.
(Right) Multi-Frame VLM directly processes visual frames from episodic memory to answer the question.

Algorithm 1 EQA Agent Signatures

def EMEQA_Agent(Q: str, H: dict) -> str:
""" Function signature for EM-EQA Agents

Args:
- Q: EQA question
- H: episodic memory (history)

- keys -> rgb: image,
depth: image,
c_pose: camera pose,
c_in: camera intrinsics

- H["rgb"] = np.array(T, H, W, 3)
- H["depth"] = np.array(T, H, W, 1)
- H["c_pose"] = np.array(T, 6)
- H["c_in"] = np.array(T, 6)

Returns:
- answer: natural language
"""
...

return answer

def AEQA_Agent(Q: str,
S: dict) -> Tuple[str, int]:

""" Function signature for A-EQA Agents

Args:
- Q: EQA question
- S: initial state of simulator

- keys -> metadata
- S["metadata"] = Dict[str, Any]

Returns:
- answer: natural language
- T: episode lifetime. Timesteps

taken to answer the question
"""

env = make_env(S["metadata"])
env.set_state(S)
...
return answer, T

Fig. 6: Prompt used for Blind LLM baselines. The
placeholder {question} is replaced by the question Q.
The same prompt is used for LLaMA-2 and GPT-4.

You are an intelligent question answering agent. I will
ask you questions about an indoor space and you must
provide an answer.

If the question does not provide enough information to
properly answer, provide an appropriate guess.

Q: What machine is on top of the stove?
A: The microwave
Explanation: stoves are typically found in kitchens and
near microwaves.

Q: What piece of furniture is in the middle of the
bedroom?
A: a bed
Explanation: bedrooms almost always contain a bed.

Q: Is the door open or closed?
A: open
Explanation: the door can be in either state, so we
just randomly pick one.

Q: {question}

APPENDIX VII
FORCE-A-GUESS DETAILS

As discussed in section III, we force baseline agents
to guess an answer if they initial abstain – i.e. respond
with an explanation for why the question is unanswerable.
Specifically, we first ask an LLM if the initial answer is an
abstaining response, and if so we replace the answer with a
guess from a blind LLM. For step 1, use the prompt shown
in fig. 9. We provide a comparison baseline performance with
and without this procedure in appendix VIII.

APPENDIX VIII
FORCE-A-GUESS RESULTS

In table III, we present results illustrating the performance
drop for baseline methods when they are allowed to abstain,
rather than being forced to guess an answer. As expected,
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A: A chalkboard with 
various writings 
and drawings, a 

bulletin board, and 
a cork board are 

hanging on the wall 
perpendicular to the 

windows

A computer desk 
with a monitor, 

keyboard, mouse, 
and a printer.

A blue chair is in 
front of a desk with 

a computer and 
printer.

A cluttered desk 
with a bulletin 

board and a cork 
board on the wall.

You are an intelligent embodied agent that can answer questions and plan a series of actions. You will 
be shown a set of images that have been collected from a single home or office space. Given a user 
query, you must output `text` to answer to the question asked by the user. Be as concise and as precise 
as possible.

Your response should start with Answer: and should be formatted as [response(text)]

Example: 
1. Images: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A kitchen table</img_4>, <img_5>A roll of 
tape on a desk</img_5> 
Query: What object is on coffee table? 
Answer: [response("book")] 

2. Images: <img_1>A book on a coffee table</img_1>, <img_2>A gray hat hanging on the wall</
img_2>, <img_3>A mug on a desk</img_3>, <img_4>A kitchen table</img_4>, <img_5>A roll of 
tape on a desk</img_5>
Query: What is the color of hat hanging on the wall? 
Answer: [response("gray")] 

Your turn:
Images: <img_1>A computer desk with a monitor, keyboard, mouse, and a printer.</img_1>, 
<img_2>A blue chair is in front of a desk with a computer and printer.</img_2>,…..,<img_k>A 
cluttered desk with a bulletin board and a cork board on the wall.</img_k>
Query: What is hanging on the wall perpendicular to the windows?

Prompting

Fig. 7: Input example for Socratic LLMs w/ Frame Captions baseline. We first caption each of the K frames with an
image captioner and then prompt the LLM with those captions along with the question. The large langauge model produces
an answer.

Fig. 8: GPT4V input prompt.

You are an intelligent embodied agent that can answer
questions. You will be shown a set of images that have
been collected from a single location. Given a user
query, you must output ‘text‘ to answer to the question
asked by the user.

User Query: {question}
Think step by step.

Fig. 9: Prompt used for Force-A-Guess. The placeholders
{question} and {old answer} are replaced by the
question Q and initial answer A, respectively. The same
prompt is used for LLaMA-2 and GPT-4.

You are an intelligent question answering agent. I need
you to fix the answers to these question.

If the proposed answer says the question is
unanswerable you should output the action ‘‘guess’’.
Otherwise, output the action ‘‘keep’’.

Question: What machine is on top of the stove?
Proposed Answer: the microwave
Action: keep

Question: What piece of furniture is in the middle of
the bedroom?
Proposed Answer: The question is unanswerable from the
provided images.
Action: guess

Question: {question}
Proposed Answer: {old answer}

performance drops for most methods. We find that GPT-4-
based methods (rows 3, 5, and 7) show the largest drop in
performance, which corresponds with GPT-4’s propensity to
abstain. Specifically, for EM-EQA, GPT-4 abstains 36% to
55% of the time (as measured by GPT-4). LLaMA-2-based
methods abstain 3% to 12% of the time (as measured by
LLaMA-2). Thus, we observe minimal changes in LLaMA-
2-based method scores. Finally, GPT-4V abstains 12% of the
time (as measured by GPT-4), corresponding with a small
drop in LLM-Match scores. Similar trends are observe in
the A-EQA setting for all methods.

TABLE III: LLM-Match scores without forcing agents to
guess. *GPT-4V results are calculated on a subset of 500
examples.

# method EM-EQA EM-EQA
(w/o guess)

A-EQA A-EQA
(w/o guess)

Blind LLMs
1 GPT-4 33.5 - 35.5 -
2 LLaMA-2 27.7 - 28.8 -

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 43.6 29.3 (-14.3) 38.1 23.7 (-14.3)
4 LLaMA-2 w/ LLaVA-1.5 36.7 36.2 (-0.6) 30.9 31.2 (+0.4)

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 36.5 18.5 (-18.0) 34.4 12.4 (-21.9)
6 LLaMA-2 w/ ConceptGraphs 28.7 26.6 (-2.0) 23.8 18.9 (-4.8)
7 GPT-4 w/ Sparse Voxel Maps 38.9 27.3 (-11.5) 34.2 21.2 (-13.0)
8 LLaMA-2 w/ Sparse Voxel Maps 34.3 34.6 (+0.3) 29.9 29.3 (-0.6)

Multi-Frame VLMs
9 GPT-4V∗ 49.5 46.7 (-2.8) 41.8 40.6 (-1.2)

Human 86.8 - 85.1 -

APPENDIX IX
FULL RESULTS

Table IV and Table V breaks down performance of dif-
ferent EQA agents, as described in Section III, on EM-EQA
and A-EQA respectively by the seven question categories
described in Section II-C. Due to API limitations, we only
evaluate GPT4V on a subset of 500 OpenEQA questions in
EM-EQA and 184 OpenEQA questions in A-EQA. We find
that EQA agents with visual information excel at localizing
and recognizing objects and attributes, and make better use
of this information to answer questions that require world
knowledge. However, on other categories, their performance
is closer to the blind LLM baseline (GPT-4), indicating
substantial room for improvement on OpenEQA.

APPENDIX X
LLM-MATCH HUMAN ALIGNMENT AND DETAILS

Evaluating open-vocabulary responses to questions is
an open challenge in AI, and in particular for question-
answering. While human evaluation remains the gold-
standard, it is also expensive and time consuming. An
automatic evaluation metric is preferable for benchmarking,



TABLE IV: Category-level Performance on EM-EQA Rows represent the different agents as described in Section III
and columns represent the different category of questions in the dataset, as described in Section II-C. ∗GPT-4V scores are
calculated on a subset of 500 OpenEQA question due to API limitations. Bold numbers indicate max in section.

EQA Category

# method object
recognition

object
localization

attribute
recognition

spatial
understanding

object state
recognition

functional
reasoning

world
knowledge

LLM-Match
(C)

Blind LLMs
1 GPT-4 15.4 20.3 31.5 31.4 51.0 52.2 34.2 33.5±1.0
2 LLaMA-2 10.7 15.3 22.3 25.0 51.7 44.1 29.7 28.3±1.0

Average 13.0 17.8 26.9 28.2 51.3 48.2 31.9

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 36.5 31.9 45.8 36.1 56.0 54.8 44.8 43.6±1.1
4 LLaMA-2 w/ LLaVA-1.5 30.5 18.8 39.4 31.4 50.1 47.4 41.7 36.8±1.1

Average 33.5 25.4 42.6 33.8 53.0 51.1 43.3

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 26.4 17.0 40.6 29.1 55.5 48.4 39.9 36.5±1.0
6 LLaMA-2 w/ ConceptGraphs 17.1 13.9 24.4 27.2 43.5 38.1 39.0 28.7±1.0
7 GPT-4 w/ Sparse Voxel Maps 30.0 20.0 49.6 31.7 55.5 45.4 40.8 38.9±1.0
8 LLaMA-2 w/ Sparse Voxel Maps 23.4 11.7 38.9 30.8 52.8 45.4 39.1 34.3±1.1

Average 24.2 15.6 38.4 29.7 51.8 44.3 39.7

Multi-Frame VLMs
9 GPT-4V∗ 43.4 42.0 57.2 33.6 63.2 57.4 50.7 49.6±2.0

Average All Agents 29.6 22.2 42.3 31.4 53.8 48.1 42.3

Human 87.9 77.3 87.9 86.7 98.7 81.8 87.2 86.8±0.6

TABLE V: Category-level Performance on A-EQA. Rows represent the different agents as described in Section III and
columns represent the different category of questions in the dataset, as described in Section II-C. ∗GPT-4V scores are
calculated on a subset of 184 OpenEQA question due to API limitations. Bold numbers indicate max in section.

EQA Category

# method object
recognition

object
localization

attribute
recognition

spatial
understanding

object state
recognition

functional
reasoning

world
knowledge

LLM-Score
(C)

Blind LLMs
1 GPT-4 25.3 28.4 27.3 37.7 47.2 54.2 29.5 35.5±1.7
2 LLaMA-2 13.7 22.1 16.2 29.7 43.3 50.4 28.8 29.0±1.6

Average 19.5 25.2 21.8 33.7 45.3 52.3 29.2

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 25.0 24.0 34.1 34.4 56.9 53.5 40.6 38.1±1.7
4 LLaMA-2 w/ LLaVA-1.5 19.7 11.7 31.2 28.3 48.1 46.1 35.8 30.9±1.7

Average 22.3 17.8 32.6 31.3 52.5 49.8 38.2

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ ConceptGraphs 25.3 16.5 29.2 37.0 52.2 46.8 37.8 34.4±1.8
6 LLaMA-2 w/ ConceptGraphs 13.3 11.9 18.8 27.9 31.7 31.7 36.5 23.9±1.6
7 GPT-4 w/ Sparse Voxel Maps 29.0 17.2 31.5 31.5 54.2 39.8 38.9 34.2±1.8
8 LLaMA-2 w/ Sparse Voxel Maps 16.7 9.7 33.4 29.0 47.2 40.5 37.5 29.9±1.7

Average 21.1 13.8 28.2 31.3 46.3 39.7 37.7

Multi-Frame VLMs
9 GPT-4V∗ 34.0 34.3 51.5 39.5 51.9 45.6 36.6 41.8±3.2

Average All Agents 23.3 17.9 32.8 32.5 48.9 43.4 37.7

Human 89.7 72.8 85.4 84.8 97.8 78.9 88.5 85.1±1.1

fast iteration, and model selection. We thus use an automatic
LLM-Based evaluation metric in this work as described in
Section II-D. We performed analysis experiments to test the
quality of this metric along two axis: (1) How closely aligned
is the LLM-Match metric with human evaluators? (2) How

sensitive is the LLM-Match metric towards specific choice
of prompts and the LLM?

Human Alignment. To answer the first question, we de-
signed an experiment to measure the agreement between
LLM-Match metric and human evaluators. For this analysis,
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Fig. 10: Category-level performance on EM-EQA. We
find that agents with access to visual information excel at
localizing and recognizing objects and attributes, and make
better use of this information to answer questions that require
world knowledge. However, on other categories performance
is closer to the blind LLM baseline (GPT-4), indicating
substantial room for improvement on OpenEQA. See scores
for all methods in appendix IX.
TABLE VI: Varying LLM used for scoring. On a subset of 100 ques-
tions with answers from GPT-4, GPT-4 scoring shows excellent agreement
with human judgement, while using other LLMs shows lower correlation
(Spearman correlation coefficient).

Scorer LLM ChatGPT-4 ChatGPT3.5 LLaMA 2 Human
ChatGPT-4 1.00 0.66 0.68 0.88
ChatGPT3.5 - 1.00 0.66 0.61
LLaMA 2 - - 1.00 0.63
Human - - - 1.00

we uniformly sampled a subset of 300 questions from
OpenEQA. To ensure coverage of the answer distributions
(i.e. poor, fair, and good answers), we sampled 100 responses
from a blind LLM (LLaMA-2), multi-frame VLM (GPT-4V),
and human baseline answers. In a double blind study, we
then asked 4 human evaluators to score the 300 responses
using an evaluation prompt similar to the one used by LLM-
Match. The evaluators were provided no information about
the source of the response (except an MD5 hash of the
question ID, response source, and annotator ID). We found
a Spearman’s ρ = 0.909 between human and LLM
evaluation (bootstrap CI=(0.883,0.928), N=9999), indicating
excellent agreement with human judgement. Table VII shows
the Spearman’s ρ (a measure of correlation) between (1) each
annotator and other humans and (2) each annotator and GPT-
4 scoring. Human evaluators correlated with other humans
in ρ ∈ [0.91, 0.93], and with LLMs in ρ ∈ [0.90, 0.94].
Choice of LLM. Table VI shows rho between human eval-
uators and different LLMs, on the subset of 100 questions
from GPT4V. GPT-4 scoring shows good agreement with
human scoring (ρ = 0.88), while GPT3.5 (ρ=0.66) and
LLaMA 2 (ρ=0.68) show lower correlation. We believe

TABLE VII: Per-annotator Spearman-ρ. Human scoring has excellent
agreement with both other humans and with LLM scoring.

Annotator vs. Other Humans vs. LLM
0 0.91 0.91
1 0.91 0.91
2 0.92 0.90
3 0.93 0.94

that future LLMs will show higher agreement with human
annotators, and in the meantime we recommend only using
GPT-4 for scoring.

APPENDIX XI
LLM-MATCH ROBUSTNESS DETAILS

TABLE VIII: LLM Role. Correlation between scores when changing the
‘role’ of the LLM in the scoring prompt (Spearman correlation coefficient).

Role AI “Score Master” Professional
AI 1.00 0.97 0.96
“Score Master” - 1.00 0.97
Professional - - 1.00

TABLE IX: Match criterion for a ‘5’. Correlation between scores
when changing the criterion in the scoring prompt (Spearman correlation
coefficient).

Match Crit. Perfect Contains Pro Person
Perfect 1.00 0.96 0.95 0.96
Contains - 1.00 0.97 0.97
Pro - - 1.00 0.98
Person - - - 1.00

TABLE X: Temperature of scoring LLM. Changing the temperature
of GPT-4 used in scoring (Spearman correlation coefficient).

Temp 0.01 0.1 0.2 0.3
0.01 1.00 0.98 0.98 0.98
0.1 - 1.00 0.97 0.98
0.2 - - 1.00 0.97
0.3 - - - 1.00

Our LLM-Match uses the specific evaluation prompt de-
scribed in fig. 3. The metric is stable under small permuta-
tions of the prompt and LLM-Match settings as illustrated
in Table VIII, Table IX and Table X, which show the
correlation in LLM-Match scores using different prompting
strategies, assessed on 500 GPT-4V answers.
Role: Table VIII demonstrates that changing the LLM’s role
from ‘AI’ to ‘Score Master’ or ‘professional evaluator’ does
not significantly change the results, and scores between any
two treatments have a tight correlation with a Spearman’s ρ
all above 0.95.
Match criterion: Similarly, Table IX shows analogous re-
sults (ρ > 0.95) when changing the description of a ‘5’
from ‘perfect match’ to ‘contains correct answer’, ‘similar
to a reasonable person’, or ‘reasonable professional’.
Temperature: The stochasticity in the evaluation function
has negligible impact as well, as shown by varying the
temperature and seed. Table X shows results when varying
the temperature used in the GPT-4 scorer from 0.01-0.3, with
results all >0.97.



APPENDIX XII
3D COORDINATE ABLATION

TABLE XI: Ablating 3D location for scene-graph agents.
Removing bounding box locations and extent had no signif-
icant effect for agents using either LLM.

LLM-Match

method w/ 3D BBox Crop-Only

GPT-4 w/ Sparse Voxel Maps 38.9±1.0 39.6±1.0
LLaMA-2 w/ Sparse Voxel Maps 34.3±1.1 36.6±1.1
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Fig. 11: Ablating 3D location for scene-graph agents. Re-
moving bounding box locations and extent had no significant
effect for agents using either LLM.

Figure 11 and table XI compares the EM-EQA per-
formance of the Socratic baseline that uses Sparse Voxel
Map captions with and without including 3D bounding
box information in the text descriptions. Results show that
explicit bounding box location and size information from the
scene graph does not significantly change the performance of
scene-graph based agents. This suggests that neither LLM,
trained with only text information, is able to effectively use
the 3D location information.

APPENDIX XIII
OPENEQA DATASET EXAMPLES

Additional examples from the ScanNet and HM3D splits
of OpenEQA are provided in the Figures 12, 13, and 14.



Question-Answer Pairs 𝑄, 𝐴∗

Episode History 𝐻

[Object Recognition] 
Q: What is the red object on the chari?

A*: a backpack

[Attribute Recognition]
Q: Among all the chairs, what is the unique color of the chair?

A*: green

[Spatial Understanding]
Q: Can 10 people sit in this room?

A*: yes

[Object State Recognition]
Q: Is the plastic water bottle open?

A*: no

[Functional Reasoning]
Q: What can I use to write something on using my pencil?

A*: the piece of paper

[World Knowledge]
Q: Were students here lately?

A*: yes

[Object Localization]
Q: Where is my unfinished Starbucks drink? 

A*: on the table near the front whiteboard
Extra Answers: ['On the second table from the front’,

'In the center of the second table.’,
'On the second table from the front’,

'On the table near the windows’]

Fig. 12: OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history
H are displayed. Thus, some questions may require additional visual information to answers.

Question-Answer Pairs 𝑄, 𝐴∗

Episode History 𝐻

[Object Recognition] 
Q: What object is on top of the work desk?

A*: shelf

[Attribute Recognition]
Q: what color is the task chair?

A*: black

[Spatial Understanding]
Q: which object is closer to the window, the bed or the trash can?

A*: bed

[Object State Recognition]
Q: Is the closet door fully closed?

A*: no

[Functional Reasoning]
Q: The closet is full. Where can I store a suitcase in this room? 

A*: Under the bed

[World Knowledge]
Q: What are the two main functions or purposes of this room? 
Why did you arrive at those conclusions?

A*: Sleeping, since there is a bed. Working, since there is a task 
chair and desk.

[Object Localization]
Q: Where is the two-tier shelf? 

A*: on top of the desk
Extra Answers: ['On top of the desk.’,

'On the left when you first walk in to the room.’,
'above the desk infront of the chair’,

'on top of the desk']

Fig. 13: OpenEQA dataset examples from a ScanNet scene. Note that only a subset of frames from the episode history
H are displayed. Thus, some questions may require additional visual information to answers.



Question-Answer Pairs 𝑄, 𝐴∗

Episode History 𝐻

[Object Recognition]
Q: what is on the chair?

A*: a soft pillow

[Attribute Recognition]
Q: is the outside door open or closed?

A*: open

[Spatial Understanding]
Q: is the table in the living room clean?

A*: yes

[World Knowledge]
Q: what is special about the wall in the living room?

A*: it seems to be made of stone

[Object Localization]
Q: where is the standing lamp?

A*: next to the bed in the bedroom
Extra Answers: ['in the bedroom',

'to the left of the bed',
'the bedroom',

'The room with the bed and the bathroom']

Fig. 14: OpenEQA dataset examples from an HM3D scene. Note that only a subset of frames from the episode history
H are displayed. Thus, some questions may require additional visual information to answers.
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