Dexterous Manipulation by Multi-Task RL
and Domain Randomization:
Phase 2 Report

Abstract

Learning to control a robot by directly applying model-free Reinforce-
ment Learning (RL) is prone to fail due to extreme sample inefficiency. We
propose to address this issue by employing several techniques to improve
sample complexity. In simulation we employ reward shaping, multi-task
learning, and apprenticeship learning. To transfer the learned policy to
the real robot we use domain randomization techniques to improve the
robustness of the learned policy. In subsequent phases we plan to use
learned domain randomization to target performance on the real system
rather than robustness.

1 Learning in Simulation

We propose to use a model-free end-to-end learning based approach to acquire
a policy to control the robot in simulation. Our method builds on top of
DDPG [Lillicrap et al., 2015] — an off-policy RL algorithm for continuous control.
To improve sample efficiency of our learning algorithm we augment canonical
DDPG with the following components (1) double clipped Q-learning [Fujimoto
et al., 2018], (2) n-step returns, and (3) layer normalization [Ba et al., 2016]
after the first layer of the Actor and Critic networks.

Learning desired manipulation behaviors from extremely sparse rewards
poses a complex exploration challenge, which we tackle with (1) reward shap-
ing [Popov et al., 2017], (2) multi-task learning [Riedmiller et al., 2018], and
(3) apprenticeship learning [Matiisen et al., 2020]. We design a set of auxiliary
rewards (tasks) of increasing difficulty, where each reward function is sparse
(e.g. it is zero almost everywhere, except for a small region of state space). To
enable reward gradient we apply sigmoid-like smoothing on the boundaries of
the target region of the state space. We consider the following rewards:

® Treach = 1 if any robot fingertip is very close to the cube, 0 otherwise.
® 7gasp = 1 if the cube above the ground, 0 otherwise.

® Tnove = 1 if the cube is very close to the target location, 0 otherwise.



® Torient = 1 if the cube’s orientation is close to the target, 0 otherwise.

2 Domain randomization

To facilitate successful transfer of a policy that we learn entirely in simulation
to the real system we have primarily used domain randomization. The goal
of domain randomization is to ensure that the learned policy is robust to the
differences between the simulator and the real world by covering a broad range
of possible worlds in simulation. Following the work of Tobin et al. [2017],
Peng et al. [2018], and Andrychowicz et al. [2020] we use a simple domain
randomization strategy where we hand-select the parameters to randomize and
train in simulators with randomized dynamics. More formally, if we denote the
parameters of the simulator by p and distribution over trajectories induced by
p and a policy 7 by P, we then define a distribution p, over those parameters
and attempt to optimize the expected return in the simulator:
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During training, we run our training algorithm described in our phase 1 pro-
posal which incorporates reward shaping, multi-task learning, and apprentice-
ship learning, but at each iteration we sample a vector p of simulator parameters.

Randomizations. We randomize the following parameters of the simulator,
always using a uniform distribution over the parameter range unless otherwise
indicated:

e Camera rate: 9 to 11 frames per second, to randomize the object position
latency.

e Time step: 0.003 to 0.005 seconds, to randomize the time discretization
in the simulator.

e Cube position: at each frame we add gaussian noise to the cube position
with standard deviation 0.001 to simulate the noisy pose estimation.

e Cube mass: 0.91 to 0.97

e Gravity: -9.83 to -9.79

e Restitution: 0.77 to 0.83

e Lateral friction: 0.09 to 0.11
e Max velocity: 9.9 to 10.1

We found the camera rate and time step to be especially important to randomize.



3 Design decisions

When moving from the simulator to the real robot, there were also several lower
level design decisions that we found to be important and that we will enumerate
in this section.

Specifically, we employ action repeat of 100 to compensate for lower 10Hz
frequency of the object detection system. With this in mind, we limit each
training episode by 10k true environment steps (e.g. the policy will only perform
100 actions during an episode). We also randomize initial position of the robot’s
fingers in simulation to better match the real robot.

4 Next steps: learning the randomization

While we did not have enough time during this phase of the competition, in the
next phase we plan to implement more sophisticated learned randomization and
expect this to improve our performance. Our current approach simply random-
izes the parameters in hopes of covering the dynamics of the true system. By
learning a distribution over simulator parameters based on data from the real
system we hope to tailor our randomization more specifically to the prescribed
tasks. Following the work of Chebotar et al. [2019], Akkaya et al. [2019], and
Peng et al. [2020], we plan to parameterize a distribution over the simulation
parameters. We will then automatically tune the distribution over the environ-
ments as is done in those papers to increase the likelihood of sampling simulator
parameters that are similar to the real system. We expect that this additional
tuning can improve performance on the real system.
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