Under review as submission to TMLR

A Simple Unified Method for Node Classification on Ho-
mophilous and Heterophilous Graphs

Anonymous authors
Paper under double-blind review

Abstract

In graph learning, there have been two predominant inductive biases regarding graph-inspired
architectures: On the one hand, higher-order interactions and message passing work well on
homophilous graphs and are leveraged by GCNs and GATs. Such architectures, however,
cannot easily scale to large real-world graphs. On the other hand, shallow (or node-level)
models using ego features and adjacency embeddings work well in heterophilous graphs.
In this work, we propose a novel scalable shallow method — GLINKX — that can work
both on homophilous and heterophilous graphs. GLINKX leverages (i) novel monophilous
label propagations (ii) ego/node features, (iii) knowledge graph embeddings as positional
embeddings, (iv) node-level training, and (v) low-dimensional message passing. Formally, we
prove novel error bounds and justify the components of GLINKX. Experimentally, we show
its effectiveness on several homophilous and heterophilous datasets with up to millions of
nodes and tens of millions of edges.

1 Introduction

In recent years, graph learning methods have emerged with a strong performance for various ML tasks. Graph
ML methods leverage the topology of graphs underlying the data (Battaglia et al., 2018) to improve their
performance. Two very important design options for proposing graph ML-based architectures in the context
of node classification are related to whether the data is homophilous or heterophilous.

For homophilous data — where neighboring nodes share similar labels (McPherson et al., 2001; Altenburger &
Ugander, 2018a) — Graph Neural Network (GNN)-based methods can achieve high accuracy. Specifically,
a broad subclass of successful GNNs are Graph Convolutional Networks (GCNs) (e.g., GCN, GAT, etc.)
(Kipf & Welling, 2016; Velickovié et al., 2017; Zhu et al., 2020). In the GCN paradigm, message passing
and higher-order interactions help node classification tasks in the homophilous setting since such inductive
biases tend to bring the learned representations of linked nodes close to each other. However, GCN-based
architectures suffer from scalability issues. Performing (higher-order) propagations during the training stage
are hard to scale in large graphs because the number of nodes grows exponentially with the increase of the
filter receptive field. Thus, for practical purposes, GCN-based methods require node sampling, substantially
increasing their training time. For this reason, architectures (Huang et al., 2020; Zhang et al., 2022b; Sun
et al., 2021; Maurya et al., 2021; Rossi et al., 2020) that leverage propagations outside of the training loop
(as a preprocessing step) have shown promising results in terms of scaling to large graphs since they do
not require neighborhood sampling. Moreover, deploying GCN-based methods on an industrial scale incurs
infrastructure overhead since training GNNs in the large-scale regime with node sampling requires significant
computing resources (i.e. more GPU memory) compared to simpler shallow methods that perform i.i.d.-based
random sampling.

In heterophilous datasets (Rogers et al., 2014), the connected nodes tend to have different labels. Currently,
many works that address heterophily can be classified into two categories concerning scale. On the one hand,
recent successful architectures (in terms of accuracy) (Rossi et al., 2023; Di Giovanni et al., 2022; Zheng
et al., 2022b; Luan et al., 2021; Chien et al., 2020; Lei et al., 2022) that address heterophily resemble GCNs
in terms of design and and therefore face the same scalability problems as GCNs/GATs. On the other hand,

Under review as submission to TMLR

shallow or node-level models (see, e.g., (Lim et al., 2021; Zhong et al., 2022)), i.e., models that are treating
graph data as tabular/i.i.d. data, resemble simple multi-layer perceptrons (MLPs) in their architecture, and
do not involve propagations during training, have shown a lot of promise for large heterophilous graphs. For
instance, in Lim et al. (2021), it is shown that combining ego embeddings (node features) and adjacency
embeddings has good accuracy and scalability in the heterophilous setting (see Section 2). However, their
design is still impractical in real-world data since the LINKX method presented in their paper is not inductive
(see Section 2), and embedding the adjacency matrix exactly requires many parameters in a model, which can
be millions to billions of extra parameters for industry-scale networks. In LINKX, the adjacency embedding
of a node can alternatively be thought of as a positional embedding (PE)* of the node in the graph, and recent
developments (Kim et al., 2022; Dwivedi et al., 2021; Lim et al., 2021; Wang et al., 2022) have shown the
importance of PEs in both homophilous and heterophilous settings. However, most of these works suggest PE
parameterizations (e.g., Laplacian eigenvectors) that are difficult to compute in large-scale directed graphs,
such as modern social networks. We argue that a way to circumvent this problem is to rely on knowledge graph
embeddings (Bordes et al., 2013; Yang et al., 2014) which can be used to perform a non-linear factorization of
the adjacency matrix of the network and have been recently shown to be able to be trained in billion-scale
networks (El-Kishky et al., 2022; Lerer et al., 2019).

Goal & Contribution

We present GLINKX, a simple, scalable, and effective shallow method that works on both homophilous and
heterophilous graphs that address the scalability problems of GNNs as well as the accuracy and memory
inefficiency problems that shallow heterophilous methods face. For a method to be scalable, we argue that it
should: (i) run models on node-scale (thus leveraging i.i.d. minibatching), (%) avoid doing message passing
during training and do it a constant number of times before training, and (%) transmit small messages along
the edges (to reduce memory footprint).

To develop GLINKX, our main structural intuition is that many real-world homophilous and heterophilous
datasets exhibit the well-documented monophily property (see Section 2.5, and Altenburger & Ugander
(2018a); Lim et al. (2021); Altenburger & Ugander (2018b)); namely, a node tends to associate with nodes
that have the same class as one another (i.e., the node has unique types of “friends”). This property can hold
regardless of the graph being homophilous or heterophilous (see Figures 1(b) and 1(c)).

Given this real-world intuition, GLINKX tackles the problems that current methods suited for homophily
and heterophily face by combining three simple, novel, and effective components:

1. A novel 2-hop propagation scheme called MLaP (see Section 3 and Figure 3) which performs
propagations outside of the training loop and addresses the infrastructure bottlenecks of the message-
passing architectures, as well as the decreased performance of shallow models in homophilous graphs.
MLaP relies on the structural assumption that many real-world homophilous and heterophilous
graphs are monophilous.

2. Knowledge Graph Embeddings (KGEs) (see also Sections 2.6 and 3) to compress the adjacency
graph representations that existing methods such as LINKX use and provide positional information
(positional embeddings) about the nodes.

3. The ego embeddings of each node which have been shown to work in both the homophilous and
heterophilous context?.

We show that GLINKX can perform well on a variety of homophilous and heterophilous datasets ranging from
a few thousand nodes and edges to millions and tens of millions of nodes and edges (Section 4). Moreover, we
provide novel theoretical error bounds to justify the components of GLINKX (see Section 3.3). Even though
the state-of-the-art methods (see, e.g., Luan et al. (2021); Rossi et al. (2023)), outperform our method in
terms of accuracy; such methods are inherently not scalable to large-scale datasets because they perform
propagations (message-passing) during training which make neighborhood sampling mandatory to be able to
run on large datasets. In these cases, training GNNs on large datasets is still feasible; yet, it is very costly

1'We use the word “positional embedding” to talk broadly about embeddings that correspond to the nodes of a graph and
encode the structural characteristics of each node.
2We use ego embeddings and node features interchangeably.

Under review as submission to TMLR

in terms of time, cost, and resources and takes up considerable time compared to our method (cf. Frasca
et al. (2020); Bojchevski et al. (2020) and the references therein, and the runtime comparison in Section 4).
Our method overcomes this bottleneck by performing propagations twice and out of the training loop, which
makes it easier to get deployed in industrial applications since our propagations can be implemented with
modern distributed storage and processing software such as Apache Hadoop. Moreover, we also argue that
GLINKX is complementary to what other methods propose, and such complementary information can be
included in GLINKX without sacrificing performance. Finally, GLINKX is suitable for industrial applications
since it can work in both a transductive and an inductive® setting.

2 Preliminaries

2.1 Notation

We denote scalars with lower-case, vectors with bold lower-case letters, and matrices with bold upper-case.
We consider a directed graph G = G(V, E) with vertex set V with |V| = n nodes, and edge set E with
|E| = m edges, and adjacency matrix A. X € R"*?x represents the dx-dimensional features and P € R"* 7
represent the dp-dimensional PE matrix (see Section 2.6 and Appendix A.2). A node i has a feature vector
x; € R and a positional embedding p; € R and belongs to a class y; € {1,...,c}. The training set is
denoted by Gtrain(‘/trainv Etrain); the validation set by Gvalid(‘/;/alidv Evalid)a and test set by Gtest(‘/testa Etest)~
I{-} is the indicator function. T, is the c-dimensional simplex.

2.2 Graph Convolutional Neural Networks

In homophilous datasets, GCN-based methods have been used for node classification. GCNs (Kipf & Welling,
2016) utilize feature propagations together with non-linearities to produce node embeddings. Specifically,
a GCN consists of multiple layers where each layer i collects i-th hop information from the nodes through
propagations and forwards this information to the ¢ + 1-th layer. More specifically, if G has a symmetrically-
normalized adjacency matrix Af,,, (with self-loops) (ignoring the directionality of edges), then a GCN layer
has the form

HO = X, H = o (AL, HOWD) vie{l,... L},

Y = softmax (H(L)) .

Here H® is the embedding from the previous layer, W is a learnable projection matrix and o(-) is a
non-linearity (e.g. ReLU, sigmoid, etc.).

2.3 Message-Passing Architectures vs. Efficient Shallow Methods

Message-Passing Architectures: To train a GCN-based model (or generally, whenever message-passing
is involved) on a large network (that cannot fit in the GPU memory), one has to do minibatching through
neighbor sampling. For large-scale networks, mini-batching takes much longer than full-batch training and
requires substantially more infrastructure, which is one of the reasons that graph GCNs are not preferred in
real-world settings (see, e.g., Jin et al. (2022b); Zhang et al. (2022a); Zheng et al. (2022a); Lim et al. (2021);
Maurya et al. (2021); Rossi et al. (2020)).

Efficient Shallow Methods: Shallow (or node-level) models are based on manipulating the node features
X and the graph topology A so that propagations do not occur during training. Such methods treat the
input embeddings as tabular data and pass them through a feed-forward neural network (MLP) to produce
the predictions. Thus, they avoid the message-passing bottlenecks and instead rely on simple tabular mini-
batching. For this reason, most methods that can scale on real-world settings are shallow. In heterophilous

3For this paper, we operate in the transductive setting. See Appendix B for the inductive setting.

Under review as submission to TMLR

yelp-chi
Node Homophily Distribution Class Homophily (Lim et al., 2021)

Z-
].

0.0 02 0.4 0.6 08 10 0.00 0.01 02 0.03 0.04
Class Humuphlly

oo N @
Class

Frequency

o = N w

=

(a) Node and class homophily

nrerrerre

b) Homophilous example (c) Heterophilous example

Figure 1: Top: Node and Clabb homophily distributions for the yelp-chi dataset. Bottom: Examples of
a homophilous (Figure 1(b)) and a heterophilous (Figure 1(c)) region in the same graph that are both
monophilous, namely they are connected to many neighbors of the same kind. In a spam network, the
homophilous region corresponds to many non-spam reviews connecting to non-spam reviews (which is the
expected behavior of a non-spammer user). The heterophilous region corresponds to spam reviews targeting
non-spam reviews (the expected behavior of spammers), thus, yielding a graph with both homophilous and
heterophilous regions such as in Figure 1(a).

datasets, the simple method of LINKX has been shown to perform well. LINKX combines two components —
MLP on the node features X and LINK regression (Altenburger & Ugander, 2018a) on the adjacency matrix
— as follows:

Hy = MLPx(X), Hay = MLP4(A), Y = ResNet(Hy, H4).
Examples of other methods include FSGNN (Maurya et al., 2021), and SIGN (Rossi et al., 2020).

2.4 Node Classification

In graph node classification, we have a model f(X, Yirain, 4;0) that takes as an input the node features
X, the training labels Yi.i, and the graph topology A and produces a prediction for each node i of G,
which corresponds to the probability that a given node belongs to any of ¢ classes (with the sum of such
probabilities being one). The model is trained with back-propagation. Once trained, the model can be used
for the prediction of labels of nodes in the test set.

There are two training regimes: transductive and inductive. In the transductive training regime, we have full
knowledge of the graph topology (for the train, test, and validation sets) and the node features, and the task
is to predict the labels of the validation and test set. In the inductive regime, only the graph induced by
Virain is known at the time of training, and then the full graph is revealed for prediction on the validation
and test sets. In real-world scenarios, such as online social networks, the dynamic nature of problems makes
the inductive regime particularly useful.

2.5 Homophily, Heterophily & Monophily

Homophily and Heterophily: There are various measures of homophily in the GNN literature like node
homophily and edge homophily (Lim et al., 2021). Intuitively, homophily in a graph implies that nodes
with similar labels are connected. GNN-based approaches like GCN, GAT, etc., leverage this property to
improve the node classification performance. Alternatively, if a graph has low homophily — namely, nodes that

Under review as submission to TMLR

connect tend to have different labels — it is said to be heterophilous. In other words, a graph is heterophilous
if neighboring nodes do not share similar labels.

Momnophily: Generally, we define a graph to be monophilous if the label of a node is similar to that of
its neighbors’ neighbors?. Etymologically, the word “monophily” is derived from the Greek words “monos”
(unique) and “philos” (friend), which in our context means that a node — regardless of its label — has neighbors
of primarily one label. In the context of a directed graph, monophily can be thought of as a structure that
resembles Figure 3(a) where similar nodes (in this case, three green nodes connected to a yellow node) are
connected to a node of different/same label.

2.6 Knowledge Graph Embeddings as Positional Embeddings

Knowledge Graphs: Knowledge graph embeddings are a way to present knowledge about the world in
a structured way. They consist of triplets (h,r,t), which correspond to a head (h), a relation (r), and
a tail (¢), such that the tail ¢ is related to the head h via the relation r. The union of all such triplets
defines a heterogeneous graph, the Knowledge Graph G(V, E1, ..., Er) where the number of relations is R.
Knowledge graphs can have multiple relations that represent different associations of objects, for example,
(Paris, isCapitalOf, France), and (Baguette, isEatenln, France).

Knowledge Graph Embeddings: The aim of knowledge graph embeddings (KGEs) is to provide continuous-
space representations for the entities {p, }icyRIVI*4P and the relations {ritieir) € R7*dr such that for a
triplet (h = p,, T = 7,t = py), h+7r ~ t where “~” corresponds to minimizing a distance criterion. Training
is done by sampling negative examples for each positive example (h,r,t) and minimizing a contrastive-type
loss. There have been numerous methods proposed for modeling and training KGEs, see Wang et al. (2017)
for an in-depth literature review. In our paper, we use the DistMult method introduced by Yang et al. (2014)
where the distance criterion is the triple Hadamard (element-wise) product h © r © t.

Moreover, we note that homogeneous graphs — namely graphs where there is only one relation (for example
the simple edge relation) — are a subset of knowledge graphs where all nodes and edges have the same types.
In this paper, we use KGEs on homogeneous graphs as a way to extract embeddings for the nodes of the
graph.

KGEs as Positional Embeddings: Apart from representing knowledge in a continuous space, KGEs can
provide positional information — i.e., positional embeddings — for the graph nodes. Specifically, training
knowledge graph embeddings can be seen as performing a non-linear factorization on the adjacency
matrices in order to generate embeddings for the nodes. These embeddings can then be used as positional
embeddings (PEs) for representing the “position of a node” in the graph (see Section 3), which serves as a
useful additional signal for node classification in both homophilous and heterophilous graphs (cf. Lim et al.
(2021); Dwivedi et al. (2021); Srinivasan & Ribeiro (2019); Wang et al. (2022)). Finally, KGEs can be trained
scalably for graphs with billions of nodes (see, e.g., El-Kishky et al. (2022)). For our paper, we describe the
KGE training method in Appendix A.2.

3 Method

3.1 Components & Motivation

The desiderata we laid down on Section 1 can be realized by three components: (i) PEs, (ii) ego embeddings,
and (iii) label propagations that encode monophily. More specifically, ego embeddings and PEs are used as
primary features, which have been shown to work for both homophilous and heterophilous graphs for the
models we end up training. Finally, the propagation step is used to encode monophily to provide additional
information to our final prediction.

Positional Embeddings: We use PEs to provide our model information about the position of each node and
hypothesize that PEs are an important piece of information in the context of large-scale node classification.

4A similar definition of monophily has appeared in (Altenburger & Ugander, 2018a), whereby many nodes have extreme
preferences for connecting to a certain class.

Under review as submission to TMLR

{ } | Propagation
YijieVirain Y iYieviram

{yi}ievtrain
; Propaation
#2

Original Graph Positional Embeddings yim ‘UEGJEVV,WJ,-_”
train*l 2]

(a) 1st Stage (b) 2nd Stage
o R
2 Ufinatitieveram
P
X

(c) 3rd Stage
Figure 2: Block Diagrams of GLINKX stages.

PEs have been used to help discriminate isomorphic graph (sub)-structures (Kim et al., 2022; Dwivedi et al.,
2021; Srinivasan & Ribeiro, 2019), and also architectures that are able to learn node representations jointly
and PEs have been developed (Wang et al., 2022). Specifically, Wang et al. (2022) develops a method to learn
PEs during GNN training by using a separate channel to update the original node features and the PEs.
Their architecture (PEG Layer) is permutation-invariant wrt the node features, rotationally and reflectively
invariant wrt the PEs, and has good stability guarantees. We note that the difference with our method is that
in our method the PEs are pre-trained and provided externally, rather than trained in an end-to-end manner.

PEs are useful for both homophily (Kim et al., 2022; Dwivedi et al., 2021) and heterophily (Lim et al., 2021)
because isomorphic (sub)-structures can exist in both the settings. In the homophilous case, adding positional
information can help distinguish nodes that have the same neighborhood but distinct position (Dwivedi
et al., 2021; Morris et al., 2019; Xu et al., 2019), circumventing the need to do higher-order propagations
(Dwivedi et al., 2021; Li et al., 2019; Bresson & Laurent, 2017) which are prone to over-squashing (Alon &
Yahav, 2021). In heterophily, structural similarity among nodes is important for classification, as in the case
of LINKX — where adjacency embedding can be considered a PE. However, in large graphs, using adjacency
embeddings or Laplacian eigenvectors be a computational bottleneck and may be infeasible (cf. Kim et al.
(2022)).

In this work, we leverage knowledge graph embeddings (KGEs) to encode positional information about the
nodes, and embed the graph, as a way to perform a non-linear factorization on the adjacency matrix of the
graph. The resulting factorization can serve as a graph embedding — as we describe in Section 2.6 — which
can be utilized as a PE. For our paper, we consider a simple case of the graph having only one relation — also
called a homogeneous graph — which represents the topological links in the graph (i.e., edges).

Using KGEs has two benefits: Firstly, KGEs can be trained easily and efficiently in many real-world scenarios
(cf. El-Kishky et al. (2022)). This is because KGEs compress the adjacency matrix into a fixed-sized
embedding. Further, KGEs are lower-dimensional than the adjacency matrix (e.g., dp ~ 102), allowing for
faster training and inference times, as well as better utilization of machine learning infrastructure. Secondly,
KGEs can be pre-trained efficiently on such graphs (Lerer et al., 2019) and can be used off-the-shelf for other
downstream tasks, including node classification (El-Kishky et al., 2022)°. So, in the 1st Stage of GLINKX in
Algorithm 1 (Figure 2(a)) we train KGEs model on the available graph structure. Here, we fix this positional
encoding once they are pre-trained for downstream usage. Finally, we note that this step is transductive but
we can easily make it inductive (El-Kishky et al., 2022; Albooyeh et al., 2020).

5Positional information can also be provided by other methods such as node2vec (Grover & Leskovec, 2016) or LINE (Tang
et al., 2015), however, most of such methods are less scalable.

Under review as submission to TMLR

Ego Embeddings: We get ego embeddings from the node features. Such embeddings have been used in
homophilous and heterophilous settings (Lim et al., 2021; Zhu et al., 2020). Node embeddings are useful for
tasks where the graph structure provides little/no information about the task.

Monophilous Label Propagations: We now propose a novel monophily (refer Section 2.5) inspired label
propagation which we refer to as Monophilous Label Propagation (MLaP). MLaP has the advantage that
we can use it both for homophilous and heterophilous graphs or in a scenario with varying levels of graph
homophily (see, e.g., Figure 1).

Why Encode Monophily? We argue that encoding monophily into a model can be helpful for both heterophilous
and homophilous graphs (see Figures 1(b) and 1(c)), which is one of the main motivators behind our work.
In homophilous graphs, monophily will fundamentally encode the 2nd-hop neighbor’s label information,
and since in such graphs, neighboring nodes have similar labels, it can provide a helpful signal for node
classification. In heterophily, neighboring nodes have different labels, but the 2nd-hop neighbors may share
the same label, providing helpful information for node classification. Monophily is effective for heterophilous
graphs (Lim et al., 2021). Therefore, an approach encoding monophily has an advantage over methods
designed specifically for homophilous and heterophilous graphs, especially when varying levels of homophily
can exist between different sub-regions in the same graph (see Figure 1). It may also not be apparent if
the (sub-)graph is purely homophilous/heterophilous (since these are not binary constructs), which makes a
unified architecture that can leverage graph information for both settings all the more important.

How does MLaP encode monophily? To understand how MLaP encodes monophily, we consider the example
in Figure 3. In this example, we have three green nodes connected to a yellow node and two nodes of different
colors connected to the yellow node. Then, one way to encode monophily in Figure 3(a) while predicting
label for jg, ¢ € [5], is to get a distribution of labels of nodes connected to node 4 thus encoding its neighbors’
distribution. The fact that there are more nodes with green color than other colors can be used by the model
to make a prediction. But this information may only sometimes be present, or there may be few labeled nodes
around node 7. Consequently, we propose a 2-step approach to get this information. First, we train a model
that predicts the label distribution of nodes connected to i. We use the node features (z;) and PE (p;) of
node 7 to build this model since nodes that are connected to node i share similar labels and thus, the features
of node 7 must be predictive of its neighbors. So, in Figure 3(a), we train a model to predict a distribution
of i’s neighbors. Next, we provide j, the learned distribution of i’s neighbors by propagating the learned
distribution from ¢ back to jg, and therefore now j, has information about 4’s neighbors. Equations (1) to (3)
correspond to MLaP. We train a final model that leverages this information together with node features and
PEs (Figure 3(b)).

3.2 Our Method: GLINKX

We put the components discussed in Section 3.1 together into three stages. In the first stage, we pre-train
the PEs by using KGEs. Next, encode monophily into our model by training a model that predicts a node’s
neighbors’ distribution and by propagating the soft labels from the fitted model. Finally, we combine the
propagated information, node features, and PEs to train a final model. GLINKX is described in Algorithm 1
and consists of three main components detailed as block diagrams in Figure 2. Figure 3 shows the GLINKX
stages from Algorithm 1 on a toy graph:

1st Stage (KGEs): We train DistMult KGEs with Pytorch-Biggraph (Yang et al., 2014) treating G as a
knowledge graph with only one relation (see Appendix A.2 for more details). Here, we have decided to use
DistMult, but one can use their method of choice to embed the graph.

2nd Stage (MLaP): First (2nd Stage in Algorithm 1, Figure 2(b), and Figure 3(a)), for a node we want to
learn the distribution of its neighbors. To achieve this, we propagate the labels from a node’s neighbors (we
call this step MLaP Forward), i.e., calculate

2 € Virain:(1:1)€ Berain Y
'g' = - rain* ’. ‘ rain V@ E V . ,
z |{] = Vvtrain : (]72) S Etraiﬂ}' train ()

Under review as submission to TMLR

Algorithm 1 GLINKX Algorithm

Input: Graph G(V, E) with train set Viain C V), node features X, labels Y
Output: Node Label Predictions Ygna
1st Stage (KGEs). Pre-train knowledge graph embeddings P with Pytorch Biggraph.
2nd Stage (MLaP). Propagate labels and predict the neighbor distribution
1. MLaP Forward: Calculate the distribution of each training node’s neighbors, i.e.

) . Yj
~ JE€Viraini(4,4) € Btrain { 14
= o —— T i
Yi |{]€Vtrain:(]71)eEtrain}| orallz & ‘/;raln

2. Learn distribution of a node’s neighbors:
(a) For each epoch, calculate §; = f1(x;, pi;601) for i € Vivain
(b) Update the parameters s.t. the negative cross-entropy Lcg1(01) = > icy. CE(8:, §i;01) is
maximized in order to bring §; statistically close to g;.
(¢) Let 67 be the parameters at the end of the training that correspond to the epoch with the best
validation accuracy.
ZjeV:(i,j)EE Yi

3. MLaP Backward: Calculate y, = TG e for all i € Viyain, where §; = fi(x;,p;;07).
3rd Stage (Final Model). Predicting node’s own label distribution:
1. For each epoch, calculate Yunal; = fo(@i, Pi, Yj; 02).
2. Update the parameters s.t. the negative cross-entropy Lcg,2(02) = Eithm;n CE(Yi, Yfinal,i; 02) is
maximized.
Return Ygpa

, 311 _ /
Yin® 505050 Y| Yisfinal —fZ(xj1'pf1'yi1)

[1,0,0,0])[1,0,0, 1/[0,1,0,0]
[1,0,0,0] [0,0,1,0] w

@Bl _ [f,l,; |
yi=|zge | = V= Alwp) 5'5°5
(a) MLaP Forward & Neighbor Model (b) MLaP Backward & Final Model

Figure 3: Example. For node i we want to learn a model that takes i’s features x; € R, and PEs p; € R??
and predict a value y; € R that matches the label distribution of it’s neighbors neighbors §; using a shallow
model. Next, we want to propagate (outside the training loop) the (predicted) distribution of a node back to
its neighbors and use it together with the ego features and the PEs to make a prediction about a node’s own
label. We propagate 4; to its neighbors j; to j5. For example, for j;, we encode the propagated distribution
estimate ¢; from i to form y}l. We predict the label by using y}l,:cjl,pjl.

In our example in Figure 3(a), we calculate the distribution of node ¢’s neighbors which is (3/5,1/5,1/5,0).

Then, we train a model that predicts the distribution of neighbors, which we denote with ¢; using the
ego features {x;}icv;,.,, and the PEs {p;}icvi,.,, and maximize the negative cross-entropy with treating
{Ji}ievi,as, as ground truth labels; namely we maximize

Lop 1(01) = > Giilog(@in), (2)

1€ Virain 1€[C]

where §; = fi1(x;, pi;01) and 6, € O is a learnable parameter vector. Although in this paper we assume
to be in the transductive setting, this step allows us to be inductive (see Appendix B). In Section 3.3 we
give a theoretical justification of this step, namely “why is it good to use a parametric model to predict the
distribution of neighbors (i.e., a parametric model vs. neighborhood statistics)?”.

Again, in the example of Figure 3(a), we train a model to learn the distribution of i’s neighbors.

Under review as submission to TMLR

Finally, we propagate the predicted soft-labels §; back to the original nodes, i.e. calculate

y’- _ ZjeV:(i,j)eE ?jj
C HieV:(i,j) e B}

VZ S V:crainv (3)

where the soft labels {@; }icvi,.., have been computed with the parameter 8 of the epoch with the best
validation accuracy from model fi(-|@1). We call this step MLaP Backward. In the example (Figure 3(b)),
this means propagating back the learned distribution from node ¢ — which are close to (3/5,1/5,1/5,0) —
back to ¢’s neighbors.

3rd Stage (Final Model): We make the final predictions Ysnal, i = fo(®i, Pi, Yj;02) by combining the ego
embeddings, PEs, and the (back)-propagated soft labels (65 is a learnable parameter vector). We use the soft
labels §; instead of the actual labels one-hot (y;) in order to avoid label leakage, which hurts performance
(see also (Shi et al., 2020) for a different way to combat label leakage). Finally, we maximize the negative
cross-entropy with respect to a node’s own labels,

Lor,2(02) = Y > Hyi =1} log(ynmal, 1), (4)

1€ Virain LE€[c]

Finally, in our example in Figure 3(b), this corresponds to using the propagated distribution as one of the
inputs in the models we train for each of the nodes ji,...,Js.

Overall, Stage 2 corresponds to learning the neighbor distributions and propagating these distributions, and
Stage 3 uses these distributions to train a new model which predicts a node’s labels. In Section 3.3, we prove
that such a two-step procedure incurs lower errors than directly using the features to predict a node’s labels.

Complexity: GLINKX is highly scalable as it can utilize existing machine learning architecture efficiently since
it performs message passing a constant number of times by paying an O(mc) cost, where the dimensionality
of classes ¢ is usually small (compared to dx that GCNs rely on). In both Stages 2 and 3 of Algorithm 1,
we train node-level MLPs, which allow us to leverage i.i.d. (row-wise) mini-batching, like tabular data; our
complexity is similar to other shallow methods (LINKX, FSGNN) (Lim et al., 2021; Maurya et al., 2021).
This, combined with the propagation outside the training loops, circumvents the bottlenecks faced by GNNs.
Finally, as with every method, the inference complexity is also a function of how many parameters the model
has, which also affects the runtime. For more details, refer Appendix A.1.

Complementarity: Different components of GLINKX provide a complementary signal to components
proposed in the GNN literature (Maurya et al., 2021; Zhang et al., 2022b; Rossi et al., 2020). One can
combine GLINKX with existing architectures (e.g. feature propagations (Maurya et al., 2021; Rossi et al.,
2020), label propagations (Zhang et al., 2022b)) for potential metric gains. For example, SIGN computes a
series of r € N feature propagations [X, ®X, ®2X ..., ®" X] where ® is a matrix (e.g., normalized adjacency
or normalized Laplacian) as a preprocessing step. We can include this complementary signal, namely, embed
each of the propagated features and combine them in the 3rd Stage to GLINKX. Overall, although in this
paper we want to keep GLINKX simple to highlight its main components, we conjecture that adding more
components to GLINKX would improve its performance on datasets with highly variable homophily (see
Figure 1).

Varying Homophily: Graphs with monophily experience homophily, heterophily, or both. For instance, in
the yelp-chi dataset — where we classify a review as spam/non-spam (see Figure 1) — we observe a case of
monophily together with varying homophily. Specifically in this dataset, spam reviews are linked to non-spam
reviews, and non-spam reviews usually connect to other non-spam reviews, which makes the node homophily
distribution bimodal. Here the 2nd-order similarity makes the MLaP mechanism effective.

Under review as submission to TMLR

3.3 Theoretical Analysis

Justification of MLaP (Stage 2): In the MLaP stage, we train a parametric model to learn the distribution
of a node’s neighbors from the node features &;°. Arguably, we can learn such a distribution naively by
counting the neighbors i that belong to each class. This motivates our first theoretical result. In summary,
we show that training a parametric model for learning the distribution of a node’s neighbors (as in Stage 2)
yields a lower error than the naive solution. Below we present the Theorem 1 for undirected graphs (the case
of directed graphs is the same, but we omit it for simplicity of exposition):

Theorem 1. Let G([n], E) be an undirected graph of minimum degree K > ¢* and let Q; € T'. be the

distribution of i’s neighbors, for every i € [n]. The following two facts are true (under standard assumptions
for SGD and the losses):

1. Let @1 be the sample average of Q;, i.e.
Qi = S U =1)
i3 = Thrr Ye =JJ-
T NG
Then, for every i € [n], we have that

max Eq,[|Qi; — Qi ;] < Eq,[

J€ld]

Qi —Qill] <0 (\/ IOgg(K@) .

2. Let q(-|€;0) be a model parametrized by @ € RP that uses the features & of each node i
to predict Q;. We estimate the parameter 6; by running SGD for t = n steps to mazximize
L£O)=L3", > =1 Qi jlogq(jl€i;0). Then, for every i € [n], we have that

o Elo(is€561) - @iyl <0 (/222)

The expectation is taken over Q; and the randomness of the SGD.

The proof can be found in Appendix F. It is evident here that if the minimum degree K is much smaller

than n, then the parametric model has lower error than the naive approach, namely O(n_l/ 2) compared to
O(K~1/?).

Justification of MLaP and Final Model Stages (Stages 2 and 3): We now provide theoretical
foundations for the two-stage approach. Specifically, we argue that a two-stage procedure involving learning
the distribution of a node’s 2nd-hop neighbor distributions (we assume for simplicity, again, that the graph is
undirected) first with a parametric model such as in Theorem 1, and then running a two-phase algorithm to
learn a parametric model that predicts a node’s label, yields a lower error than naively training a shallow
parametric model to learn a node’s labels. The first phase of the two-phase algorithm involves training
the model first by minimizing the cross-entropy between the predictions and the 2nd-hop neighborhood
distribution. Then the model trains a joint objective that uses the learned neighbor distributions and the
actual labels starting from the model learned in the previous phase.

Theorem 2. Let G([n], E) be an undirected graph of minimum degree K > ¢* and, let P; be the likelihood of
node i to be assigned to a different class, and let Q;, q(+|&;;01) defined as in Theorem 1. Let p(-|€;;w) be a
model parametrized by w € RP that is used to predict the class assignments y; ~ p(-|€;;w). Let w. be the
optimal parameter. The following are true (under standard assumptions for SGD and the losses):

1. The naive optimization scheme that runs SGD to mazimize G(w) = £ 31 | 25:1 P, jlog p(j1&i; w)
for n steps has error

n

E[G(wni1) — G(w.)] < O (122,

where the expectation is taken over P;, and the randomness of the SGD.

6In Section 3.1, &;s correspond to the augmented features & = [x;; p;]

10

Under review as submission to TMLR

Table 1: Small-scale and medium-scale experimental results. (*) = results from the OGB leaderboard.

Homophilous Datasets

Heterophilous Datasets

PubMed ogbn-arxiv squirrel yelp-chi arxiv-year
n 19.7K 169.3K 5.2K 169.3K 45.9K
m 44.3K 1.16M 216.9K 7.73M 1.16M
Homophily (Lim et al., 2021) 0.66 0.41 0.02 0.05 0.27
dx 500 128 2089 32 128
c 27 40 5 2 5
GLINKX w/ KGEs 87.95 £0.30 69.27 +0.25 45.83 +2.89 87.82 £0.20 54.09 +0.61
GLINKX w/ Adjacency 88.03 £0.30 69.09 +0.13 69.15 +1.87 89.32 £0.45 53.07 £0.29
Label Propagation (1-hop) 83.02 £0.35 69.59 +0.00 32.22 +£1.45 85.98 +0.28 43.71 +£0.22
LINKX (from (Lim et al., 2021)) 87.86 £0.77 67.32 £0.24 61.81 £1.80 85.86 £0.40 56.00 +1.34
LINKX (our runs) 87.55 £0.37 63.91 +0.18 61.46 +1.60 88.25 +0.24 53.78 £0.06
GCN w/ 1 Layer 86.43 £0.74 50.76 £0.20 26.17 +£2.49 85.57 £0.15 44.82 +0.18
GAT w/ 1 Layer 86.41 £0.53 54.42 £0.10 30.13 £1.55 86.02 £1.00 45.66 +0.36
FSGNN w/ 1 Layer 88.93 £0.31 61.82 £0.84 64.06 +2.69 86.36 +0.36 42.86 +0.22
Higher-order GCN 86.29 +0.46 71.18 £0.27 (*) 24.81 £1.70 85.60 £0.15 44.58 £0.28
Higher-order GAT 86.64 £0.40 73.66 +0.11 (*) 27.00 £1.51 85.63 £0.18 45.77 +£0.41
Higher-order FSGNN 89.37 £0.49 69.26 £0.36 68.04 +£2.19 86.33 £0.30 44.89 +0.29
Label Propagation (2-hop) 83.44 £0.35 69.78 £0.00 43.41 £1.44 85.95 £0.26 46.30 £0.27
Label Prop. on I[A%2—A—T>0] 82.14 £0.33 9.87 £0.00 24.43 £1.18 85.68 +0.32 23.08 £0.13

Table 2: Ablation Study. We use the hyperparameters of the best run from Table 1 with KGEs.

Ablation Type Stages All Remove ego embeddings Remove propagation Remove PEs
Heterophilous arxiv-year All Stages 54.09 £0.61 53.52 +0.77 50.83 +0.24 39.06 +0.35
arxiv-year 3rd Stage 54.09 +0.61 53.69 +0.65 50.83 +0.24 49.13 +1.10
Homophilous ogbn-arxiv All Stages 69.27 £0.25 61.26 £0.33 62.70 +0.34 65.64 +0.18
ogbn-arxiv 3rd Stage 69.27 +0.25 67.60 +0.39 62.70 +0.34 69.62 +0.15

2. The two-phase optimization scheme that runs SGD to mazimize

~ 1l = o 1
g(w)ZgZZ(W

i=1 j=1

> a(ilér; 01)) log p(j[&s; w)

keN (2)

for my steps, to estimate a solution w' and then runs SGD on the objective A\G(w) + (1 — NG (w) for
n steps starting from w’, achieves error

E[G(wp+1) — G(w.)] <O (W> .

n

where the expectation is taken over P;, Q;, and the randomness of the SGD.

You can find the proof in Appendix F. We observe that the two-phase optimization scheme can reduce the
error by a factor of y/logn/loglogn highlighting the importance of using the distribution of the 2nd-hop
neighbors of a node to predict its label and holds regardless of the homophily properties of the graph. Also,
note that the above two-phase optimization scheme differs from the description of the method we gave in
Algorithm 1. The difference is that the distribution of a node’s neighbors is embedded into the model in
the case of Algorithm 1, and the distribution of a node’s neighbors are embedded into the loss function
in Theorem 2 as a regularizer. In Algorithm 1, we chose to incorporate this information in the model
because using multiple losses harms scalability and makes training harder in practice. In the same spirit, the
conception of GCNs (Kipf & Welling, 2016) replaces explicit regularization with the graph Laplacian with
the topology into the model (see also Hamilton et al. (2017); Yang et al. (2016)).

4 Experiments & Conclusions

Small-scale and Medium-scale datasets. We experiment with homophilous and heterophilous datasets
(see Table 1). We train KGEs with Pytorch-Biggraph (Lerer et al., 2019; Yang et al., 2014; Wang et al.,

11

Under review as submission to TMLR

2017). For homophilous datasets, we compare with vanilla GCN and GAT, FSGNN, and Label Propagation
(LP). For a fair comparison, we compare with one-layer GCN/GAT/FSGNN/LP since GLINKX is one-hop.
We also compare with higher-order (h.o.) GCN/GAT/FSGNN/LP with 2 and 3 layers. In the heterophilous
case, we compare with LINKX 7 because it is scalable and is shown to work better than other baselines (e.g.,
H2GCN, MixHop, etc.) and with FSGNN. For reasons of completeness, we also report numbers for GCN
and GAT (1-layer and h.o.), which are known to underperform in heterophilous settings and suffer from
message-passing bottlenecks, as well as LP.

Note that we do not compare GLINKX with other more complex methods because (i) lots of GNN-based
methods are not scalable®, (ii) GLINKX is complementary to them (see Section 3.2), and we can incorporate
these designs into GLINKX, (iii) for the heterophilous datasets, GLINKX outperforms or is in agreement
with LINKX which is we believe is a strong baseline and outperforms or is in agreement with many recent
methods (cf. He et al. (2021); Tang et al. (2019); Dai et al. (2022)) while being substantially more scalable
and tested on bigger datasets.

Finally, we use a ResNet module to combine our algorithm’s components from Stages 2 and 3. Details about
the hyperparameters we use are in Appendix C.

In the heterophilous datasets, GLINKX is better/competitive with the baselines. Moreover, the performance
gap between using KGEs and adjacency embeddings shrinks as the dataset grows.

In the homophilous datasets, GLINKX outperforms 1-layer GCN/GAT/LP/FSGNN and LINKX. In PubMed,
GLINKX beats h.o. GCN/GAT and in arxiv-year GLINKX is very close to the performance of GCN/GAT.

It is important to highlight that the higher-order GNN methods (GCN/GAT) are as good as GLINKX or
better only in the case where the graph is homophilous, since GCNs/GATs have shown to perform poorly in
heterophilous graphs; see Zhu et al. (2020); Lim et al. (2021); Di Giovanni et al. (2022); Jin et al. (2022a);
Luan et al. (2021), and the references therein.

Finally, we note that GLINKX produces consistent results across regime shifts. In detail, in the heterophilous
regime, GLINKX performs on par with LINKX; however, when we shift to the homophilous regime, LINKX’s
performance drops, whereas GLINKX’s performance continues to be high. Similarly, while FSGNN performs
similarly to GLINKX on the homophilous datasets, we observe a significant performance drop on the
heterophilous datasets (see arxiv-year).

Scalability Experiment. To show the scalability of GLINKX, we experiment with the ogbn-products
dataset from the OGB benchmark (Hu et al., 2020), which has n = 2.44M nodes and m = 61.8M edges. The
features have dimension dx = 100 and our aim is to predict the correct class out of ¢ = 47 classes. The graph
is categorized as a homophilous graph and has a homophily equal to 0.45.

As shown in Table 3, GLINKX outperforms LINKX by a big margin. Moreover, GLINKX performs much
better than the h.o. GCN and FSGNN — albeit the higher number of hops — and has performance comparable
to the h.o. GAT. However, at the same time, GCN and GAT require neighbor sampling which raises the
training time to days, compared to the simple i.i.d. sampling GLINKX performs, which is able to complete
within ours, en par with LINKX.

The ogbn-products dataset took 17.53 seconds on average per epoch to train (for both phases), including
the propagation costs. At the same time, the 1-layer GCN took 104.39 seconds per epoch on average to
train, and the 1-layer GAT took 107.39 seconds on average per epoch to train. This indicates at least an 83%
reduction in training time (or equivalently our method is approximately 6x faster).

Ablation Study. We ablate each component of Algorithm 1 to see each component’s performance contribution.
We use the hyperparameters of the best model from Table 1. We perform two types of ablations: (i) we remove
each of the components from all stages of the training, and (ii) we remove the corresponding components only
from the 3rd Stage. Except for removing the PEs from the 3rd Stage only on ogbn-arxiv, all components

"We have run GLINKX with hyperparameter space that is a subset of the sweeps reported in (Lim et al., 2021) due to
resource constraints. A bigger hyperparameter search would improve our results.

8Here we have added a comparison with vanilla GCN and GAT to motivate the architecture of our method and the usefulness
of the MLaP layer, and we should note that the vanilla GCN and GAT have the same scalability problems.

12

Under review as submission to TMLR

Table 3: Results for ogbn-products. (*) = results from the OGB leaderboard. We have omitted the 1-layer
GCN/GAT and LP-based methods since GLINKX repeatedly outperforms these by a big margin in the small
and medium-scale datasets.

GLINKX w/ KGEs 78.15 £0.10

LINKX 69.02 £0.61
GCN w/ 1 Layer 66.28 +0.12
GAT w/ 1 Layer 65.31 +0.27
FSGNN w/ 1 Layer 70.44 £0.15
Higher-order GCN 75.64 £0.21 (*)
Higher-order GAT 79.45 £0.59 (*)

Higher-order FSGNN 76.03 £0.33

contribute to increased performance on both datasets. Note that adding PEs in the 1st Stage does improve
performance, suggesting the primary use case of PEs.

5 Conclusion

We present GLINKX, a simple, scalable shallow method for node classification in homophilous and het-
erophilous graphs that combines three components: (i) ego embeddings, (ii) PEs, and (iii) monophilous
propagations. As future work, (i) GLINKX can be extended in heterogeneous graphs, (ii) use more ex-
pressive methods such as attention or Wasserstein barycenters (Cuturi & Doucet, 2014) for averaging the
low-dimensional messages, and (iii) add complementary signals. While our method is outperformed by the
current GNN-based state-of-the-art methods (Rossi et al., 2023; Luan et al., 2021), our simple and scalable
design design avoids the scalability bottlenecks of GNNs which include neighborhood sampling which is a very
costly operation, by leveraging propagations outside of the training loop, and can be easily and efficiently
deployed in an industrial scale with modern infrastructure. Our extensive evaluation on a database of six
datasets with various sizes from the homophilous and heterophilous regime, and the theoretical error bounds
we provide, justify our design choices and show that GLINKX is able to perform well and consistently across
regime shifts.

References

Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. Out-of-sample representation learning for
knowledge graphs. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
26572666, 2020.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
i800PhOCVH2.

Kristen M Altenburger and Johan Ugander. Monophily in social networks introduces similarity among
friends-of-friends. Nature human behaviour, 2(4):284-290, 2018a.

Kristen M Altenburger and Johan Ugander. Node attribute prediction: An evaluation of within-versus
across-network tasks. In NeurlPS Workshop on Relational Representation Learning, 2018b.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification
repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/downloads/XC/XMLRepos
itory.html.

13

Under review as submission to TMLR

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rézem-
berczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural networks with approximate
pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery €
Data Mining, pp. 2464-2473, 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. Advances in neural information processing systems, 26,
2013.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553, 2017.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery € data mining, pp. 257-266, 2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. arXiv preprint arXiv:2006.07988, 2020.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In Eric P. Xing and
Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pp. 685—693, Bejing, China, 22—24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/cuturild.html.

Enyan Dai, Shijie Zhou, Zhimeng Guo, and Suhang Wang. Label-wise graph convolutional network for
heterophilic graphs. In Learning on Graphs Conference, pp. 26-1. PMLR, 2022.

Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich, and Michael M
Bronstein. Graph neural networks as gradient flows. arXiv preprint arXiv:2206.10991, 2022.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 315-324, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Eskander, Yury
Malkov, Frank Portman, Sofia Samaniego, Ying Xiao, et al. Twhin: Embedding the twitter heterogeneous
information network for personalized recommendation. arXiv preprint arXiv:2202.05387, 2022.

Fabrizio Frasca, Benjamin Paul Chamberlain, Davide Eynard, Emanuele Rossi, and Federico Monti. Simple
scalable graph neural networks, 2020. URL https://blog.twitter.com/engineering/en_us/topics/i
nsights/2021/simple-scalable-graph-neural-networks. Blog post.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation. Advances in Neural Information Processing Systems, 34:14239-14251, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label propagation
and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993, 2020.

14

Under review as submission to TMLR

Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn: Random walk
aggregation based graph neural network. arXiv preprint arXiv:2206.13953, 2022a.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2022b. URL
https://openreview.net/forum?id=WLEx3Jo4QaB.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. arXiv preprint arXiv:2207.02505, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop neighbors
improves robustness of graph neural networks. arXiv preprint arXiv:2205.13892, 2022.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich.
Pytorch-biggraph: A large scale graph embedding system. Proceedings of Machine Learning and Systems,
1:120-131, 2019.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep as cnns? In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 9267-9276, 2019.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam Lim.
Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. Advances
in Neural Information Processing Systems, 34:20887-20902, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Is heterophily a real nightmare for graph neural networks to do node classification? arXiv
preprint arXiv:2109.05641, 2021.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with simple
architecture design. arXiv preprint arXiv:2105.07634, 2021.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social networks.
Annual review of sociology, pp. 415-444, 2001.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Everett M Rogers, Arvind Singhal, and Margaret M Quinlan. Diffusion of innovations. In An integrated
approach to communication theory and research, pp. 432-448. Routledge, 2014.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 7:15, 2020.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Giinnemann,
and Michael Bronstein. Edge directionality improves learning on heterophilic graphs. arXiv preprint
arXiv:2305.10498, 2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93-93, 2008.

15

Under review as submission to TMLR

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang. An
overview of microsoft academic service (mas) and applications. In Proceedings of the 24th international
conference on world wide web, pp. 243-246, 2015.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node embeddings
and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with self-label-
enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp. 1067-1077,
2015.

Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: Efficient and stable constructions of deep neural networks
with rectified power units using chebyshev approximations. arXiv preprint arXiv:1911.05467, 2019.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for more
powerful graph neural networks. arXiv preprint arXiv:2203.00199, 2022.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724-2743, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40-48. PMLR, 2016.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old MLPs
new tricks via distillation. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=4p6_5HBWPCw.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and
Bin Cui. Graph attention multi-layer perceptron. Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022b.

Wenging Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik Subbian.
Cold brew: Distilling graph node representations with incomplete or missing neighborhoods. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?id=1ugNpm7W6E.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for graphs
with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022b.

Zhigiang Zhong, Sergey Ivanov, and Jun Pang. Simplifying node classification on heterophilous graphs with
compatible label propagation. arXiv preprint arXiv:2205.09589, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33:7793-7804, 2020.

16

Under review as submission to TMLR

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11168-11176, 2021.

17

