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Abstract001

We introduce FinanceReasoning, a novel002
benchmark designed to evaluate the reason-003
ing capabilities of large reasoning models004
(LRMs) in financial numerical reasoning prob-005
lems. Compared to existing benchmarks, our006
work provides three key advancements. (1)007
Credibility: We update 15.6% of the questions008
from four public datasets, annotating 908 new009
questions with detailed Python solutions and010
rigorously refining evaluation standards. This011
enables an accurate assessment of the reason-012
ing improvements of LRMs. (2) Comprehen-013
siveness: FinanceReasoning covers 67.8% of014
financial concepts and formulas, significantly015
surpassing existing datasets. Additionally, we016
construct 3,133 Python-formatted functions,017
which enhances LRMs’ financial reasoning018
capabilities through refined knowledge (e.g.,019
83.2% → 91.6% for GPT-4o). (3) Challenge:020
Models are required to apply multiple finan-021
cial formulas for precise numerical reasoning022
on 238 Hard problems. The best-performing023
model (i.e., OpenAI-o1 with PoT) achieves024
89.1% accuracy, yet LRMs still face challenges025
in numerical precision. We demonstrate that026
combining Reasoner and Programmer models027
can effectively enhance LRMs’ performance028
(e.g., 83.2% → 87.8% for DeepSeek-R1). Our029
work paves the way for future research on030
evaluating and improving LRMs in domain-031
specific complex reasoning tasks. Our code032
and datasets are publicly available1.033

1 Introduction034

Recently, combined with train-time scaling and035

test-time scaling (Kaplan et al., 2020; OpenAI,036

2024b), large language models (LLMs) have exhib-037

ited remarkable reasoning capabilities (Xu et al.,038

2025), through a long reasoning process and ef-039

fective reasoning strategies. These reasoning-040

1Anonymous Github Code: https://anonymous.4open.
science/r/finance-reasoning-CDB9

Figure 1: Statistics and an example of FinanceRea-
soning. The Knowledge Coverage is calculated as the
proportion of financial calculations involved in the ques-
tions relative to the financial encyclopedia. To address
the given problem, LRMs are required to first select
appropriate financial formulas based on the given condi-
tions (e.g., hurdle rate) and perform step-by-step precise
numerical computations with rounding requirements.

enhanced models (i.e., Large reasoning models 041

(LRMs)) (OpenAI, 2024d,c, 2025; Guo et al., 2025; 042

Team, 2024; Team et al., 2025; Gemini, 2025), are 043

able to tackle complex tasks that require multi-step 044

reasoning, such as code (Jain et al., 2024; Chen 045

et al., 2021a), math (Mao et al., 2024; Lightman 046

et al., 2023), and science (Lu et al., 2024; Yue et al., 047

2024; Wang et al., 2024). 048

However, as illustrated in Figure 1, more real- 049

world domain-specific numerical reasoning tasks 050

(e.g., financial quantitative analysis) challenge 051

LRMs to deeply understand and apply domain- 052
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(a) Re-annotation
Dataset Subset Answer Corrections Question Disambiguations Total

CodeFinQA Test (795) 55 (6.9%) 58 (7.3%) 113 (14.2%)
CodeTAT-QA Test (288) 19 (6.6%) 9 (3.2%) 28 (9.7%)

FinCode Test (47) 6 (12.8%) 1 (2.1%) 7 (14.9%)
FinanceMATH Val (200) 15 (7.5%) 45 (22.5%) 60 (30.0%)

(b) Re-evaluation
Dataset Deepseek-V3 Deepseek-R1 ∆ (R1 - V3) Growth

CodeFinQA-Silver 61.76 60.88 -0.88 -1.42%
CodeFinQA-Golden 85.41 87.42 2.01 2.35%
CodeTAT-QA-Silver 89.24 89.58 0.34 0.38%

CodeTAT-QA-Golden 91.67 93.75 2.08 2.27%
FinCode-Silver 80.85 82.98 2.13 2.63%

FinCode-Golden 87.72 95.74 8.02 9.14%
FinanceMATH-Silver 58.50 71.00 12.50 21.37%

FinanceMATH-Golden 59.50 83.50 24.00 40.34%

Table 1: (a) Re-annotation: For the test or validation subsets of four datasets, the proportion of updated examples
ranges from 9.7% to 30%. (b) Re-evaluation: Silver denotes the Acc on the original dataset, while Golden
represents the results on the re-annotated dataset. The results demonstrate that only after rigorous revised can the
true performance of LRMs and the significant improvement of DeepSeek-R1 over DeepSeek-V3 be revealed.

specific knowledge, and perform intricate mathe-053

matical calculations based on hybrid contexts such054

as table and text (Plaat et al., 2024; Chen et al.,055

2023c; Wang and Zhao, 2024; Romera-Paredes056

et al., 2024). Specifically, in the high-stakes fi-057

nancial domain, where precision and transparent058

reasoning are paramount (Krumdick et al., 2024),059

the reasoning capabilities of LRMs must be further060

validated and accurately assessed. Existing numeri-061

cal reasoning benchmarks for finance are limited in062

their notation quality, coverage of specific knowl-063

edge in the financial domain, and complexity of064

reasoning (Chen et al., 2021b, 2022; Zhu et al.,065

2021; Zhao et al., 2024; Krumdick et al., 2024). As066

illustrated in Table 1, DeepSeek-R1 have achieved067

greater accuracy 90% in easier datasets and are068

saturated due to annotation quality, making it diffi-069

cult to objectively evaluate their actual reasoning070

capabilities and analyze their shortcomings.071

Therefore, we propose FinanceReasoning, a072

credible, comprehensive, and challenging finan-073

cial numerical reasoning benchmark to evaluate074

the reasoning capabilities of LRMs in the finance075

domain. The dataset comprises a total of 2,238076

problems covering diverse financial knowledge, of077

which 1,420 problems have been reviewed and re-078

vised based on public datasets, while 908 problems079

were automatically generated by LLM (i.e., GPT-080

4o) and subsequently annotated by experts. Each081

problem includes hybrid contexts, unambiguous082

questions, Python-formatted solutions, and precise083

answers, providing a reliable reference for accu-084

rately evaluating the complex numerical reason-085

ing capabilities of LRMs. Additionally, we have086

collected and open-sourced a comprehensive fi- 087

nancial function library containing 3,133 Python- 088

formatted functions. Each function includes pre- 089

cise functional descriptions, parameter explana- 090

tions, and step-by-step implementation code, of- 091

fering a high-quality structured knowledge base 092

to automatically build domain-specific reasoning 093

problems and enhance LLMs’ domain-specific rea- 094

soning capabilities through knowledge retrieval. 095

We evaluate six current open-source and propri- 096

etary LRMs (OpenAI, 2024d,c, 2025; Guo et al., 097

2025; Team, 2024; Gemini, 2025), using Chain- 098

of-Thought (CoT) (Wei et al., 2022) and Program- 099

of-Thought (PoT) (Chen et al., 2023b). Compared 100

with traditional LLM without post-training, we 101

also evaluate seven LLMs (Gemini, 2025; Ope- 102

nAI, 2024a; Anthropic, 2024; DeepSeek-AI et al., 103

2024; AI@Meta, 2024b,a; Qwen et al., 2025). 104

Our experimental results demonstrate that 105

the powerful LRM (i.e., OpenAI-o1) with PoT 106

achieves the best performance, with an accuracy of 107

89.1% on Hard subset, significantly outperforming 108

other LLMs. However, current LRMs still faced 109

incorrect formula application and imprecise numer- 110

ical calculation on challenging domain-specific rea- 111

soning problems. Next, we explore various knowl- 112

edge augmentation methods and combinations of 113

models. Experiments demonstrate that integrating 114

structured, refined reasoning knowledge and en- 115

abling model collaboration can further enhance the 116

complex reasoning capabilities of LRMs. 117

Our contributions are summarized below: 118

• We propose FinanceReasoning, a credible finan- 119

cial numerical reasoning benchmark constructed 120
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from re-annotated public datasets and newly col-121

lected challenging data through Human-AI col-122

laboration, demonstrating the superior reasoning123

capabilities of LRMs.124

• We construct and open-source a comprehen-125

sive financial function library containing 3,133126

Python-formatted functions, demonstrating the127

effectiveness of refined knowledge augmentation128

in enhancing domain-specific reasoning.129

• We analyze the shortcomings of LRMs and pro-130

pose a combination of Reasoner and Program-131

mer models, effectively enhancing their perfor-132

mance on complex mathematical calculations.133

2 FinanceReasoning Benchmark134

In this section, we first update existing datasets135

like BizBench (Krumdick et al., 2024) and Fi-136

nanceMATH (Zhao et al., 2024), addressing issues137

such as disambiguation and corrections. We then138

construct a financial function library by extracting139

articles. Expert annotators are guided to review140

and revise the model-generated problem.141

2.1 Updates to Public Datasets142

Following prior work (Krumdick et al., 2024; Zhao143

et al., 2024), we retain the format of questions with144

optional hybrid contexts as input, accompanied by145

Python-formatted solutions and program-executed146

numerical results. Due to the specialized nature of147

complex financial problems and the high cost of148

expert annotation, we observe certain limitations149

in existing datasets (Chen et al., 2021c; Zhu et al.,150

2021; Zhao et al., 2024), including ambiguous151

questions, oversimplified processes, incorrect152

answers (e.g., the phrasing "the range of" confuses153

the LLMs, as it is not clear whether to output a154

range like 70.18-81.05 or a specific difference155

of 10.87), and lenient evaluation criteria. Statis-156

tical details of these issues are presented in Table 1.157

158

Specifically, we perform updates on the test sets159

of CodeFinQA, CodeTAT-QA, and FinCode test160

sets (Krumdick et al., 2024), as well as the valida-161

tion set of FinanceMATH (Zhao et al., 2024). The162

annotators are instructed to examine each exam-163

ple and perform three types of Update Actions:164

disambiguation, elaboration, and correction.165

• Disambiguation: For problems that are unsolv-166

able due to insufficient contextual conditions or167

unclear target results, minimally modifies the168

question to eliminate potential ambiguities.169

a new dataset of SEC filings and labeled quantities
(SEC-Num), and extraction-only subsets of TAT-
QA and ConvFinQA.

SEC-Num is a novel dataset for quantity ex-
traction from SEC filings. Recently, the SEC im-
plemented a machine-readable labeling scheme
for structuring data within human-readable doc-
uments.1 Under these rules, filers are required to
annotate quantities within reports with natural lan-
guage descriptions of each quantity reported. We
treat these descriptions as labels and define the
SEC-Num task as follows: given a document snip-
pet and a target label as input, the expected output
is the quantity span from the snippet corresponding
to the label. This open-vocabulary task general-
izes Loukas et al. (2022), who focus on the most
frequent labels and develop a classification task.
A snippet of the original SEC filing is shown in
Table 14 in the Appendix.

The data processing pipeline for SEC-Num be-
gins with 202 10-K and 10-Q filings from the SEC
EDGAR data portal. From these, we split each
document into pages, each of which may contain
multiple paragraphs and tables with a large num-
ber of quantities. For each unambiguous quantity
label, we create a datapoint (x, y) where x is a snip-
pet/label pair and y is the corresponding number
from the snippet for the given label. The resulting
dataset has 8,845 datapoints, which we split into
6,845 train and 2,000 test datapoints. Full statistics
of this data are available in Table 1.

TAT-QA Extract (E) and ConvFinQA Extract
(E) are subsets of questions from TAT-QA and Con-
vFinQA respectively, which can be answered using
a numeric span from the context text or tables. See
Table 1 for our dataset statistics.

3.3 Domain Knowledge
These tasks test the financial domain knowledge
of an AI system. Here, models must demonstrate
internal understanding of business and financial
terms, practices, and formulae.

FinKnow contains 877 multiple choice ques-
tions and answers collected from CFA practice ex-
ams and the business ethics, microeconomics, and
professional accounting exams from the MMLU
dataset (Hendrycks et al., 2021b). The CFA exam
questions have three potential choices, while the
questions from the MMLU dataset have four. We
exclude incomplete questions and questions that

1https://www.sec.gov/structureddata/
osd-inline-xbrl.html

Financial Function
def calc_net_return(init_investment: float ,

growth: float , fee_rate: float , inc_rate:
float , hurdle: float) -> float:
"""
Calculate the net return for an investor in
a hedge fund given various parameters.

Args:
initial_investment (float): The initial
amount invested in the hedge fund ...

Returns:
net_return (float): The net return for the
investor after fees , in millions.
"""
end_value = init_investment * (1 + growth)
fee = end_value * fee_rate
net_value = end_value - fee
hurdle_value = init_investment * (1 + hurdle

)
inc_fee = max(0, (net_value - hurdle_value)
* inc_rate)
net_return = end_value - (fee + inc_fee) -
init_investment
return round(net_return , 2)

Figure 5: Truncated example from FinancialModel.
The model is prompted with the function signature and
docstring and generates the code highlighted in cyan.

require numeric extraction or numerical reasoning.
In total, this dataset contains 418 CFA, 86 business
ethics, 224 microeconomics and 149 professional
accounting question-answer pairs. We evaluate the
models in a zero-shot setup. For each question,
we compute the log probability of each potential
answer and select the highest as the model’s choice.

FormulaEval is a novel code-completion task
designed to determine whether formulae for differ-
ent business, economic, and financial measures are
memorized and accessible without external knowl-
edge sources. Using these formulae is required for
the program synthesis tasks and is an important
part of many business and financial workflow.

There are two main types of functions within
this task: standalone functions and class functions.
The standalone functions represent common finan-
cial formulas, such as computing the simple in-
terest rate accrual on a loan. Many formulae in-
volve reasoning about the structured relationships
between a common set of items, such as computing
EBITDA or Net Income from a balance sheet. To
evaluate these types of formulae, we implement
shared classes that represent financial documents
(Balance Sheet, Income Statement, Statement of
Cash Flows) with attributes representing items that
you might find within these documents.

The model is given a function stub including a
docstring and type hints. For the functions that are
part of a class, the model is also given the class def-

Figure 2: An example of financial function from the
constructed function library to calculate net return.

• Elaboration: For Python programs with missing 170

or skipped computational steps, supplement the 171

code and add detailed annotations. 172

• Correction: For problems with incorrect ground 173

truth, the solution and answer are revised. 174

Additionally, existing evaluation standards are 175

relatively lenient: BizBench allows an error margin 176

1% (Krumdick et al., 2024), while FinanceMATH 177

disregards units and signs (Zhao et al., 2024). We 178

refine the evaluation criteria by specifying units, 179

percentage formats, signs, and decimal places, and 180

strictly enforce a 0.2% error margin, enhancing 181

the rigor, challenge, and relevance to real-world 182

scenarios. Detailed examples are illustrated in the 183

Appendix C.1. 184

2.2 Function Library Construction 185

For LRMs, the challenge lies not in extracting nu- 186

merical values from relevant texts but in applying 187

domain-specific knowledge to perform complex 188

multi-step numerical computations (Plaat et al., 189

2024; Chen et al., 2023c). Although LLMs have al- 190

ready acquired a solid understanding of conceptual 191

knowledge in the financial domain, to further re- 192

fine reasoning capabilities, we collect and annotate 193

a financial function library comprising 3,133 struc- 194

tured Python functions for financial calculations, 195

aimed at improving models’ reasoning knowledge. 196

We begin by collecting 6,138 financial ency- 197

clopedia articles from Investopedia, a platform 198

renowned for its extensive expertise in financial 199
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knowledge2. Each article provides a detailed intro-200

duction to a specific financial term, covering funda-201

mental concepts, application scenarios, and poten-202

tial limitations, some including relevant calculation203

formulas and practical examples. To distill dense,204

structured financial reasoning knowledge while re-205

ducing annotation costs, we instruct GPT-4o to ex-206

tract potential financial calculation functions from207

each article according to a predefined format, as208

illustrated in Appendix D.1. Each function is re-209

quired to include a semantically meaningful signa-210

ture, a concise and clear docstring (functionality,211

parameters, return values, applicable constraints,212

and other notes), and step-by-step implementation213

code with appropriate annotations. Finally, we or-214

ganize financial experts to rigorously review and215

revise the generated functions, ensuring their pro-216

fessional expression and logical correctness.217

2.3 Expansion of Data Annotation218

Existing financial question-answering datasets219

(e.g., CodeFinQA, CodeTAT-QA) focus primarily220

on evaluating models’ basic concept understand-221

ing, precise numerical extraction, and simple cal-222

culation abilities within given contexts. Problem-223

solving processes in these datasets typically in-224

volve fewer reasoning steps (e.g., calculate the dif-225

ference in net profit over two years). These datasets226

often suffer from redundancy in simple questions227

and a lack of complex questions, failing to ade-228

quately assess the reasoning capabilities of LRMs,229

such as knowledge application, constraint empha-230

sis and long thought (e.g., compute the net return231

rate of a fund in Figure 1). As a result, the true232

reasoning capabilities of LRMs cannot be evalu-233

ated comprehensively and objectively. Therefore,234

optimizing data construction methods, rigorously235

verifying data quality, and building more challeng-236

ing datasets have become crucial to improve the237

evaluation of financial reasoning tasks.238

During the data expansion process, we leveraged239

the structured financial functions to guide GPT-4o240

in generating new financial numerical reasoning241

problems and Python solutions. Then, experts rig-242

orously reviewed and corrected them, resulting in243

908 high-quality problems with varying reasoning244

difficulties and a wide knowledge coverage. The245

data annotation process is as follows:246

Seed Function Selection We selected 1,250 fi-247

nancial functions from the library based on oper-248

2https://www.investopedia.com

Property Value

Function Library

# Total Functions 3313

# Operators (Avg) 2.85
# Arguments (Avg) 2.64
# Lines of Code (Avg) 3.45
# Financial Concepts Involved 1864

FinanceReasoning Dataset

# Operators (Easy/Medium/Hard) 1.77/3.79/10.12
# Lines of Code (Easy/Medium/Hard) 3.13/4.27/9.49
# Parentheses (Easy/Medium/Hard) 0.80/3.28/11.21
# Difficulty (Easy/Medium/Hard) 1.69/3.00/4.88

Table 2: Statistics of the function library and Fi-
nanceReasoning dataset (Avg values of three subsets).

ators, arguments, code lines, and long-tail knowl- 249

edge, prioritizing those with complex computation. 250

Question and Solution Generation For each 251

seed function, GPT-4o was prompted to generate 252

the complex reasoning problem with the necessary 253

financial tabular data, using the financial terms 254

and the computational processes of the function. 255

The generated Python solutions were required to 256

have clear reasoning paths and be executable to ac- 257

quire numerical answers, taking into account units, 258

percentages, and decimal precision requirements. 259

Details of prompts are given in Appendix D.3. 260

Expert Verification The experts are required to 261

review and correct all problems, solutions, and 262

answers to ensure the absence of ambiguities, de- 263

tailed processes, and correct answers. 264

2.4 Data Quality Assurance 265

To ensure the high quality of FinanceReasoning, 266

we implemented a rigorous annotation process. 267

Specifically, we organized a team of 8 graduate stu- 268

dents with interdisciplinary backgrounds in finance 269

and computer science, along with 2 experts holding 270

CFA licenses, to participate in the dataset verifi- 271

cation. Each financial function and problem were 272

initially reviewed by two graduate students, who 273

provided reasons for errors and suggested mod- 274

ifications. Consistent suggestions were adopted 275

directly. For cases with conflicting opinions, the 276

final modification plan was determined through 277

a discussion between the two experts. With the 278

help of LLMs, the entire annotation process lasted 279

for three months. More annotation examples are 280

provided in the Appendix D.4. 281
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Figure 3: The difficulty distribution of FinanceReason-
ing, compared with four existing datasets, shows a no-
tably higher proportion of medium and hard problems,
presenting greater challenges for complex reasoning.

2.5 Data Grading and Statistics282

To evaluate the performance of LRMs in finan-283

cial numerical reasoning problems of varying diffi-284

culty levels, we designed a heuristic algorithm for285

the first time to assess the difficulty of reasoning286

for each problem based on the number of oper-287

ators, pairs of parentheses, and lines of code in288

the Python program. Specifically, the difficulty of289

reasoning rc of a problem is defined as:290

rc = ln (max (o, 1)) + ln (max (l + p, 1))291

where o is the number of operators, p is the number292

of pairs of parentheses, and l is the number of code293

lines in the Python program.294

As illustrated in Table 2 and Figure 3, based on295

the difficulty of reasoning, we divided the prob-296

lems into three subsets: Easy (1,000 examples),297

Medium (1,000 examples), and Hard (238 exam-298

ples). More analyses are in Appendix C.2. To299

promote the evaluation of LRMs’ reasoning ca-300

pabilities in the financial domain, we have made301

all problems publicly available, along with the302

complete financial function library.303

3 Evaluation System304

We developed an evaluation system for complex305

reasoning on FinanceReasoning, where all evalu-306

ations of LLMs were conducted by calling their307

official API interfaces. Table 18 in the Appendix308

illustrates exact model version we used.309

3.1 Large Language Models310

We focused on evaluating six of the most powerful311

large reasoning models currently available.312

• OpenAI-o1 (OpenAI, 2024d) is trained using 313

large-scale reinforcement learning and employs 314

chain-of-thought reasoning, excelling in general 315

knowledge tasks and code reasoning tasks. 316

• OpenAI-o1-mini (OpenAI, 2024c) is a cost- 317

effective alternative to OpenAI-o1, designed for 318

high performance in STEM fields, particularly 319

in mathematics and coding. 320

• OpenAI-o3-mini (OpenAI, 2025) is OpenAI’s 321

latest small reasoning model, providing faster 322

response times while maintaining comparable 323

performance to OpenAI-o1. 324

• DeepSeek-R1 (Guo et al., 2025) enhances its 325

reasoning capabilities through multi-stage train- 326

ing with reinforcement learning, using a minimal 327

amount of supervised fine-tuning (SFT) data. 328

• Gemini 2.0 Flash Thinking Experimen- 329

tal (Gemini, 2025) introduces a 1M token con- 330

text window to deeply understand long texts and 331

incorporates self-correction mechanisms in rea- 332

soning tasks. 333

• QwQ-32B-Preview (Team, 2024) is an experi- 334

mental model of the Qwen team, approaching 335

problems with curiosity, self-questioning, and 336

reflection, striving for a deeper understanding. 337

Gemini 2.0 Pro Experimental (Gemini, 2025), 338

GPT-4o (OpenAI, 2024a), Claude 3.5 Sonnet (An- 339

thropic, 2024), DeepSeek-V3 (DeepSeek-AI et al., 340

2024), Llama 3.3 (AI@Meta, 2024b), Llama 341

3.1 (AI@Meta, 2024a), and Qwen2.5-Max (Qwen 342

et al., 2025) are also evaluated for comparison, 343

providing a baseline to assess the performance be- 344

tween LRMs and traditional LLMs. 345

3.2 Evaluation Methods 346

Prompting Methods Following Zhao et al. 347

(2024), we evaluated LLMs with Chain-of- 348

Thought (Wei et al., 2022) and Program-of- 349

Thought (Chen et al., 2023b) to achieve optimal 350

performance and make comparisons. Detailed 351

prompts are illustrated in Figure 14 and Figure 15 352

in the Appendix, respectively. 353

Answer Extraction and Evaluation We adopt 354

the answer extraction pipeline from Zhao et al. 355

(2024), using GPT-4o-mini to extract numerical 356

results from the output under the CoT setting, and 357

executing the program from the output under the 358

PoT setting. Finally, we perform a strict accuracy 359

evaluation comparing the numerical results with 360

the ground truth within 0.2% error margin. 361
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Model Size Notes Hard Medium Easy Avg.

CoT PoT CoT PoT CoT PoT CoT PoT

Large Reasoning Models (LRMs)
DeepSeek-R1 671B MoE 83.2 85.3 91.1 89.8 89.8 89.2 88.0 88.1
OpenAI-o1 81.1 89.1 89.7 – 88.0 – 86.3 –
OpenAI-o3-mini 77.3 84.0 87.8 88.6 88.8 88.1 84.6 86.9
OpenAI-o1-mini 71.4 83.6 86.2 86.9 85.6 87.0 81.1 85.8
Gemini 2.0 Flash Thinking Experimental 70.6 81.5 85.2 87.2 88.8 86.6 81.5 85.1
QwQ-32B-Preview 32B 63.5 61.8 81.1 72.8 83.5 74.9 76.0 69.8

Large Language Models (LLMs)
Gemini 2.0 Pro Experimental 72.3 83.6 88.3 87.4 87.3 87.8 82.6 86.3
GPT-4o 65.6 83.6 84.6 87.9 86.8 88.1 79.0 86.5
Claude 3.5 Sonnet 68.5 83.6 85.7 88.2 87.7 88.4 80.6 86.7
DeepSeek-V3 671B MoE 66.8 75.6 85.2 87.3 87.2 86.9 79.7 80.7
Qwen2.5-Max MoE 65.1 82.4 87.2 86.5 89.6 89.1 80.6 86.0
Llama 3.1 405B 51.7 70.2 81.7 87.7 84.1 85.8 72.5 81.2
Llama 3.3 70B 50.4 71.4 79.2 85.9 83.3 84.8 71.0 80.7

Table 3: Results of different models using CoT and PoT prompting methods on the different subsets of FinanceRea-
soning. The results underscore the superior performance of LRMs (i.e.,OpenAI-o1 and Deepseek-R1) with PoT in
financial numerical reasoning task.

4 Experiments362

We answer the following research questions (RQs):363

RQ1: Do LRMs outperform other LLMs in fi-364

nancial reasoning tasks? RQ2: What are the365

main shortcomings of LRMs? RQ3: Does refined366

knowledge augmentation improve LRMs’ perfor-367

mance? RQ4: Does model collaboration enhance368

LRMs’ performance? RQ5: Does PoT outperform369

CoT in complex numerical reasoning tasks?370

4.1 Main Result (RQ1)371

The performance of the evaluated LRMs and LLMs372

using two prompting methods on the FinanceRea-373

soning are shown in Table 3.374

The results demonstrate that the powerful LRM375

(i.e.,OpenAI-o1) using PoT prompting method376

achieves the best performance, with an accuracy377

of 89.1% on the Hard subset, significantly outper-378

forming other LRMs and LLMs. On the Easy and379

Medium subsets, the evaluated LLMs achieve ac-380

curacy above 87%, except for the Llama models,381

where the advantage of LRMs is less pronounced.382

This further validates that simpler datasets have383

largely been solved by LLMs, making it difficult384

to assess the real reasoning capabilities of LRMs.385

On the Hard subset, LRMs exhibit a clear advan-386

tage over LLMs in CoT, further confirming the387

superiority of LRMs in complex reasoning tasks.388

In particular, on the hard subset, the current su-389

perior LRMs (i.e.,OpenAI-o1 and DeepSeek-R1)390

exhibit distinct performance contrasts in CoT and391

PoT settings. In the CoT setting, DeepSeek-R1392

Setting GPT-4o (PoT) Deepseek-R1 (CoT)

wo. knowledge augmentation 83.19 83.19

Passage Retrieval (n = 10)
Vanilla Retrieval 81.93 (-1.26) 82.77 (-0.42)

Function Retrieval (n = 3)
Vanilla Retrieval 90.76 (+7.57) 85.29 (+2.10)
LLM as Judge 89.08 (+5.89) 84.87 (+1.68)
LLM-instructed Retrieval &
LLM as Judge

91.60 (+8.41) 86.97 (+3.78)

Table 4: Results of different knowledge augmentation
methods on the Hard set of FinanceReasoning. GPT-4o
with refined knowledge augmentation, outperforming
OpenAI-o1 (91.6% vs 89.1%) under PoT setting.

achieves a 2.1% higher accuracy than OpenAI-o1 393

(83.2% vs. 81.1%). However, the PoT prompt- 394

ing method significantly enhances OpenAI-o1’s 395

performance, allowing it to surpass DeepSeek-R1 396

(89.1% vs. 85.3%). This suggests that DeepSeek- 397

R1 excels at text-based step-by-step reasoning, 398

while OpenAI-o1 outperforms in programming ca- 399

pabilities. This discrepancy may be due to differ- 400

ences in their training methods and training data. 401

4.2 Error Analysis (RQ2) 402

To better analyze the capabilities and limitations 403

of LRMs on difficult problems in our dataset, we 404

conduct a thorough and comprehensive error anal- 405

ysis. This analysis is based on 40 DeepSeek-R1 406

failure cases from the Hard set. We summarize 407

four types of error in the current LRMs on chal- 408

lenging domain-specific reasoning problems, some 409

of which involve compound errors. More details 410

of error cases are provided in Appendix B. 411
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• Misunderstanding of Problem (8/40): The412

model incorrectly interprets the question and con-413

text due to a lack of financial knowledge.414

• Formula Application Errors (14/40): Owing415

to inexperience in financial reasoning, the model416

uses an incorrect formula that does not corre-417

spond to the specified conditions of the problem.418

• Numerical Extraction Errors (3/40): The419

model extracts incorrect variables, especially420

when processing structured tabular data, despite421

the fact that the reasoning process and the se-422

lected formula are correct.423

• Numerical Calculation Errors (15/40): When424

multiple calculation steps are involved, the425

model produces significant precision differences426

from the correct answer due to rounding and427

hallucination during the computation process.428

4.3 Knowledge Augmentation (RQ3)429

To enhance the understanding and application capa-430

bilities of complex formulas of LLMs in financial431

reasoning tasks, we explored and compared two432

formats of knowledge and various methods of en-433

hancing knowledge to improve the performance of434

LLM in domain-specific complex reasoning tasks.435

Knowledge Augmentation Settings We use436

Contriever (Izacard et al., 2022) to retrieve rel-437

evant financial knowledge passages or financial438

Python functions based on the question, following439

the prompt templates provided in Appendix E.1.440

• Function Retrieval: We use the question as a441

query to compute semantic similarity with the442

function descriptions, retrieving the Top-3 finan-443

cial functions as relevant knowledge.444

• Passage Retrieval: For comparison with func-445

tion retrieval, we segment each collected finan-446

cial article into passages based on markdown447

hierarchical structures and retrieved the Top-10448

passages for knowledge enhancement.449

• LLM as Retrieval Judge: Recent studies have450

shown that models are capable of judging the451

relevance of candidates retrieved for the ques-452

tion (Guan et al., 2024). In this setting, we first453

retrieved the Top-30 financial functions and then454

prompted the LLM to select the Top-3 functions455

most useful to answer the question, if any.456

• LLM-Instructed Knowledge Retrieval: In fi-457

nancial problems with hybrid contexts, using458

short questions or full contexts for retrieval459

Figure 4: Result of different model combinations and
individual models.

often fails to retrieve directly relevant knowl- 460

edge (Chen et al., 2023a; Peng et al., 2023). We 461

observed that powerful LLMs (e.g., GPT-4o) can 462

effectively summarize rich semantic information 463

from contexts. Therefore, we prompt the LLM 464

to generate precise retrieval queries based on the 465

context (Li et al., 2025; Verma et al., 2025). 466

Knowledge Augmentation Results As shown in 467

Table 4, the format and method of knowledge aug- 468

mentation significantly affect the performance of 469

the model reasoning. Specifically, LLMs enhanced 470

with financial function knowledge significantly out- 471

perform those enhanced with passage knowledge, 472

as financial functions serve as refined reasoning 473

knowledge. Excessive and intricate passages can 474

disrupt the model’s reasoning abilities, resulting 475

in diminished performance for both LLMs and 476

LRMs. Taking advantage of the improved retrieval 477

efficiency caused by LLM-Instructed Knowledge 478

Retrieval, the combination approach achieves the 479

best performance, improving the accuracy of GPT- 480

4o to 91.6% with PoT. More analyses are shown in 481

the Appendix E.2. 482

4.4 Reasoner with Programmer (RQ4) 483

To address the issue of imprecise numerical cal- 484

culations in LRMs, we instruct the LRM to act 485

as the Reasoner, responsible for carefully reason- 486

ing through the problem-solving path, while dis- 487

regarding its generated numerical results. Then, a 488

code-specialized LLM acts as the Programmer, 489

strictly following the reasoning path provided by 490

the Reasoner to generate executable Python pro- 491

grams, which are ultimately executed to obtain 492

precise numerical results. The detailed prompts 493

are provided in the Appendix F.1. Specifically, we 494

employ DeepSeek-R1 as Reasoner, and the best- 495

performing models under PoT settings, Claude 496
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3.5 Sonnet and GPT-4o, as Programmers, respec-497

tively. As shown in Figure 4, the combination of498

models achieves significant improvements com-499

pared to individual models. Compared to GPT-4o,500

Claude 3.5 Sonnet demonstrates a stronger ability501

to follow the given reasoning logic and generate502

precise code without introducing noise, owing to503

its programming advantages. The combination of504

DeepSeek-R1 and Claude 3.5 Sonnet achieves an505

accuracy of 87.82%, correcting 91.7% of the nu-506

merical calculation errors. Furthermore, we isolate507

the knowledge reasoning capabilities of DeepSeek-508

R1 in complex financial reasoning tasks, which509

outperform other LLMs. More analyses are shown510

in the Appendix F.2.511

4.5 Comparing PoT and CoT (RQ5)512

Based on an analysis of the hard subset, we ob-513

serve that the PoT exhibits a markedly stronger514

performance than the CoT in multi-step and com-515

plex numerical reasoning tasks. Specifically, PoT516

leverages structured code generation to reduce to-517

ken consumption. Under similar or lower token518

usage, PoT achieves greater accuracy (Table 3).519

Moreover, its performance is on par with certain520

LRMs that utilize test-time scaling strategies. For521

example, GPT-4o, when prompted with PoT, con-522

sumes only 54k tokens to solve the hard subset,523

whereas CoT requires 173k tokens. Detailed statis-524

tics on token consumption are provided in Table 19525

in the Appendix.526

Figure 16 indicates that LLMs with the PoT527

prompting method not only significantly reduce528

token overhead during inference, but can also529

approach or match the performance of LRMs.530

DeepSeek-R1 with CoT achieves the similar ac-531

curacy on the hard set as GPT-4o with PoT, but532

consumes much more tokens (742k vs. 54k). This533

"token-for-accuracy" test-time scaling strategy al-534

lows LRMs to maintain high correctness by re-535

peatedly verifying outcomes from multiple per-536

spectives. However, the associated inference cost537

is prohibitively high. In contrast, PoT achieves538

performance comparable to LRMs for complex fi-539

nancial calculations, while offering notably better540

cost-effectiveness.541

5 Related work542

The emergence of reasoning models such as543

OpenAI-o1 (OpenAI, 2024d) and DeepSeek-544

R1 (Guo et al., 2025) has significantly improved545

the performance of LLMs in complex reasoning 546

tasks in domains such as code (Jain et al., 2024; 547

Chen et al., 2021a), math (Mao et al., 2024; Light- 548

man et al., 2023), and science (Lu et al., 2024; 549

Yue et al., 2024; Wang et al., 2024). Among these 550

large reasoning models (OpenAI, 2024d,c, 2025; 551

Guo et al., 2025; Team, 2024; Team et al., 2025; 552

Gemini, 2025), OpenAI-o1 and DeepSeek-R1 have 553

achieved competitive optimal performance. How- 554

ever, there currently exists a gap between the eval- 555

uation of LRMs and real-world domain-specific 556

reasoning tasks, with a lack of evaluation and re- 557

search on the model’s ability to flexibly apply do- 558

main knowledge in complex multi-step numerical 559

reasoning. In the financial domain, the difficulty 560

of questions and the quality of annotations become 561

key limitations in evaluating the real reasoning 562

capabilities of LRMs. For example, CodeFinQA 563

and CodeTAT-QA (Krumdick et al., 2024), which 564

are derived from the classic financial question an- 565

swering datasets FinQA (Chen et al., 2021b) and 566

TAT-QA (Zhu et al., 2021), rely on tabular data 567

extraction and simple arithmetic operations that 568

cannot accurately assess the improvements in rea- 569

soning ability of LRMs compared to LLMs. For 570

datasets such as FinCode (Krumdick et al., 2024) 571

and FinanceMath (Zhao et al., 2024), limited com- 572

plex problems, ambiguous questions, and lenient 573

evaluation criteria hinder the accurate assessment. 574

6 Conclusion 575

This paper introduces FinanceReasoning, a cred- 576

ible, comprehensive, and challenging benchmark 577

designed to evaluate the financial numerical rea- 578

soning capabilities of LRMs. We update exist- 579

ing numerical reasoning financial question answer- 580

ing datasets, rigorously refine evaluation standards, 581

and explore methods to build complex reasoning 582

datasets tailored for LRM evaluation. We compre- 583

hensively evaluated the six most advanced LRMs 584

in subsets of varying difficulty levels. Compared 585

to LLMs, we validated the leading performance of 586

OpenAI-o1 and DeepSeek-R1, while highlighting 587

the need for further improvement in the precise nu- 588

merical reasoning capabilities among LRMs. Our 589

experiments on knowledge augmentation and the 590

combination of models demonstrate that integrat- 591

ing structured, refined reasoning knowledge and 592

enabling model collaboration can further enhance 593

the complex reasoning performance of LRMs in 594

expert domains. 595
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7 Limitations596

In this work, we introduce FinanceReasoning, a597

benchmark dataset designed to evaluate and en-598

hance large language models in complex financial599

numerical reasoning tasks that require multi-step600

quantitative analysis, precise formula application,601

and hybrid contextual understanding. However,602

there are still some limitations: (1) We process603

tabular content as text, whereas in real-world sce-604

narios, tables may also appear as images, requir-605

ing additional processing steps. In such cases,606

datasets such as MathVista (Lu et al., 2024) and607

MMMU (Yue et al., 2024), which focus on reason-608

ing over image-based questions, serve as valuable609

complements to our benchmark. We believe that610

incorporating elements from these datasets into611

FinanceReasoning could help bridge the gap be-612

tween text-based and multimodal financial reason-613

ing, enabling a more comprehensive assessment614

of LLMs’ real-world applicability. (2) Due to lim-615

ited resources, we do not conduct an evaluation616

of OpenAI-o1 with PoT on the Easy and Medium617

subsets, as preliminary experiments suggest they618

are less challenging, and existing LLMs already619

demonstrate strong performance on these levels.620

(3) While we systematically verified and updated621

numerical answers and program solutions for multi-622

ple published datasets, we were unable to perform623

the same verification for the 1,000-problem test624

subset of FinanceMath (Zhao et al., 2024), as it625

does not publicly provide ground-truth references626

or Python solutions, limiting our ability to ensure627

consistency in result validation.628
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A Construction of the FinanceReasoning Benchmark892

To rigorously assess financial numerical reasoning in LLMs and LRMs, we constructed FinanceReasoning,893

a benchmark comprising 2,238 problems. This dataset integrates two key sources:894

1. 1,420 problems carefully reviewed and refined from existing datasets, involving disambiguation,895

elaboration and correction.896

2. 908 newly generated problems, synthesized by LLMs(e.g.,GPT-4o) using a financial function897

library that we collected and open-sourced, containing 3,133 Python-formatted financial functions.898

Each generated problem is accompanied by an executable Python solution and precise numerical899

answer, all expert-verified to ensure accuracy and robustness.900

To systematically evaluate model capabilities, we introduce a tiered classification of difficulty based on901

computational complexity and reasoning depth:902

• Easy level: Direct data extraction, minimal computation.903

• Medium level: Basic percentage calculations, application of financial formulas without structural904

adjustments.905

• Hard level: Multi-step computations, weighted calculations, and financial concept reasoning.906

This construction process, illustrated in Figure 5, underscores FinanceReasoning’s credibility, comprehen-907

siveness, and challenge, setting a new standard for evaluating financial reasoning in AI models.908

B Error Cases909

We present a representative example for each of the four common error types — misunderstanding of910

the problem, formula application errors, numerical extraction errors and numerical calculation errors in911

Table 7, Table 6, Table 8, and Table 5, respectively, as made by DeepSeek-R1.912

C Details of Public Dataset Updates913

In this section, we present five common issues encountered in CodeFinQA (Test), CodeTAT-QA (Test),914

FinanceMATH (Val), and Fincode (Test), along with the corresponding updating approaches. Besides, we915

analyze the distribution of difficulty levels among the public datasets and our dataset.916

C.1 Cases of Dataset Update917

• Unsolvable Questions: Problems that either lack sufficient data or are inherently unsolvable. To address918

this, the case in Table 9 was updated by applying the disambiguation strategy to refine the question.919

• Ambiguous Statements Questions or statements that are unclear or open to multiple interpretations. In920

the case of Table 10, we updated the question by applying a disambiguation strategy.921

• Unclear Processes Inadequate or missing steps in problem-solving processes can make calculations922

or conclusions difficult to follow. To address this, we enhanced the Python solution in Table 11 by923

applying an elaboration approach, ensuring a more detailed and structured problem-solving process.924

• Incorrect Answers Answers that are mathematically or conceptually incorrect, leading to misleading925

conclusions. In Table 12, the answer was refined by applying a correction process.926

• Inconsistent Evaluation Issues with grading or assessment standards, where answers that differ in927

precision (e.g., 0.01, 10 and 1%) are considered equivalent. We refined the answer in Table 13 by928

applying a correction approach.929

C.2 Difficulty Level Distribution Analysis930

The distribution of difficulty among public dataset and ours is shown in ??. As can be seen, the difficulty931

distribution of FinanceReasoning (Ours) surpasses previous datasets with respect to the number of medium932

and difficult-level questions, thereby facilitating a more accurate reflection of the model’s reasoning ability.933

934
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Figure 5: Over Review of Dataset Annotation

D Details of Dataset Expansion 935

D.1 Financial Function Extraction Prompt 936

The financial function extraction prompt is designed to guide the model in identifying and extracting 937

relevant financial functions from raw data. The System Input and User Input are provided in Figure 6 and 938

Figure 7, respectively. 939

D.2 Financial Function Example 940

The constructed financial functions primarily consist of detailed computational code accompanied by 941

comprehensive annotations. These annotations include explanations of function calculations, descriptions 942

of input parameters and output variables, as well as specifications of application scope and constraints. 943

This enhances the readability of the functions and strengthens the applicability of large models through 944

well-structured documentation. For detailed information, refer to Table 14. 945

D.3 Automated Question Construction Prompt 946

The automated question construction prompt is used to generate questions based on the financial functions 947

extracted from the data. This prompt enables the model to formulate questions that test understanding 948

of financial concepts and the application of financial formulas. The System Input and User Input are 949

provided in Figure 8 and Figure 9, respectively. 950

D.4 Expansion of Data Annotation Case 951

This section presents examples of the types of questions that can be automatically generated using 952

the automated question construction prompt. These questions are based on the financial functions and 953

concepts extracted earlier, and they help to illustrate the variety of questions that can be created. The 954

goal is to ensure that the questions are both relevant to the domain and challenging enough to test deep 955

understanding. For detailed information, refer to Table 15. 956

E Details of Knowledge Augmentation Experiment 957

E.1 RAG prompt templates 958

LLM Instruct Prompt The LLM Instruct prompt allows the model to generate its own retrieval queries 959

based on the task at hand. The LLM (Large Language Model) is prompted to automatically propose 960

relevant questions or search terms that would retrieve the necessary information to solve the problem. 961

More comprehensive details are given in Figure 11. 962
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Judge Useful Prompt This prompt is used to evaluate whether the retrieved information or external963

knowledge is useful for answering the given question. The model judges the relevance and reliability964

of the retrieved data, ensuring that only useful information is used for further processing. For detailed965

information, refer to Figure 12.966

RAG Prompt The RAG prompt combines both the retrieval and generation components. It instructs the967

model to retrieve information from external sources and generate an answer based on that information.968

This prompt enables the model to make use of both stored knowledge and newly retrieved data, enhancing969

the model’s ability to produce accurate answers. For detailed information, refer to Figure 10.970

E.2 Case study971

In case Table 16, we note the combination of R1 and RAG improves accuracy. When using R1 alone,972

errors may occur due to a lack of sufficient information or context. However, when the RAG method is973

applied, the retrieval of external knowledge provides additional context and enables the model to generate974

the correct answer.975

F Details of Reasoner with Programmer Experiment976

F.1 Summary Program Prompt977

The summary program prompt (More details in Figure 13) is designed to generate a Python program that978

answers a given financial question while strictly adhering to the reasoning process provided by another979

LRM. This approach enhances transparency and verification of the reasoning model’s output by preventing980

direct reliance on precomputed values.981

F.2 Case Study982

the comparison between the performance of R1 combined with Claude and R1 alone are shown in Table 17.983

The task involves solving a problem that, when attempted using R1 alone, results in errors. However,984

when R1 is combined with Claude, the solution is correctly generated. This comparison highlights the985

advantage of using reasoning (via Claude) in combination with R1 to improve the accuracy and reliability986

of the model’s output.987

G More Experimental Details988

The details of the evaluated models are provided in Table 18. The CoT prompt is presented in Figure 14,989

while the PoT prompt is shown in Figure 15. The token consumption of LLMs and LRMs under CoT and990

PoT prompting is provided in Table 19.Additionally, the relationship between token consumption and991

accuracy across the evaluated models is illustrated in Figure 16.992
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Question:
What is the fair price of the European put option? Answer in USD, rounded to two decimal places.

question_id: test-2208
ground_truth: 5.46
python_solution:
def solution():
. . .
# Define variables
S = 150 # Current stock price in USD
K = 140 # Strike price in USD
r = 0.02 # Risk-free interest rate (as a decimal)
T = 0.5 # Time to maturity in years
volatility = 0.25 # Volatility as a decimal
# Calculate d1 and d2 using the Black-Scholes formula
d1 = (log(S / K) + (r + 0.5 * volatility ** 2) * T) / (volatility * sqrt(T))
d2 = d1 - volatility * sqrt(T)
# Calculate the put option price
put_price = K * exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)
# Return the put price rounded to two decimal places
return round(put_price, 2)

. . .
context:
A professional investor is considering purchasing a European put option for a technology stock currently
trading at 150 USD. The put option has the following parameters: Current stock price, S = 150 USD
Strike price, K = 140 USD
Time to maturity, T = 0.5 years
Risk-free interest rate, r = 2% per annum
Volatility, σ = 25% per annum
The investor wants to determine the fair price of the put option to make an informed investment decision.
R1:
. . .
2. Calculate d1 and d2:
We use the following formulas for d1 and d2:

d1 =
ln(S/K) + (r + σ2

2 )T

σ
√
T

=
ln(150/140) + (0.02 + 0.252/2) · 0.5

0.25
√
0.5

ln(150/140) ≈ 0.06908
(0.02 + 0.03125) · 0.5 = 0.025625
Numerator: 0.06908 + 0.025625 = 0.094705
Denominator:

d2 = d1 − σ
√
T = 0.5357− 0.1767767 ≈ 0.3589

. . .
After refining calculations with precise approximations and standard normal CDF values, the fair price of
the European put option rounds to 5.44 USD.

Table 5: Example of numerical calculating error made by DeepSeek-r1.The model applied excessive rounding
during the calculation steps. The parts highlighted in red are incorrect,and the parts highlighted in green are correct.
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Question:
What is the approximate FICO score of this individual based on the given factors? Answer to the nearest
integer.

question_id: test-2144
ground_truth: 74
function:
. . .

# Calculate the FICO score
fico_score = (payment_history * payment_history_weight +

accounts_owed * accounts_owed_weight +
length_of_credit_history * length_of_credit_history_weight +
credit_mix * credit_mix_weight +
new_credit * new_credit_weight)

return fico_score
context:
A young professional is evaluating his creditworthiness to apply for a mortgage. His financial advisor
collects data on his credit behavior and assigns a percentage rating to several aspects of his credit profile:
a payment history of 90%, accounts owed at 65%, a length of credit history of 70%, a credit mix at
80%, and new credit at 50%. These factors help approximate a FICO score, which weighs each aspect
differently: 35% for payment history, 30% for accounts owed, 15% for the length of credit history, 10%
for credit mix, and 10% for new credit.

R1:
To calculate the approximate FICO score, each percentage rating is multiplied by its corresponding weight,
summed, and then scaled to the FICO range (300− 850).
1. Payment History (35% weight):
90%× 0.35 = 31.5%
2. Accounts Owed (30% weight):
65%× 0.30 = 19.5%
3. Length of Credit History (15% weight):
70%× 0.15 = 10.5%
4. Credit Mix (10% weight):
80%× 0.10 = 8%
5. New Credit (10% weight):
50%× 0.10 = 5%
Total weighted percentage:
31.5% + 19.5% + 10.5% + 8%+ 5% = 74.5%
Convert to FICO score (scaled to 850):
74.5%× 850 = 0.745× 850 = 633.25
Rounded to the nearest integer: 633.
Therefore, the answer is 633.

Table 6: Example of formula application error made by DeepSeek-r1. The model lacks knowledge of the FICO
score, leading to an incorrect formula. The parts highlighted in red are incorrect,and the parts highlighted in green
are correct.
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Question:
A risk manager specializing in market risk is looking to determine the cost of a 2-year zero-coupon bond.
The current 1-year interest rate is 8.0%. There’s a chance of 50% that the 1-year interest rate will reach
10.0% after one year and an equal probability of its falling to 6.0% in the same period. Suppose the yearly
risk premium for duration risk is 40 bps, and the bond faces a value of EUR 1,000. What should be the
zero-coupon bond’s valuation? Answer to three decimal places.

question_id: test-2164
ground_truth: 854.466
function:
def solution():

bond_face_value = 1000
risk_free_rate = 0.08
risk_premium = 0.004
up_interest_rate = 0.10
down_interest_rate = 0.06
probability_up = 0.5
probability_down = 0.5

up_price_date1 = bond_face_value / (1 + up_interest_rate + risk_premium)
down_price_date1 = bond_face_value / (1 + down_interest_rate + risk_premium)

expected_price_date1 = probability_up * up_price_date1 + probability_down *
down_price_date1

zero_coupon_bond_price = expected_price_date1 / (1 + risk_free_rate)

return zero_coupon_bond_price

R1:
To determine the valuation of the 2-year zero-coupon bond, we account for the uncertain future interest
rates and the yearly risk premium of 40 basis points (bps). The steps are as follows: . . .
3. Discounting to Present Value:
The expected value at t = 1 is discounted back to t = 0 using the first-year rate adjusted for the risk
premium (8.0% + 0.4% = 8.4%):

PV0 =
922.8234

1 + 0.084
≈ 851.2993

Therefore, the answer is 851.299.

Table 7: Example of misunderstanding of the problem error made by DeepSeek-r1. The model misunderstood
the concept of a zero-coupon bond and incorrectly included the coupon bond. The parts highlighted in red are
incorrect,and the parts highlighted in green are correct.
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Question:
What is the taxable income from Jane’s ESPP transaction? Answer to the nearest dollar.

question_id: test-2017
ground_truth: 4200
def solution():
# Define the given variables
purchase_price = 40.0 # Purchase price per share in dollars
sale_price = 55.0 # Sale price per share in dollars
shares = 200 # Number of shares
discount = 0.15 # ESPP discount
holding_period = 1.5 # Holding period in years (less than 2)

# Calculate the discounted purchase price per share
discounted_purchase_price = purchase_price * (1 - discount)

# Calculate the total gain from selling the shares
total_gain = (sale_price - discounted_purchase_price) * shares

# Since the holding period is less than 2 years, treat the entire gain as ordinary
income
taxable_income = total_gain

# Return the answer rounded to the nearest dollar
return round(taxable_income)

# Testing the solution function
print(solution())
context:
Jane participates in her company’s Employee Stock Purchase Plan (ESPP), which offers a 15% discount
on stock purchases. She bought 200 shares at a purchase price of $40 per share. After holding the shares
for 18 months, she decides to sell them at $55 per share. The IRS mandates that any share held less
than two years must have its gain treated entirely as ordinary income. Jane needs to calculate the taxable
income from this transaction to determine her tax liability.

R1:
Jane’s taxable income from the ESPP transaction involves two components: the discount received at
purchase and the gain from selling the shares, both treated as ordinary income due to the holding period
being less than two years.
1. Discount Calculation (Compensation Income):
- The purchase price per share ($40) reflects a 15% discount. The fair market value (FMV) at purchase is
calculated as:

FMV at purchase =
$40

1− 0.15
=

$40

0.85
≈ $47.06 per share.

- Discount per share:
$47.06− $40 = $7.06.

. . .
Therefore, the answer is 3000.

Table 8: Example of numerical extraction error made by DeepSeek-r1. The model treats the purchase price
(pre-discount price) as the post-discount price. The parts highlighted in red are incorrect,and the parts highlighted in
green are correct.
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Question: as of december 31 , 2006 , what was the total total cash obligations aggregate carrying
value of long-term debt due in 2006 Answer to three decimal places.

The revised question: As of December 31, 2007, what was the total cash obligations aggregate
carrying value of long-term debt due in 2007? Answer to three decimal places.

question_id: test_114
ground_truth: 9.562
program: notes_2005 = 338501
total_obligations = 3540009
percent_2005 = notes_2005 / total_obligations
answer = percent_2005 * 100
context:
. . .

Maturities 2014
As of December 31, 2006, the aggregate carrying value of long-term debt, including capital leases, for the
next five years and thereafter are estimated to be (in thousands):

Year Ending December 31 Amount ($)
2007 253,907
2008 1,278
2009 654
2010 1,833,416
2011 338,501
Thereafter 1,112,253
Total Cash Obligations 3,540,009
Accreted Value of the Discount and Premium of 3.00% Notes and 7.125% Notes 3,007
Balance as of December 31, 2006 3,543,016

The holders of the company’s 5.0% (5.0%) notes have the right to require the company to repurchase
their notes on specified dates prior to the maturity date in 2010, but the company may pay the purchase
price by issuing shares of Class A common stock, subject to certain conditions. Obligations with respect
to the right of the holders to put the 5.0% (5.0%) notes have been included in the table above as if such
notes mature the date on which the put rights become exercisable in 2007. In February 2007, the company
conducted a cash tender offer for its outstanding 5.0% (5.0%) notes to enable note holders to exercise
their right to require the company to purchase their notes. (See Note 19.)
. . .

Table 9: A case where a question from CodefinQA is answered, but because the question itself is flawed (the table
lacks 2006 data), it cannot be solved, rendering the entire output meaningless. The parts highlighted in red are
incorrect,and the parts highlighted in green are the revised ones.
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Question: What is the change in total cost of revenue between 2019 and 2018? Answer to two decimal
places.

The revised question: What is the percentage change in total cost of revenue between 2019 and 2018?
Answer as a percentage to two decimal places.

question_id: test_142
ground_truth: -5.81
program:
total_cost_of_revenue_2019 = df["Cost of revenue: – Total cost of revenue"]["2019"]
total_cost_of_revenue_2018 = df["Cost of revenue: – Total cost of revenue"]["2018"]
answer = ( total_cost_of_revenue_2019 - total_cost_of_revenue_2018 ) / total_cost_of_revenue_2018 *
100.0
context:

Category 2019 2018 Amount Percent
Cost of revenue: – Products 29816 34066 -4250 -12%
Cost of revenue: – Services 19065 17830 1235 7%
Cost of revenue: – Total cost of revenue 48881 51896 -3015 -6%

Table 10: A case where answers a question from CodeTAT-QA is answered, but due to the ambiguous phrasing of
the question, multiple possible answers exist simultaneously(For example, the question in the table does not specify
whether to use percentages or decimals). The parts highlighted in red are incorrect, and the parts highlighted in
green are the revised ones.
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Question: Assuming that the variances of the underlying populations are equal, independent samples
taken from normally distributed groups display the following features: The combined estimation of the
common variance is 2,678.05. What is the suitable t-test statistic to verify the assumption that the average
of the two populations are the same?

question_id: validation-24
ground_truth: 0.938
topic: Quantitative Analysis & Valuation
program:
return (200 - 185) / (2678.05 / 25 + 2678.05 / 18)**0.5

The revised program:
# Given values
sample_size_A = 25
sample_size_B = 18
sample_mean_A = 200
sample_mean_B = 185
combined_variance = 2678.05

# Standard error of the difference in means
standard_error = (combined_variance / sample_size_A + combined_variance /

sample_size_B)**0.5

# t-test statistic calculation
t_statistic = (sample_mean_A - sample_mean_B) / standard_error

return t_statistic
context:

Sample Size Sample Mean Sample Standard Deviation
A 25 200 45
B 18 185 60

Table 11: A case where a question from FinanceMATH is answered, and although the answer is correct, the process
is unclear, and the generated code has missing steps. The parts highlighted in red represent the original code, while
the green parts represent the improved code.
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Question: An investor purchases a five-year, 6% annual-coupon payment bond at 89.4535 and sells it in
four years. Following the purchase of the bond and prior to the receipt of the first coupon, interest rates
go down to 8.5%. What is the realized yield on the bond investment? Answer as a percentage with two
decimal places.

Before the modification
answer: 3.7699999809
question_id: test-8
program:
coupon_rate = 0.06
initial_price = 89.4535
years_til_maturity = 5
interest_rate = 0.085
coupon = coupon_rate * initial_price
discount = initial_price - coupon
final_price = discount * (1 + interest_rate) ** (years_til_maturity - 4)
realized_yield = (final_price / initial_price) - 1
realized_yield_per = 100.0 * realized_yield
round(realized_yield_per, 2)

After the modification
answer: 8.71
question_id: test-8
program:
face_value = 100
coupon_rate = 0.06
initial_price = 89.4535
years_til_maturity = 5
interest_rate = 0.085
holding_period = 4
coupon = coupon_rate * face_value
sell_price = (face_value + coupon) / ((1 + interest_rate) ** (years_til_maturity -
holding_period))
coupon_received = coupon + coupon * (1 + interest_rate) + coupon * (1 + interest_rate)
** 2 + coupon * (1 + interest_rate) ** 3
realized_yield = ((sell_price + coupon_received) / initial_price) ** (1 /
holding_period) - 1
realized_yield_per = 100.0 * realized_yield
round(realized_yield_per, 2)

Table 12: A case where a question from Fincode is answered with an incorrect answer, which we have corrected.
The parts highlighted in red represent the original, while the parts highlighted in green represent the corrected
version.
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Question: What is the holding period return for the three-year timeframe, given the following annual
rates of return for a mutual fund as reported by a researcher (expressed as a percentage)?

The revised question: What is the holding period return for the three-year timeframe, given the following
annual rates of return for a mutual fund as reported by a researcher (expressed as a percentage)? Answer
to three decimal places.

question_id: validation-68
ground_truth: 0.548
program:
return ((1+0.14)*(1-0.10)*(1-0.02)-1)*100

context:
Year Return(%)
2008 14
2009 -10
2010 -2

Table 13: A case where a question from FinanceMATH is answered with an evaluation that is not rigorous, and there
are multiple correct answers.The parts highlighted in red are incorrect, and the parts highlighted in green are the
revised ones.
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Financial Function Extraction Prompt

SYSTEM_INPUT = '''You are an expert in financial analysis and Python programming. Your task is to analyze financial
articles and extract generalized Python functions that can be reused for similar financial problems. These functions
should be based on financial variables, calculations, or examples mentioned in the article.

↪→
↪→

The functions you create should include:
1. A clear and concise function signature.
2. A detailed docstring that includes:

- A brief description of the function's purpose.
- A description of each parameter.
- A description of the return value.
- Notes on applicability, constraints, and important considerations.

If the article does not contain any extractable financial functions, return `[EMPTY]`. If the article contains multiple
functions, extract and output all of them, each wrapped in ```python ``` blocks.↪→

Here is an example of a well-structured financial Python function:

```python
def calculate_present_value(cash_flows: list, discount_rate: float) -> float:

"""
Calculate the present value of a series of cash flows.

This function computes the present value (PV) of a list of future cash flows
using a specified discount rate. It is commonly used in financial analysis
to evaluate investments or projects.

Args:
cash_flows (list): A list of future cash flows (positive or negative).
discount_rate (float): The discount rate (e.g., interest rate) used to

discount future cash flows. Must be greater than -1.

Returns:
present_value (float): The present value of the cash flows.

Notes:
- This function assumes that cash flows occur at the end of each period.
- The discount rate must be greater than -1 to ensure a valid result.
- Cash flows should be provided in chronological order.
- This function does not account for inflation or taxes.

"""
if discount_rate <= -1:

raise ValueError("Discount rate must be greater than -1.")

present_value = sum(cf / ((1 + discount_rate) ** (i + 1)) for i, cf in enumerate(cash_flows))

return present_value
```
Your goal is to extract and construct such functions from financial articles. Ensure that the function signature,

docstring, and implementation are clear, concise, and free of problem-specific values.↪→

Important: Only output the function definition (signature, docstring, and implementation). Do not include example usage,
explanations, or any additional text.↪→

'''

Figure 6: System Input of Financial Function Extraction Prompt
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Financial Function Extraction Prompt

USER_INPUT='''I have a financial article. Please analyze the article and extract any generalized Python functions that
can be reused for similar problems. The functions should be based on financial variables, calculations, or examples
mentioned in the article and include a clear function signature, a detailed docstring, and an implementation that
avoids problem-specific values.

↪→
↪→
↪→

Here is the financial article:
{financial_artical}

Please create a generalized Python function with a meaningful name (e.g., calculate_xxx), a clear function signature, and
a detailed docstring. Here is an example of the desired output format:↪→

```python
def calculate_xxx(param1: type, param2: type, ..., paramN: type) -> return_type:

"""
Brief description of the function's purpose.

Args:
param1 (type): Description of param1.
param2 (type): Description of param2.
...
paramN (type): Description of paramN.

Returns:
xxx (return_type): Description of the return value.

Notes:
- Applicability: Describe where this function is applicable.
- Constraints: List any constraints or limitations.
- Considerations: Mention any important considerations or potential issues.

"""
# Do math calculation to get the answer
pass

# return answer
return xxx

```

Continue your output:
```python
def calculate_xxx(param1: type, param2: type, ..., paramN: type) -> return_type:

"""
Brief description of the function's purpose.

Important: Only output the function definition (signature, docstring, and implementation). Do not include example usage,
explanations, or any additional text.↪→

'''

Figure 7: User Input of Financial Function Extraction Prompt
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function:
def calculate_hedge_fund_net_return(initial_investment: float, gross_return_rate:
float,
management_fee_rate: float, incentive_fee_rate: float,
hurdle_rate: float) -> float:
"""
Calculate the net return for an investor in a hedge fund with fees and hurdle

rates.
This function computes the net return in dollar terms for an investor after
accounting for management fees and incentive fees, based on a hurdle rate.
Args:
initial_investment (float): The initial investment amount in millions.
gross_return_rate (float): The gross return rate achieved by the hedge fund.
management_fee_rate (float): The management fee rate as a decimal.
incentive_fee_rate (float): The incentive fee rate as a decimal.
hurdle_rate (float): The hurdle rate as a decimal percentage of initial

investment.
Returns:

net_return (float): The net return for the investor in millions to two decimal
places.

Notes:
- Applicability: Suitable for hedge funds using a similar fee structure.
- Constraints: Assumes management fee is based on year-end assets and incentive

fee
is calculated net of management fee, based on returns over the hurdle rate.

- Considerations: Ensure all rates are provided as decimals (e.g., 2% as 0.02).
"""
year_end_assets = initial_investment * (1 + gross_return_rate)
management_fee = year_end_assets * management_fee_rate
net_year_end_assets = year_end_assets - management_fee
hurdle_amount = initial_investment * (1 + hurdle_rate)
excess_return = max(0, net_year_end_assets - hurdle_amount)
incentive_fee = excess_return * incentive_fee_rate
total_fees = management_fee + incentive_fee
net_return = year_end_assets - total_fees - initial_investment
return round(net_return, 2)

Table 14: Example of Financial Function From Function Library
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Automated Question Construction Prompt

SYSTEM_INPUT = '''You are a financial expert with deep knowledge of financial concepts and numerical reasoning. Your task
is to generate a financial numerical reasoning problem based on a given financial function. The problem should
require the application of financial knowledge to solve, and it should include specific numerical values and a clear
financial context.

↪→
↪→
↪→

### Problem Design Requirements:
1. **Specific Numerical Values**: The problem must contain specific numerical values to ensure it is computationally

solvable.↪→
2. **Real-World Context**: The problem context should provide a real-world financial application case, wrapped in

`<context></context>` tags.↪→
3. **Clear Question**: The question should be clear and wrapped in `<question></question>` tags. It should ask for a

single numerical result, specifying the unit, percentage format (any ratio result should be in percentage format),
and rounding requirements (e.g., "Answer to the nearest integer," "Answer as a percentage to two decimal places").

↪→
↪→
4. **Function Logic Alignment**: The problem content should align with the computation logic of the given financial

function but should not explicitly mention the function name or its details.↪→
5. **Encourage Problem-Solving**: The problem should encourage problem-solving and numerical application, making it

suitable for finance-related training or assessments.↪→

### Solution Requirements:
1. **Python Program**: Provide a Python program that solves the problem. The program must follow the format `def

solution():` and return the computed result, wrapped in `<solution></solution>` tags.↪→
2. **Function Logic Consistency**: The program should implement the financial calculation from scratch using the

parameters given in the problem statement. It should not directly call the provided function but should follow the
correct financial logic.

↪→
↪→
3. **Format and Clarity**: The program should be well-structured, with clear variable definitions, calculations, and a

return statement.↪→

### Example:
Given the function:
```python
def calculate_margin_call_requirement(initial_margin: float, current_value: float, maintenance_margin_rate: float) ->

float:↪→
"""
Calculate the margin call requirement needed to meet maintenance margin.
"""
required_maintenance_margin = current_value * maintenance_margin_rate
margin_call_requirement = max(0, required_maintenance_margin - initial_margin)
return margin_call_requirement

```

A generated problem and solution might look like this:
<context>
An investor opens a margin account with an initial margin of 50,000 to purchase securities. Due to market fluctuations,

the current value of the securities hasdroppedto60,000. The brokerage requires a maintenance margin rate of 30%.↪→
</context>
<question>
What is the minimum amount the investor must deposit to meet the maintenance margin requirement? Answer to the nearest

integer.↪→
</question>
<solution>
```python
def solution():

# Define variables and their values
initial_margin = 50000
current_value = 60000
maintenance_margin_rate = 0.30

# Perform calculations
required_maintenance_margin = current_value * maintenance_margin_rate
margin_call_requirement = max(0, required_maintenance_margin - initial_margin)

# Return the final answer
return round(margin_call_requirement)

```
</solution>

Your goal is to generate such problems and solutions based on the provided financial function.
'''

Figure 8: System Input of Automated Question Construction Prompt
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Automated Question Construction Prompt

USER_INPUT = '''Given the following financial function:
{financial_function}

Please generate a financial numerical reasoning problem based on this function. The problem should include:

1. A real-world financial context wrapped in <context></context> tags.
2. A clear question wrapped in <question></question> tags, specifying the unit, percentage format (if applicable), and

rounding requirements.↪→
3. Specific numerical values to ensure the problem is computationally solvable.

Additionally, provide a Python program that solves the problem. The program must:

1. Follow the format `def solution():` and return the computed result, wrapped in `<solution></solution>` tags.
2. Implement the financial calculation from scratch using the parameters given in the problem statement.
3. Align with the computation logic of the provided function without directly calling it.

Please generate the problem and solution based on the provided financial function.
'''

Figure 9: User Input of Automated Question Construction Prompt(lower part)
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Question: What is the company’s Weighted Average Cost of Capital (WACC)? Answer as a percentage to
two decimal places.
question_id: test-2002
ground_truth: 6.9
context:

A manufacturing company is evaluating its financing strategy and needs to calculate its Weighted Average
Cost of Capital (WACC) to optimally structure its capital resources. The company’s current market value
of equity is 150 million, and the market value of its debt is 100 million. The cost of equity is estimated at
9%, while the cost of debt stands at 5%. Considering the corporate tax rate is 25%, the company wants to

determine its WACC to make informed investment decisions.

Function used as instruction:

def calculate_wacc(market_value_equity: float, market_value_debt: float,
cost_of_equity: float, cost_of_debt: float, tax_rate: float) -> float:
"""
Calculate the Weighted Average Cost of Capital (WACC).

This function calculates the WACC, which represents a firm's average cost
of financing from all sources, weighted by their respective usage in the

overall
capital structure. It gives an overall measure of the firm's cost of capital.

Args:
market_value_equity (float): Market value of the firm's equity.
market_value_debt (float): Market value of the firm's debt.
cost_of_equity (float): Cost of equity (Re) represented as a decimal (e.g.,

0.08 for 8%).
cost_of_debt (float): Cost of debt (Rd) represented as a decimal (e.g.,

0.04 for 4%).
tax_rate (float): Corporate tax rate (Tc) represented as a decimal (e.g.,

0.30 for 30%).

...
"""
total_value = market_value_equity + market_value_debt
equity_weight = market_value_equity / total_value
debt_weight = market_value_debt / total_value
wacc = (equity_weight * cost_of_equity) + (debt_weight * cost_of_debt * (1 -

tax_rate))

return wacc

Table 15: The newly added generated data in FinanceReasoning, combined with the structured financial function
library built as an instruct.

29



RAG Prompt

SYSTEM_INPUT = '''You are a financial expert, you are supposed to answer the given question. You need to first think
through the problem step by step, identifying the exact variables and values, and documenting each necessary step.
Then you are required to conclude your response with the final answer in your last sentence as 'Therefore, the answer
is {final answer}'. The final answer should be a numeric value.'''

↪→
↪→
↪→

USER_INPUT = '''The following question context is provided for your reference:
{question_context}
Question:
{question_question}

The following are the financial functions for your reference:
{financial_function}
'''

Figure 10: RAG Prompt

30



LLM Instruct Prompt

SYSTEM_INPUT = '''You are an expert in financial analysis and Python programming. Your task is to analyze a given
financial problem and its context, and generate a concise and precise retrieval query that can be used to search a
financial function library for relevant functions.

↪→
↪→

The retrieval query should be based on the following principles:
1. Intent Recognition: Identify the core intent of the problem (e.g., calculating present value, estimating risk,

optimizing portfolio).↪→
2. Applicability: Consider the scope and applicability of the function (e.g., time period, asset type, market conditions).
3. Constraints: Include any constraints or limitations relevant to the problem (e.g., input data format, computational

complexity).↪→
4. Generalization: Ensure the query is generalized enough to match multiple potential functions but specific enough to

exclude irrelevant ones.↪→

Your output should be a single, well-structured retrieval query that captures the essence of the problem and its
requirements. The query should be concise, clear, and suitable for vector-based similarity search against a financial
function library.

↪→
↪→

Here is an example of a retrieval query for a financial problem:
Question: A company wants to evaluate the profitability of a potential investment project. The project involves an initial

investment of $100,000 and is expected to generate annual cash flows of $30,000 for the next 5 years. The company
uses a discount rate of 8% to evaluate such projects. The cash flows are assumed to occur at the end of each year?

↪→
↪→
Retrieval Query: What function calculates the net present value of a series of annual cash flows with a fixed discount

rate, supports a single initial investment, and handles positive cash flows?↪→
'''

USER_INPUT = '''I have a financial problem and its context. Please analyze the problem and generate a retrieval query
that can be used to search a financial function library for relevant functions. The retrieval query should capture
the core intent of the problem, its applicability, constraints, and generalization.

↪→
↪→

Here is the financial problem and its context:
{financial_question}

Please generate a retrieval query based on the following guidelines:
1. Intent Recognition: Identify the core intent of the problem.
2. Applicability: Consider the scope and applicability of the function.
3. Constraints: Include any constraints or limitations relevant to the problem.
4. Generalization: Ensure the query is generalized enough to match multiple potential functions but specific enough to

exclude irrelevant ones.↪→

Your output should be a single, well-structured retrieval query. Do not include additional explanations or examples.
Please generate the retrieval query based on the provided financial problem and context.
'''

Figure 11: LLM Instruct Prompt
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Judge Prompt

SYSTEM_INPUT = '''You are a financial expert, you are supposed to judge whether the given financial function is useful
for answering the question.↪→

For each function, follow these guidelines:
1. Determine if the function can directly address the userâĂŹs problem, considering the function's purpose, input

parameters, and return values.↪→
2. Consider the applicability range of the function, assumptions, limitations, and restrictions when evaluating if itâĂŹs

relevant.↪→
3. If the function can effectively contribute to solving the problem or is essential for the calculation or analysis

required, respond with [USEFUL].↪→
4. If the function cannot effectively help in solving the problem, or is irrelevant based on its scope and assumptions,

respond with [USELESS].↪→

Use financial domain knowledge to ensure that each judgment is precise and aligned with common practices for
problem-solving in the finance domain.↪→

'''

USER_INPUT = '''Given a financial question and financial functions, I want you to analyze each of these function to
assess if it can be useful in solving the question.↪→

For each financial function:
1. You need to decide if it is useful based on its fit with the problemâĂŹs requirements and constraints.
2. If the function is relevant to solving my problem, output [USEFUL].
3. If it is not helpful, output [USELESS].
Do not include any additional explanation, just the relevant outputs for each function.

Question:
{financial_question}

Functions:
{financial_function}

Output the results in the following format:
[USEFUL, USELESS, USELESS, ...]
'''

Figure 12: Judge Prompt
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Question: According to the given table, can you compute the value added from the choice of security
(expressed as a percentage)? Answer to a single decimal place.
question_id: test-2193
ground_truth: 5.6
context:

Portfolio return Benchmark return Portfolio weight Benchmark weight
Domestic 25% 15% 50 35

Bond 9% 5% 30 35
International 15% 18% 20 30

R1:
To compute the value added from the choice of security (selection effect)...
Domestic:

(25%− 15%)× 35% = 3.5%

Bond:
(9%− 5%)× 35% = 1.4%

International:
(15%− 18%)× 30% = −0.9%

Total Selection Effect:
3.5% + 1.4%− 0.9% = 4.0%

Therefore, the answer is 4.0.

R1 + LLM instruct(4o):
Instruct from 4o:
What function calculates the security selection effect in portfolio performance attribution...
The function retrieved and considered useful by 4o:

def calculate_security_selection_effect(portfolio_returns: list, benchmark_returns:
list, portfolio_weights: list) -> float:

...
total_security_selection_effect = sum((pr - br) * pw for pr, br, pw in zip(

portfolio_returns, benchmark_returns, portfolio_weights)

return round(total_security_selection_effect * 100, 1)

Domestic:

(25%− 15%)× 50% = 5.0%

Bond:

(9%− 5%)× 30% = 1.2%

International:

(15%− 18%)× 20% = −0.6%

The final selection effect is:
5.0% + 1.2%− 0.6% = 5.6%

Output: 5.6

Table 16: A comparison of Performance between R1 and LLM-instruct Methods in FinanceReasoning.
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Summary Program Prompt

SYSTEM_INPUT = '''
You are a financial expert and a skilled programmer, you are supposed to generate a Python program to answer the given

question. The returned value of the program is supposed to be the answer. The code should strictly follow the
reasoning process and logic provided by another reasoning model (DeepSeek-R1 or OpenAI-o1), but it must not use any
intermediate results from R1 or o1. Instead, you should implement the calculations from scratch to ensure accuracy.

↪→
↪→
↪→
### Requirements:
1. Follow reasoning model's Reasoning Logic: Carefully analyze the reasoning process provided by reasoning model and

ensure your Python code aligns with it step-by-step.↪→
2. Avoid reasoning model's Intermediate Results: Do not use any intermediate values from reasoning model. Implement all

calculations independently.↪→
3. Precision and Accuracy: Ensure all numerical calculations are precise and free from errors. Use appropriate data types

and rounding rules as needed.↪→

Here is an example of the Python program:
```python
def solution():

# Define variables name and value
revenue = 600000
avg_account_receivable = 50000

# Do math calculation to get the answer
receivables_turnover = revenue / avg_account_receivable
answer = 365 / receivables_turnover

# return answer
return answer

```
'''

USER_INPUT = '''
Please generate a Python program to answer the given question. The format of the program should be the following:
```python
def solution():

# Define variables name and value

# Do math calculation to get the answer

# return answer
```

Continue your output:
```python
def solution():

# Define variables name and value

The following are the summary of reasoning process provided by another reasoning model you should strictly follow.
{summary of reasoning process}
'''

Figure 13: Summary Program Prompt
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Question: What is the total amount of money that John will pay towards the principal in the first 12
months of his mortgage? Answer to the nearest dollar.
question_id: test-2224
ground_truth: 4597
context:

Loan Amount ($) 250,000
Annual Interest Rate (%) 3.75

Loan Term (Years) 30

R1:
To determine the total amount John will pay towards the principal in the first 12 months of his mortgage,
we use the following steps:
1. **Calculate the monthly payment (M):**
Using the formula for a fixed-rate mortgage...
2. **Total principal paid after 12 months:**
The formula for the remaining balance B12 after 12 payments is:

B12 = 250, 000× (1.003125)360 − (1.003125)12

(1.003125)360 − 1
≈ 245, 366.50 (245, 403.05)

So, total principal paid is:

250, 000− 245, 366.50 = 4, 633.50 (rounded to 4634)

3. **Validation via amortization schedule:**
Summing the principal portions of each monthly payment (rounded to the nearest cent) results in a total
principal paid of ...
**Therefore, the answer is 4634.**

R1 + Claude:
Based on the reasoning process, I’ll create a Python program that calculates the total principal paid in the
first 12 months using the formula method:

def solution():
# Define variables name and value
loan_amount = 250000
annual_rate = 0.0375
monthly_rate = annual_rate / 12
#...
# Calculate remaining balance after 12 months
remaining_balance = loan_amount * (power_n - power_k) / (power_n - 1)
# Total principal paid is original loan amount minus remaining balance
principal_paid = loan_amount - remaining_balance
# ...

return answer

Program Output: 4597

Table 17: A comparison of the programming approach using R1 alone versus R1 combined with Claude, demon-
strated with an example problem. The solution using only R1 is incorrect, whereas the R1+Claude approach yields
the correct answer.
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Model Organization Size Notes Source

DeepSeek-R1 DeepSeek 671B MoE deepseek-ai/DeepSeek-R1

DeepSeek-V3 DeepSeek 671B MoE deepseek-ai/DeepSeek-V3

Claude 3.5 Sonnet Anthropic – claude-3.5-sonnet-1022

Gemini 2.0 Flash Thinking Experimental Google – gemini-2.0-flash-thinking-exp-01-21

Gemini 2.0 Pro Experimental Google – gemini-2.0-pro-exp-02-05

QwQ-32B-Preview Alibaba 32B Qwen/QwQ-32B-Preview

Qwen2.5-Max Alibaba – MoE qwen-max-2025-01-25

Llama 3.1 Meta 405B meta-llama/Llama-3.1-405B-Instruct

Llama 3.3 Meta 70B meta-llama/Llama-3.3-70B-Instruct

OpenAI-o1 OpenAI – o1-2024-12-17

OpenAI-o1-mini OpenAI – o1-mini-2024-09-12

OpenAI-o3-mini OpenAI – o3-mini-2025-01-31

GPT-4o OpenAI – gpt-4o-2024-11-20

Table 18: Details of the organization and model source (i.e., model version for proprietary models, and Huggingface
model name for open-source models) for the LLMs evaluated in FinanceReasoning.
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COT Prompt

SYSTEM_INPUT = '''You are a financial expert, you are supposed to answer the given question.
You need to first think through the problem step by step, identifying the exact variables and values,
and documenting each necessary step. Then you are required to conclude your response with the final
answer in your last sentence as 'Therefore, the answer is {final answer}'. The final answer should
be a numeric value.'''

USER_INPUT = '''The following question context is provided for your reference:
{question_context}
Question:
{question_question}
Let's think step by step to answer the given question.
'''

Figure 14: Chain of Thought Prompt
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POT Prompt

SYSTEM_INPUT = '''You are a financial expert, you are supposed to generate a Python program to answer the given question.
The returned value of the program is supposed to be the answer. Here is an example of the Python program:↪→

```python
def solution():

# Define variables name and value
revenue = 600000
avg_account_receivable = 50000

# Do math calculation to get the answer
receivables_turnover = revenue / avg_account_receivable
answer = 365 / receivables_turnover

# return answer
return answer

```
'''

USER_INPUT = '''The following question context is provided for your reference:
{question_context}
Question:
{question_question}
Please generate a Python program to answer the given question. The format of the program should be the following:
```python
def solution():

# Define variables name and value

# Do math calculation to get the answer

# return answer
```

Continue your output:
```python
def solution():

# Define variables name and value
```
'''

Figure 15: Program of Thought Prompt
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Model Tokens (k) for Easy/Medium/Hard

CoT PoT

OpenAI-o1-mini 417 / 1074 / 944 341 / 1015 / 953
OpenAI-o1 695 / 1500 / 1242 505 / - / -
Gemini 2.0 Flash Thinking Experimental 154 / 442 / 311 62 / 164 / 140
QwQ-32B-Preveiw 556 / 1514 / 1307 246 / 609 / 543
DeepSeek-R1 742 / 1499 / 1274 743 / 1593 / 1257
OpenAI-o3-mini 374 / 771 / 712 328 / 664 / 618
Gemini 2.0 Pro Experimental 128 / 295 / 206 60 / 143 / 112
GPT-4o 173 / 428 / 298 54 / 133 / 105
Claude 3.5 Sonnet 90 / 261 / 201 110 / 335 / 275
Deepseek-V3 133 / 322 / 237 56 / 144 / 114
Llama 3.3 145 / 350 / 263 60 / 156 / 130
Llama 3.1 125 / 318 / 235 53 / 139 / 109
Qwen2.5-Max 215 / 526 / 373 58 / 139 / 108

Table 19: Token usage across different models

Figure 16: Relationship between token consumption and accuracy for LLMs and LRMs using CoT and PoT
Prompting. R1: DeepSeek-R1, o1: OpenAI-o1, o3-mini: OpenAI-o3-mini, Gemini-flash-thinking: Gemini 2.0
Flash Thinking Experimental, QwQ: QwQ-32B-Preview, Gemini-2.0-pro: Gemini 2.0 Pro Experimental, 4o:
OpenAI-4o, Claude: Claude 3.5 Sonnet, V3: DeepSeek-V3, Qwen-2.5: Qwen2.5-Max.
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