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Figure 1: An overview of MemGUI-Bench, first comprehensive benchmark for GUI agent memory

evaluation.

ABSTRACT

Current mobile GUI agent benchmarks systematically fail to assess memory ca-
pabilities, with only 5.2-11.8% memory-related tasks and no cross-session learn-
ing evaluation. We introduce MemGUI-Bench, the the most comprehensive,
memory-centric benchmark with pass@k and a staged LLM-as-judge evalua-
tor. Our contributions include: (1) a systematic memory taxonomy with anal-
ysis of 11 prominent agents; (2) 128 tasks across 26 applications where 89.8%
challenge memory through cross-temporal and cross-spatial information reten-
tion; (3) MemGUI-Eval, an automated evaluation pipeline with novel Progres-
sive Scrutiny and 7 hierarchical metrics for memory fidelity and learning effec-
tiveness; and (4) comprehensive assessment revealing significant memory deficits
across all evaluated agents. Our experiments expose 4-10x performance gaps be-
tween memory-intensive and standard tasks, demonstrate the potential of explicit
long-term memory mechanisms, and identify 7 distinct failure modes through sys-
tematic analysis. MemGUI-Bench establishes crucial empirical baselines for de-
veloping more capable and human-like GUI agents. Code and results: https:
//anonymous.4open.science/r/MemGUI-Bench—-Anonymous.

1 INTRODUCTION

Large Multimodal Models have enabled autonomous mobile GUI agents capable of operating mo-

bile devices (Chen et al, [2024}; Rawles et al.| 2024). While current agents show promise in basic

tasks (Lu et al, 2024} (Chai et al.| [2025)), they struggle with memory-intensive scenarios fundamental

to effective mobile usage.
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At the heart of this limitation lies memory. Human mobile expertise depends on memory mech-
anisms enabling information retention across temporal boundaries (verification codes, product de-
tails) and spatial boundaries (transferring information between applications), serving as the founda-
tion for task success and skill development.

The mobile GUI agent community has recognized this imperative, leading to a proliferation of
memory-enhanced architectures (Wang et al., [2025; |Agashe et al.|, [2025; Wang et al., 2024a)). How-
ever, this growing ecosystem of memory implementations reveals a critical evaluation gap: the
absence of standardized, comprehensive assessment frameworks for memory capabilities. Ex-
isting benchmarks systematically undervalue memory requirements and fail to capture the nuanced
cognitive demands of real-world mobile interactions.

Current evaluation platforms suffer from three fundamental limitations: task design inade-
quacy (only 5.2-11.8% memory-related tasks), evaluation protocol limitations (no multi-attempt
pass@k protocols for long-term learning), and judgment methodology constraints (scalability
and accuracy issues with existing approaches). Detailed analysis is in Appendix

To address these critical evaluation gaps, we introduce MemGUI-Bench, the the most comprehen-
sive, memory-centric benchmark with pass@k and a staged LLM-as-judge evaluator. As illustrated
in Figure [l MemGUI-Bench establishes new standards for memory-centric evaluation through 4
key contributions:

» Systematic Memory Taxonomy. We establish a comprehensive taxonomy distinguish-
ing short-term memory (temporary information buffering) and long-term memory (cross-
session learning), with analysis of 11 agents identifying 5 distinct architectures (Section[2).

* Memory-Centric Benchmarking Environment. We contribute 128 tasks across 26 appli-
cations where 89.8% challenge memory through cross-temporal and cross-spatial informa-
tion retention. Our snapshot-based framework supports pass@l and pass@k evaluation
protocols (Section [3)).

* Automated Evaluation Pipeline. We introduce MemGUI-Eval with novel Progressive
Scrutiny across 3 stages and 7 hierarchical metrics for memory fidelity, learning effective-
ness, and execution efficiency (Section .

* Comprehensive Assessment of 11 Agents. Our evaluation reveals significant memory
deficits across all systems, establishes empirical baselines, and characterizes 7 distinct fail-
ure modes (Section [5|and Appendix [A.8).

MemGUI-Bench reveals substantial performance gaps (4-10x disparity between memory-intensive
and standard tasks) and demonstrates the transformative potential of explicit long-term memory
mechanisms. All contributions are publicly available to advance memory-enhanced mobile automa-
tion research.

2  MEMORY IN MOBILE GUI AGENTS

Inspired by human cognition, we establish a comprehensive taxonomy of memory capabilities for
mobile GUI agents. When humans interact with mobile interfaces, they naturally employ sophisti-
cated memory mechanisms that enable intelligent and efficient task completion across diverse sce-
narios.

Defining Memory for Mobile GUI Agents. We define memory for mobile GUI agents as the ability
to retain, process, and utilize both contextual information within tasks and experiential knowledge
across tasks to enhance decision-making and task performance over time. This capability manifests
in two fundamental forms, namely short-term (in-session) memory and long-term (cross-session)
memory, consistent with the terminology adopted in recent LLM-agent memory research (Wu et al.,
2024;|Maharana et al.||2024;|Zhong et al., 2024)).

Short-term (in-session) memory refers to the agent’s ability to temporarily retain and utilize con-
textual information during task execution, enabling coherent decision-making across sequential in-
teraction steps. This capability allows agents to maintain awareness of previous actions, interme-
diate results, and relevant Ul state changes throughout a task session. Memory-intensive tasks,
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Figure 2: Statistical overview of the MemGUI-Bench task suite.

such as cross-application information transfer or multi-step data collection scenarios, pose signifi-
cantly greater challenges to short-term memory compared to conventional GUI tasks by requiring
agents to extract, retain, and accurately recall specific information units across extended interaction
sequences.

Long-term (cross-session) memory accumulates experience from each interaction, whether suc-
cessful or failed, forming reusable skills and knowledge. When agents encounter unfamiliar appli-
cations, they may initially make suboptimal decisions, but lessons learned from failures, combined
with successful operation patterns, ultimately shape their proficiency with software. This memory
is persistent, transferable, and aims to improve long-term efficiency across tasks.

Based on our comprehensive analysis of 11 prominent mobile GUI agents, we identify 5 distinct
short-term memory architectures and 2 main categories of long-term memory implementations. De-
tailed technical implementations and comparative analysis of these memory mechanisms are pro-
vided in Appendix [A3]

3 MEMORY-CENTRIC BENCHMARKING ENVIRONMENT

Creating a robust benchmark for agent memory requires two key components: a challenging set
of tasks that specifically target memory capabilities, and a standardized, efficient environment to
execute these tasks. This section details both pillars of our contribution: the memory-centric task
suite and the snapshot-based, plug-and-play framework that together form our unified benchmarking
environment.

3.1 MEMORY-INTENSIVE TASK SUITE DESIGN

MemGUI-Bench comprises 128 carefully designed tasks across 26 real-world applications, spanning
4 different app-crossing complexities to systematically evaluate mobile GUI agents’ memory capa-
bilities. Our task suite statistics, illustrated in Figure [2] demonstrate a comprehensive distribution:
tasks range from 3 to 160 golden steps (average 36.2), with 78.1% requiring cross-application infor-
mation transfer, and balanced coverage across three difficulty levels (37.5% easy, 32.8% medium,
29.7% hard). This design reflects realistic user interaction patterns while providing focused evalua-
tion of memory mechanisms in mobile GUI environments.

Task Design Principles. We designed 115 memory-intensive tasks alongside 13 standard tasks to
systematically evaluate mobile GUI agents’ memory capabilities. Our memory-intensive tasks re-
quire agents to extract, retain, and accurately recall specific information units across extended inter-
action sequences, such as retaining product prices for cross-application comparison or maintaining
intermediate results across multiple steps. The 13 standard tasks serve as baseline benchmarks for
computing the Memory-Task Proficiency Ratio (MTPR) and support long-term memory assessment
through our pass@k evaluation protocol.
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Figure 3: The unified architecture of MemGUI-Bench’s snapshot-based plug-and-play framework.

Cross-Application Information Transfer. Our tasks implement diverse information transfer pat-
terns ranging from single-app scenarios to complex four-app workflows. For example, AnalyzeA-
partmentCommute requires extracting apartment details from Apartments.com, searching company
addresses via Bing, calculating commute times through Citymapper, and recording analysis in
Joplin. This hierarchical complexity ensures comprehensive evaluation of memory capabilities
across different spatial and temporal scales.

Long-Term Learning Support. To enable long-term memory evaluation, the 128 tasks are or-
ganized into 64 mirror task pairs with similar application combinations and cognitive demands but
distinct specific requirements. This design supports systematic assessment of cross-task learning,
where agents can transfer knowledge and strategies from earlier attempts to improve performance
on related tasks.

Detailed design specifications, including application selection strategies, task characteristics, and
information retention pathways, are provided in Appendix [A.4] The complete task suite, presented
in Table 8] represents the result of extensive development and validation to ensure the benchmark’s
reliability for systematic evaluation of mobile GUI agents’ memory capabilities.

3.2 A SNAPSHOT-BASED PLUG-AND-PLAY FRAMEWORK

We developed a comprehensive snapshot-based plug-and-play framework that enables efficient, scal-
able, and reproducible evaluation of GUI agents while providing robust support for long-term mem-
ory assessment through multi-attempt protocols. As illustrated in Figure[3] our framework addresses
the critical challenges of environment consistency, agent diversity, and parallel execution that are es-
sential for systematic memory evaluation.

Evaluation Pipeline. Our evaluation pipeline follows a systematic five-stage process that ensures
reliable assessment across multiple attempts. (1) Task Dispatch and Unified Scheduling: Tasks
are distributed through a centralized scheduling system that manages experiment queuing and re-
source allocation. (2) Agent Task Reception: GUI agents receive task specifications through our
unified interface, which abstracts implementation details and provides consistent task formatting.
(3) Environment Interaction: Agents interact with Android emulators by reading observational
information (screenshots, UI hierarchies) and executing actions (taps, swipes, text input). (4) Au-
tomated Evaluation: Screenshots and agent decisions are continuously passed to MemGUI-Eval
for real-time assessment of task progress and completion. (5) Multi-Attempt Management: If a
task fails or reaches maximum step limits, the system automatically triggers environment reset and
initiates retry attempts up to the configured limit (default k¥ = 3 for pass@k evaluation), enabling
systematic assessment of long-term learning capabilities.

Key Framework Features. Our framework provides three distinctive advantages over existing ap-
proaches: (1) Scalable Parallel Execution: Through sophisticated emulator management and port-
based isolation, enabling concurrent evaluation of multiple agents without interference. (2) Rapid
Environment Recovery: Snapshot-based approach enables instant environment reset, contrasting
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with manual reset requirements in existing benchmarks. (3) Native Long-Term Memory Sup-
port: Built-in pass@k protocol and persistent agent state management across multiple attempts, a
capability absent in existing benchmarks that focus exclusively on single-attempt evaluation.

Comprehensive technical specifications for the framework architecture, including parallel imple-
mentation details, multi-attempt mechanisms, agent integration protocols, and comparative analysis
with existing approaches, are provided in Appendix [A.5]

4 AN AUTOMATED EVALUATION PIPELINE WITH MEMORY-SPECIFIC
METRICS

Evaluating memory-intensive tasks poses a significant challenge that demands innovation in both
evaluation metrics and the judgment process itself. We address this by proposing a comprehensive,
automated evaluation pipeline. This pipeline integrates a novel set of hierarchical metrics designed
to quantify memory capabilities with MemGUI-Eval, a sophisticated arbiter that ensures accurate
and efficient judgment.

4.1 MEMORY-SPECIALIZED METRICS WITH HIERARCHICAL ASSESSMENT

To capture the nuances of agent memory capabilities, we introduce a hierarchical framework with 7
specialized metrics across three dimensions: short-term memory fidelity, long-term learning capa-
bilities, and execution efficiency.

Short-Term Memory Assessment (pass@1l). We evaluate agents’ memory fidelity through three
complementary metrics: (1) Overall Success Rate (SR) as baseline performance measurement. (2)
Information Retention Rate (IRR) as our core memory fidelity metric, quantifying the proportion of
required information units that agents correctly recall and utilize. (3) Memory-Task Proficiency Ratio
(MTPR) isolating memory-specific capabilities by comparing performance on memory-intensive
versus standard tasks.

Long-Term Memory Assessment (pass@k). We quantify cross-session learning capabilities
through two metrics: (1) Multi-Attempt Success Rate (pass@k SR) measuring agents’ ability to
succeed within k trials through experience accumulation. (2) Failure Recovery Rate (FRR) targeting
rapid learning from failure using harmonic decay weighting to reward faster recovery.

Execution Efficiency Assessment (pass@1 and pass@k). We include three efficiency indica-
tors: (1) Average Step Ratio measuring path efficiency compared to golden standards. (2) Average
Time Per Step quantifying computational overhead. (3) Average Cost Per Step evaluating economic
efficiency of memory mechanisms.

Comprehensive mathematical definitions, computational procedures, and detailed metric analysis
are provided in Appendix [A.6

4.2 MEMGUI-EVAL: A PROGRESSIVE SCRUTINY EVALUATOR

To overcome the limitations of existing evaluation methodologies—from rigid rule-based matching
to inefficient “LLM-as-Judge” approaches that overwhelm models with complete trajectories—we
developed MemGUI-Eval, a sophisticated evaluation arbiter designed specifically for memory-
intensive tasks. As illustrated in Figure [ it employs a novel “Progressive Scrutiny” pipeline that
mimics efficient human expert verification: starting with minimal, high-efficiency evidence and pro-
gressively deepening analysis only when necessary, thereby achieving optimal cost-accuracy bal-
ance.

Stage 1: Cost-Effective Triage. This stage rapidly processes straightforward successful cases to
dramatically reduce evaluation costs. The Triage Judge receives minimal evidence: task goal de-
scription, raw action logs (e.g., CLICK, TYPE), and the final three screenshots of the trajectory.
Critically, this specialized agent adopts an extremely conservative strategy, concluding “success”
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only when the limited evidence irrefutably demonstrates that all task requirements have been satis-
fied. Any case with ambiguity advances to the next stage, ensuring high precision while maximizing
efficiency for clear-cut scenarios (see Figure[I8]for a concrete example).

Stage 2: Full Semantic Analysis. When

initial triage proves inconclusive, the sys- e e e e Pl

tem conducts comprehensive semantic analy- ‘. ‘
sis with enriched evidence. The framework

first automatically generates detailed textual

descriptions  (action._description  and 0 R oo i

. L ; : ;
ui_description) for every step in the trajectory Q. somantic An:?;::” (text only)

using the Step Descriptor, a specialized agent that
analyzes before-and-after action panels to create “ .‘
semantic representations of each interaction. The

Semantic Judge then synthesizes the complete -

task goal, this rich step-by-step semantic context, "
e uncertain

and the same final three screenshots to make an ets) Vs Vit (Eears s iveses)

informed judgment. Critically, the system includes 0©0®0 0~ O O O

explicit warnings about potential incompleteness in

automatically generated text descriptions, requiring

mandatory verification that all task-critical informa- o -
tion is present in either the textual descriptions or
visual evidence. For failed memory tasks involving
multiple information units, the Semantic Judge ad-
ditionally triggers the IRR Analyzer to compute an Information Retention Rate (IRR) and quantify
the degree of memory failure—for instance, distinguishing an agent that correctly recalls 2 out of
3 required news headlines (see Figure 20| for memory failure analysis). When definitive judgment
remains elusive despite this enriched context, the Semantic Judge must return a required_steps
list, explicitly specifying which historical screenshots are essential for final adjudication (see
Figure[I9|for a successful semantic analysis case).

Figure 4: MemGUI-Eval’s three-stage pro-
gressive scrutiny pipeline.

Stage 3: Targeted Visual Verification. This final stage represents our core innovation compared
to traditional VLM evaluation methods: rather than overwhelming the model with all historical
screenshots, we provide precisely the visual evidence it actively requested. The Visual Judge re-
ceives all textual evidence from Stage 2 plus a new composite image created by stitching together
the specific historical screenshots identified in the required_steps list. This targeted approach
eliminates information overload while ensuring the Visual Judge has exactly the visual evidence
needed for high-fidelity judgment (see Figure 21] for successful visual verification). The system
enforces strict verification requirements, mandating that any missing critical information in both
textual descriptions and provided screenshots results in task failure, preventing inference or guess-
work. The Visual Judge is required to make a definitive binary decision (success or failure) and, for
failed memory tasks, triggers the IRR Analyzer to compute the final IRR based on all available visual
and textual evidence (see Figure[22]for visual verification with failure determination). This progres-
sive scrutiny approach maintains complete automation while ensuring reliable evaluation of complex
memory-intensive tasks. Concrete examples illustrating each stage are provided in Appendix [A-T0}

4.3  VALIDATION OF THE EVALUATION PIPELINE

To establish the trustworthiness of MemGUI-Eval, we conducted comprehensive validation exper-
iments across two datasets: 26 SPA-Bench tasks (78 trajectories) for cross-benchmark comparison
and 128 MemGUI-Bench tasks (256 trajectories) for memory-intensive evaluation. We tested three
model configurations (M1, M2, M3) against baseline methods with human expert annotations as
ground truth.

As detailed in Table [, MemGUI-Eval demonstrates superior accuracy and cost-effectiveness
across all configurations. Our M1 configuration achieves near-perfect performance (99.0% F1-score
on SPA-Bench), significantly outperforming baselines. The M2 configuration provides optimal bal-
ance with 95.9% F1-score at reduced cost. Notably, while baseline methods struggle with cross-app
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complexity (40-61.5% F1-score), MemGUI-Eval maintains exceptional performance (94.1-100%
F1-score) across all task types.

Configuration Selection. To

: ; Table 1: Validation of MemGUI-Eval performance across different
balance evaluation quality

scenarios.
with  computational  effi-
gi?fgﬁravt‘i/gn a%(g);mitﬁf g% | Accuracy Metrics (%) | Efficiency
Flash for Step Descriptor, Evaluator Config. |F11 Prec.t Recallt Cost ($)]
Gemini 2.5 Pro for judgment PART A: SPA-BENCH TRAJECTORIES (N=78)
agents) for all subsequent
experiments.  This config- MemGUI-Eval ﬁé ggg 19050'90 ggg 882;
uration achieves > 95% (Ours) M3 936 978 308 0.020
Fl-score while maintaining RS g :
cost-effectiveness at $0.031 SPA-Bench  C1 88.2 93.2 83.7 0.038
per trajectory, compared {0 (Baseline) G2 814 946 714 0.027
$0.055 for the most accurate c3 809 900 733 0.103
M1 configuration (all Pro) PART B: MEMGUI-BENCH TRAJECTORIES (N=256)
and $0.018 for the most M1 93.1 924 938 0213
economical M3 (all Flash). MemGUI-Eval M2 812 825 80.0 0.070
The validation demonstrates (Ours) M3 784 817 754 0.060

MemGUI-Eval’s superiority
over baseline methods across diverse task complexities: on SPA-Bench trajectories, our M2
configuration achieves 95.9% F1-score versus 92.5% for the best baseline, with the advantage be-
coming even more pronounced for cross-app tasks where traditional evaluators struggle (40-61.5%
Fl1-score) while MemGUI-Eval maintains exceptional performance (94.1-100% F1-score). The
consistent high performance across both SPA-Bench and MemGUI-Bench datasets (93.1-99.0%
Fl-score for M1, 77.9-95.9% for M2) validates the generalizability of our progressive scrutiny
approach beyond our specific benchmark domain, establishing confidence in our evaluation
methodology for systematic memory assessment of mobile GUI agents.

Comprehensive experimental details, model configurations, human annotation procedures, and de-
tailed performance breakdowns are provided in Appendix

5 BENCHMARKING GUI AGENT BASELINES

In this section, we present a comprehensive evaluation of 11 leading GUI agents on MemGUI-
Bench. Our goal is to empirically assess the current state of memory capabilities in SOTA models
and validate our evaluation pipeline.

5.1 EXPERIMENTAL SETUP

We evaluate 11 prominent GUI agents spanning diverse architectural approaches and memory mech-
anisms, including 2 agents with explicit long-term memory capabilities and 9 without such mecha-
nisms. Each of the 128 tasks is executed up to a maximum of k£ = 3 times on Android simulators,
allowing agents with long-term memory modules to learn from previous attempts. Results are au-
tomatically assessed by our evaluation pipeline as described in Section[d Detailed implementation
specifications and deployment configurations for each agent are provided in Appendix [A.2]

5.2 OVERALL PERFORMANCE ON MEMGUI-BENCH

Table 2] presents the main leaderboard of agent performance on MemGUI-Bench, summarizing suc-
cess rates across different task difficulties for both short-term (pass@1) and long-term (pass@3)
memory evaluations.

The results reveal striking performance patterns that highlight the current state of memory capabili-
ties in GUI agents. M3A achieves the highest single-attempt success rate (32.8%), while Agent-S2
demonstrates exceptional learning potential with the highest multi-attempt performance (49.2%).
Memory-equipped agents consistently outperform those without dedicated memory mechanisms
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Table 2: Performance comparison of Mobile GUI agents on MemGUI-Bench.

| Short-Term Memory (pass@1) | Long-Term Memory (pass@3)

Agent |Easy Med Hard  Overall |Easy Med Hard  Overall
AGENTIC WORKFLOW
Agent-S2 41.7 19.0 18.4 273 64.6 429 36.8 49.2
Mobile-Agent-E | 12.5 2.4 0.0 5.5 229 24 26 10.2
T3A 31.2 16.7 184 22.7 45.8 452 342 42.2
M3A 39.6 35.7 21.1 32.8 479 50.0 44.7 47.7
Mobile-Agent-V2| 8.3 0.0 0.0 3.1 104 0.0 0.0 39
SeeAct 62 00 00 23 125 24 0.0 5.5
AppAgent 83 0.0 0.0 3.1 229 24 00 9.4
AGENT-AS-A-MODEL
UI-Venus-7B 14.6 0.0 0.0 5.5 20.8 00 0.0 7.8
UI-TARS-1.5-7B | 83 0.0 0.0 3.1 16.7 0.0 0.0 6.2
GUI-Owl-7B 146 0.0 2.6 6.2 229 24 26 10.2
CogAgent 0.0 0.0 00 0.0 0.0 0.0 00 0.0

across all difficulty levels. The Agentic Workflow category substantially outperforms Agent-as-a-
Model approaches, with framework-based agents achieving 22.7-32.8% single-attempt success rates
compared to 0.0-6.2% for end-to-end models. Task difficulty analysis reveals significant scalability
challenges, as performance drops dramatically from Easy (0.0-39.6%) to Hard tasks (0.0-21.1%),
exposing fundamental limitations in current memory mechanisms for extended information reten-
tion requirements. Additionally, cross-application complexity analysis (detailed in Appendix [A.9]
Table[T3)) shows that performance degrades substantially as tasks involve more applications, with top
agents experiencing 20-50 percentage point drops from single-app to four-app scenarios, confirming
that cross-app information transfer poses severe memory challenges for current agent architectures.

5.3 SHORT-TERM MEMORY ANALYSIS

We conducted detailed analysis of short-term memory capabilities using single-attempt (pass@1)
settings, examining Information Retention Rate (IRR), Memory-Task Proficiency Ratio (MTPR),
and efficiency metrics across different memory mechanism types. Complete results are presented in

Table[T1]in Appendix [A.9]

Finding 1: Memory Agent Architectures Excel, Action-Thought Approaches Show Limita-
tions. Memory Agent frameworks consistently achieve superior memory fidelity compared to other
approaches. M3A leads with 32.8% success rate and 39.3% IRR, while Agent-S2 achieves the
highest IRR (39.5%) and MTPR (0.45), demonstrating that dedicated memory modules effectively
preserve and utilize information across complex multi-step tasks. In contrast, agents employing
Action-Thought mechanisms, including AppAgent (3.1% SR, 1.5% IRR) and UI-Venus-7B (5.5%
SR, 2.6% IRR), show modest memory capabilities. While these approaches create textual traces of
reasoning, they fail to establish robust information retention across extended task sequences, with
low MTPR values (0.04-0.07) indicating that explicit reasoning alone is insufficient for complex
memory-intensive tasks.

Finding 2: Memory Tasks Expose Significant Ca-
pability Gaps. The Memory-Task Proficiency Ratio
reveals dramatic capability gaps that standard bench-
marks fail to capture. While the best-performing agents ¢
(Agent-S2: MTPR 0.45, M3A: MTPR 0.41) show reason-  ;
able memory-specific performance, most agents exhibit
MTPR values below 0.1, indicating fundamental limi-
tations in handling memory-demanding scenarios. This
4-10x performance disparity between memory-intensive corowre e
and standard tasks suggests that existing benchmarks

significantly overestimate agent capabilities by not ade- Figure 5: Performance comparison be-
quately testing memory requirements. tween MemGUI-Bench and Android-

World.

553 MemGUI-Bonch (128 tasks, 89.8% memory-ntensive)
5.4 S AndroidWorld (116 tasks, 5.2% memory-intensive) )




Under review as a conference paper at ICLR 2026

Figure [5] compares agent performance between

MemGUI-Bench and AndroidWorld, revealing dramatic performance drops—Agent-S2 from 54.3%
to 27.3%, GUI-Owl-7B from 66.4% to 6.2%, and UI-Venus-7B from 49.1% to 5.5%—demon-
strating that memory-intensive tasks expose fundamental capability limitations that standard
benchmarks with minimal memory requirements systematically fail to detect.

Finding 3: The Untapped Po-
tential of Long-Context Un-
derstanding. We found that
Gemini-2.5-Pro’s  long-context

Table 3: Performance comparison between single-turn and multi-
turn conversation modes using Gemini-2.5-Pro.

capability can dramatically im- Agent | pass@1  pass@2  pass@3
prove performance. By chang- MB3A (Single-Turn) 32.8% 39.8% 47.7%
ing M3A from single-turn to M3A (Multi-Turn) 51.6% 60.9% 68.0%
multi-turn conversation (M3A-  UL-TARS-1.5-7B (Multi-Turn) | 3.1% 4.7% 6.2%

Multi-Turn), performance im-
proved from 32.8% to 51.6% success rate (Table [3). However, context length limits matter. Ul-
TARS-1.5-7B uses multi-turn conversations but only keeps the last 5 turns due to context constraints.
This leads to poor performance (3.1% SR), showing that truncated context cannot handle memory
tasks effectively.

5.4 LONG-TERM MEMORY ANALYSIS

We examined agents’ ability to learn and improve across multiple attempts (pass@3), with partic-
ular focus on the Failure Recovery Rate (FRR) metric that measures how effectively agents learn
from previous failures. Complete results are presented in Table[12]in Appendix[A.9]

Finding 4: The Trade-off between Frameworks and End-to-End Models. Our evaluation re-
veals a fundamental trade-off between performance capabilities and computational efficiency that
defines the current GUI agent ecosystem. Memory-enhanced frameworks excel at high performance
costs—Agent-S2 and Mobile-Agent-E achieve superior performance but at substantial computa-
tional overhead (27.5 and 38.7 seconds per step, respectively). These frameworks demonstrate ex-
ceptional learning capabilities, with Agent-S2 showing 21.9 percentage point improvement (27.3%
— 49.2%) versus M3A’s 14.9 points (32.8% — 47.7%), validating that sophisticated memory ar-
chitectures provide meaningful benefits for complex tasks. Framework-based approaches consis-
tently dominate learning effectiveness, with the Agentic Workflow category substantially outper-
forming Agent-as-a-Model approaches. While GUI-Owl-7B leads the model-based category (6.2%
to 10.2%, +4.0 points), its improvement pales compared to framework-based agents, highlighting the
structural advantages of explicit memory modules and strategy adjustment mechanisms for effective
cross-session learning.

Finding 5: Long-Term Memory is Effective but Underutilized. Explicit long-term memory
mechanisms demonstrate remarkable effectiveness that remains largely underutilized in current GUI
agent development. Agent-S2 exhibits exceptional learning capabilities with 21.5% FRR and 21.9
percentage point improvement across multiple attempts, while Mobile-Agent-E shows consistent
learning patterns (+4.7 points improvement). The efficiency analysis reveals that long-term learn-
ing involves computational overhead but often provides favorable cost-benefit ratios, with agents
completing tasks in fewer total steps across multiple attempts, partially offsetting their higher per-
step computational costs. The FRR metric reveals distinct learning patterns: Agent-S2’s exceptional
21.5% FRR indicates rapid failure analysis and strategy adjustment, while most agents without
explicit memory systems show minimal FRR (0.8-4.4%), confirming that dedicated memory mech-
anisms are essential for efficient cross-session learning. Detailed pass@1, pass@2, and pass@3
results for each agent are provided in Appendix [A.9]

6 CONCLUSION

This work introduces MemGUI-Bench, the the most comprehensive, memory-centric benchmark
with pass@k and a staged LLM-as-judge evaluator. Through our evaluation of 11 state-of-the-art
agents across 128 memory-intensive tasks, we reveal significant limitations in current systems, with
performance gaps of 4-10x between memory-intensive and standard tasks. Our key contributions
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include: (1) a systematic memory taxonomy distinguishing short-term and long-term memory mech-
anisms, (2) a specialized benchmarking environment with 89.8% memory-intensive tasks across 26
real-world applications, (3) MemGUI-Eval, a progressive scrutiny evaluation pipeline achieving 93-
99% F1-score accuracy, and (4) comprehensive analysis identifying critical failure modes and archi-
tectural trade-offs. Our findings demonstrate that explicit long-term memory mechanisms provide
2-4x greater learning potential, while revealing fundamental inefficiencies where execution timeout
accounts for 72.3% of failures. MemGUI-Bench establishes crucial empirical baselines and provides
the research community with standardized tools to advance memory-enhanced mobile automation
systems toward more capable, robust, and human-like GUI agents.
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Table 4: Comprehensive comparison of MemGUI-Bench with existing smartphone agent bench-
marks across three key dimensions: evaluation environment, evaluation pipeline, and agent support.
v'indicates feature supported; Xindicates feature not supported.

Evaluation Environment Evaluation Pipeline Agents
Tested
Bench K Memory Cross-app Total 3rd-party Auto | Long-term Auto Memory
enchmar Tasks Tasks Tasks Apps Reset| Memory Eval Metrics
RULE-BASED EVALUATION PIPELINE
AndroidArena 22 22 221 X X X X 1/4 1
AndroidWorld 6 6 116 v v X X 171 3
AndroidLab 45 0 138 v v X X 1/4 4
LlamaTouch 0 0 495 v X X X 1/1 4
B-MoCA 0 0 60 X X X X 171 3
MobileAgentBench 0 0 100 X 4 X X 1/6 5
LLM-AS-A-JUDGE EVALUATION PIPELINE
A3 9 0 201 v X X v 1/2 6
SPA-Bench 40 40 340 v X X X 1/7 11
MemGUI-Bench 115 100 128 v v v v 4/7 12

A APPENDIX

You may include other additional sections here.

A.1 RELATED WORK

The rapid development of Mobile GUI agents has been accompanied by the emergence of various
benchmarks designed to evaluate their performance. These benchmarks can be broadly categorized
into two types: static Mobile GUI agent datasets that provide instructions with corresponding oper-
ation trajectories (Lu et al.| 2024} Li et al.,|2024; |Chai et al.| [2024;|Cheng et al.| [2024), and dynamic
benchmarks that provide task instructions along with corresponding evaluation environments and
automated evaluators (Chai et al., 2025; |[Rawles et al., |2024; (Chen et al., |2024). Dynamic Mobile
GUI agent benchmarks have achieved consensus for evaluating agent performance in real-world
scenarios due to their ability to assess agents in authentic, interactive environments.

However, as shown in Tabled] none of the current Mobile GUI agent benchmarks systematically
and comprehensively evaluate the memory capabilities of Mobile GUI agents. This limitation
stems from two fundamental issues in current benchmark design:

A.1.1 EVALUATION ENVIRONMENT LIMITATIONS

Current benchmark environments face significant constraints that hinder comprehensive memory
evaluation:

Task Design Inadequacy. The first issue lies in task design. Current benchmarks severely under-
represent memory-intensive tasks. As shown in Table[d] even the most memory-focused benchmarks
like SPA-Bench (Chen et al., 2024) contain only 40 memory tasks out of 340 total tasks (11.8%),
while many benchmarks like LlamaTouch (Zhang et al.,|2024) and MobileAgentBench (Wang et al.,
2024b) contain zero memory tasks. Similarly, cross-app tasks, which are essential for evaluating
information retention across application boundaries, are limited or absent in most benchmarks.

This task design fundamentally cannot comprehensively evaluate Mobile GUI agents’ memory ca-
pabilities. Human-like memory in GUI interaction requires two core abilities: i) short-term memory
that creates temporary information buffers during complex tasks (e.g., remembering verification
codes, product prices for comparison), and ii) long-term memory that accumulates experience from
each interaction to form reusable skills. Current benchmark tasks are designed to minimize his-
torical dependencies, with key decision information either always present in task instructions or

12



Under review as a conference paper at ICLR 2026

requiring only vague contextual awareness rather than specific visual information from historical Ul
observations.

Environment Scalability Constraints. The second limitation is evaluation environment scalability.
While benchmarks like AndroidWorld (Rawles et al.,[2024), AndroidLab (Xu et al.,|2024), and Mo-
bileAgentBench (Wang et al., |2024b)) support rapid environment reset for given tasks, they require
manual script writing when adding new tasks, severely limiting scalability for memory-intensive
evaluation scenarios.

A.1.2 EVALUATION PIPELINE LIMITATIONS

Current evaluation pipelines face critical e Tectony@0x iages)
methodological challenges that impede accu- s isen vty ot wion ). suseonveson. @ & @ @ -
rate memory assessment: / (2) Current LLM-Based Evaluator

. . Expert-designed (e.0:8PABen)y 12 nual Templated
Success Rate Detection Issues. As illus- Evaluation Function Sub-Tasks

trated in Figure [6] existing approaches for
success rate (SR) detection fall into two cat-
egories: rule-based methods and LLM-as-a-

Judge methods. Rule-based methods include: i) A N S
state-based approaches that detect device status & & K

and execution logs after task completion (Xu s N W

et al, 2024: Rawles et all, 2024 [Zhang et al] | & @B -®® § -

2024), ii) action-based approaches that ana-

lyze agent execution actions (Chai et al, 2025)), Figure 6: Limitations of existing evaluation ap-
and iii) hybrid approaches like MobileAgent- proaches for memory-intensive GUI tasks.
Bench (Wang et al.,[2024b). The common prob-

lem with rule-based approaches is that rule formulation requires expert knowledge and has poor
scalability.

LLM-as-a-Judge methods utilize large language models to evaluate agent execution trajectories
based on predefined evaluation criteria. However, different approaches handle visual information
differently, each with distinct limitations for memory-intensive tasks. SPA-Bench (Chen et al.,
2024) provides all screenshots from long trajectories containing dozens of steps to VLMs at once.
With such overwhelming visual information, there is no guarantee that VLMs can focus on critical
early memory information points, leading to information overload and key detail omission risks.
Additionally, cross-application evaluation relies on manual templates and is not fully automated.
A3 (Chai et al., 2025) employs a sliding window approach for LLMs to check agent operation tra-
jectories against a critical state pool, which is similarly unsuitable for context-dependent memory-
intensive tasks due to the fragmented nature of information processing. The common problem with
current LLM-based approaches is their inability to effectively and accurately evaluate memory-
intensive tasks.

Metrics Limitations. Current evaluation metrics rely solely on SR to determine single-round task
completion, lacking comprehensive assessment of short-term and long-term memory capabilities.
No existing benchmark supports multi-attempt evaluation protocols (pass@k) necessary for assess-
ing long-term memory and learning capabilities.

As demonstrated in Table 4, MemGUI-Bench systematically addresses these limitations through
Memory-Intensive Task Suite Design(Section [3.I), A Snapshot-Based Plug-and-Play Frame-
work(Section [3.2), and Progressive Scrutiny Evaluator(Section {.2)) with Memory-Specific Met-
rics(Section 4. 1J).

A.2 DETAILS OF INTEGRATED AGENTS

We evaluate 11 prominent GUI agents, which can be categorized based on their memory mecha-
nisms. Agents with Long-Term Memory: Mobile-Agent-E (Wang et al., [2025), Agent-S2 (Agashe
et al.,[2025). Agents without Long-Term Memory: T3A (Rawles et al.}[2024), M3A (Rawles et al.,
2024])), UI-TARS-1.5-7B (Qin et al., [2025)), GUI-OwI-7B (Ye et al.| [2025)), UI-Venus-7B (Gu et al.
2025)), CogAgent (Hong et al., 2024)), Mobile-Agent-V2(Wang et al.| 2024a)), SeeAct(Zheng et al.,
2024) and AppAgent (Zhang et al., [2023). All agent workflows use Gemini 2.5 Pro in no-thinking
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mode as their backbone model for fair comparison. All agent models are deployed on dual NVIDIA
L40S-48G GPUs for experimental evaluation. CogAgent (Hong et al.l [2024), deployment utilizes
the scripts provided by SPA-Bench (Chen et al.;|2024), while other models are deployed through the
ms-swift infrastructure (Zhao et al., [2024]).

Table 5: Details of integrated GUI agents evaluated in MemGUI-Bench.

Agent Agent Type Core Model Ul Short-Term Memory Type LTM
Representation

Agent-S2 (Agashe et al.}|2025) Workflow Gemini-2.5-Pro Screenshot Memory Agent v

Mobile-Agent-E (Wang et al.,[2025) Workflow Gemini-2.5-Pro Screenshot Memory Agent v

T3A Workflow Gemini-2.5-Pro Screenshot+UI Memory Agent X
Tree

M3A (Rawles et al.}|2024) Workflow Gemini-2.5-Pro Screenshot+UI Memory Agent X
Tree

Mobile-Agent-V2 (Wang et al.| 2024a) Workflow Gemini-2.5-Pro Screenshot Memory Agent X

SeeAct (Zheng et al.|[2024) Workflow Gemini-2.5-Pro UI Tree Rule-based X

AppAgent (Zhang et al.|[2023) Workflow Gemini-2.5-Pro Screenshot+UI Action-Thought X
Tree

UI-Venus-7B (Gu et al.}|2025) Model Fine-tuned Screenshot Action-Thought X

Qwen2.5-VL-7B
Multi-turn Context

UI-TARS-1.5-7B (Qin et al., 2025) Model Fine-tuned Screenshot . X
Qwen2.5-VL-7B + Action-Thought

GUI-Owl-7B Model Fine-tuned Screenshot Action-Thought X
Qwen2.5-VL-7B
CogAgent (Hong et al.|[2024) Model CogAgent-18B Screenshot No History X

A.3 DETAILED MEMORY IMPLEMENTATIONS

This section provides comprehensive technical analysis of memory implementations in mobile GUI
agents, categorizing both short-term and long-term memory mechanisms observed across 11 promi-
nent systems. Table [6] provides a concise overview of these memory mechanisms and their repre-
sentative frameworks.

Table 6: Overview of memory implementations in mobile GUI agents.

Memory Type & Implementation \ Representative Agents

SHORT-TERM MEMORY

No History CogAgent (Hong et al.}[2024)

Rule-based SeeAct (Zheng et al.|[2024), Autodroid (Wen et al., [2024)

Action-Thought AppAgent (Zhang et al.|[2023), UI-Venus (Gu et al.}[2025), GUI-OwI (Ye et al.}[2025),
UI-TARS (Qin et al.| 2025)

Multi-turn Context UI-TARS (Qin et al.} 2025)

Memory Agent T3A (Rawles et al.|[2024), M3A (Rawles et al.}|2024), Agent-S2 (Agashe et al.| 2025),

Mobile-Agent-E (Wang et al.| 2025), Mobile-Agent-V2 (Wang et al.| 2024a)

LONG-TERM MEMORY

Failure Learning Agent-S2 (Agashe et al.l|2025), Mobile-Agent-E (Wang et al.|[2025)
Success Utilization Mobile-Agent-E (Wang et al.||2025), Agent-S2 (Agashe et al.}|2025)

A.3.1 SHORT-TERM MEMORY IMPLEMENTATIONS

Memory Agent Architecture. The most sophisticated approach employs dedicated memory mod-
ules to maintain structured context throughout task execution. Frameworks like T3A, M3A, Mobile-
Agent-E, Agent-S2, and Mobile-Agent-V2 implement specialized memory agents that continuously
summarize and update action history. This architecture typically involves a primary action agent for
decision-making and a secondary memory agent for contextual management, creating comprehen-
sive textual summaries that serve as memory context for subsequent decisions.

Action-Thought Pattern. Many agents implement explicit reasoning chains where each action is
accompanied by corresponding thought processes. AppAgent, UI-Venus, and GUI-Owl exemplify
this approach by outputting both actions and reasoning, creating structured action histories that
capture not only what was done but why it was done. This textual action history serves as memory
context for future decision-making steps.
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Multi-turn Context Management. UI-TARS leverages multi-turn dialogue mechanisms, where
each interaction round adds new observational information while maintaining conversation history.
This approach treats memory as an evolving dialogue context, though it faces limitations due to
context length constraints in practical deployments.

Rule-based Context Aggregation. SeeAct and Autodroid implement rule-based decision-making
where each step involves selecting Ul elements and combining them with corresponding actions.
The resulting action sequences are concatenated to form contextual prompts for subsequent deci-
sions, creating a structured but rigid form of memory representation.

No Historical Context. CogAgent represents the minimal memory approach, making decisions
based solely on current observations and task instructions without maintaining any form of action
history or memory context. This approach serves as a baseline for understanding the impact of
memory mechanisms.

A.3.2 LONG-TERM MEMORY IMPLEMENTATIONS

Success-Based Learning. Mobile-Agent-E and Agent-S2 implement systematic approaches to ex-
tract reusable knowledge from successful task executions. Mobile-Agent-E creates “’shortcuts” from
successful interaction patterns that can be directly invoked in similar future scenarios, while Agent-
S2 distills successful experiences into actionable tips that guide future task execution. These ap-
proaches focus on transforming successful patterns into reusable procedural knowledge.

Failure-Based Learning. Both Agent-S2 and Mobile-Agent-E incorporate mechanisms to learn
from failure experiences. They analyze failed task attempts to extract lessons about common pitfalls,
incorrect interaction patterns, and environmental constraints. These failure insights are then used
to prompt future task execution, helping agents avoid previously encountered errors and improve
decision-making quality.

Evolution and Trends. The evolution of these memory mechanisms reflects increasing sophisti-
cation in contextual management and cross-session learning capabilities. Short-term memory im-
plementations have progressed from basic action-thought approaches to specialized memory agent
frameworks that maintain structured context throughout task execution. Long-term memory remains
in early exploration stages, primarily focusing on learning from both successful and failed experi-
ences to improve future task performance. The evolution from basic action-thought patterns to
sophisticated memory agent architectures demonstrates the field’s growing recognition of memory’s
critical role in mobile GUI automation. However, long-term memory implementations remain in
early exploration stages, with most systems focusing on simple experience aggregation rather than
more sophisticated learning mechanisms found in human cognition.

A.4 DETAILS OF TASK SUITE DESIGN

This section provides comprehensive technical details for the memory-intensive task suite design
presented in Section[3.1] The complete task suite specifications are presented in Table[8]

A.4.1 APPLICATION SELECTION STRATEGY

Our application selection was guided by two complementary approaches to ensure both representa-
tiveness and experimental feasibility. First, we curated high-frequency, representative applications
from established mobile GUI research (Lu et al., 2024} |Chati et al.,|2024), encompassing both An-
droid native system applications (Settings, Files, Messages) and popular third-party applications
(Amazon, Apartments.com, Citymapper). This selection ensures coverage of diverse interaction
paradigms and real-world usage scenarios.

Second, we enforced two critical technical constraints for experimental reliability. Emulator Com-
patibility: Unlike applications such as X (formerly Twitter), Facebook, and Instagram that are in-
compatible with Android emulators and require physical devices for testing (Chen et al,, [2024),
our selected applications function reliably in emulated environments, enabling scalable and repro-
ducible experiments. Login-Free Operation: To facilitate rapid environment reset through Android
snapshots, we prioritized applications whose core functionalities are accessible without user au-
thentication. This design choice eliminates the need for manual cleanup of user-generated data
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(favorites, search history, etc.) and enables automated state recovery. Our analysis confirmed that
Amazon, Apartments.com, and Citymapper provide comprehensive functionality in guest mode,
satisfying our experimental requirements while maintaining task authenticity.

A.4.2 TASK SUITE CHARACTERISTICS

The benchmark provides structured metadata for each task, including task_description that captures
authentic user intentions, and golden_steps determined by human annotators executing tasks in real
environments. Based on these golden steps, we categorize tasks into three difficulty levels: Easy (1-
20 steps), Medium (21-40 steps), and Hard (41+ steps), ensuring balanced evaluation across different
complexity scales.

All task examples were manually annotated by human experts to ensure high quality and alignment
with real-world usage patterns. The creation process followed a rigorous protocol:

* Human Annotation: Human experts manually crafted the task descriptions and executed
the tasks on the target Android emulators to record the golden_steps. This ensures that every
task is verifiable and executable within the specific app versions and emulator environment.

* Cross-Validation: We implemented a three-person cross-validation process. For each task,
one expert designed the initial instruction and golden path. A second expert independently
verified the task’s executability and the optimal nature of the golden steps. A third ex-
pert resolved any discrepancies. This rigorous human-in-the-loop validation ensures the
rationality, clarity, and correctness of all evaluation examples.

A.4.3 MEMORY-INTENSIVE TASK DESIGN

Building upon our definition of short-term memory as the agent’s ability to temporarily retain and
utilize contextual information during task execution (Section[2), we designed 115 memory-intensive
tasks alongside 13 standard tasks. Memory-intensive tasks demand agents to create temporary in-
formation buffers during complex interactions, such as remembering verification codes for registra-
tion, retaining product prices for comparison across applications, or maintaining intermediate results
across multiple interaction steps.

To ensure comprehensive evaluation across diverse real-world scenarios, we curated tasks spanning
multiple categories. Table [/| presents the detailed hierarchical distribution of task categories, con-
firming balanced coverage across key domains such as Shopping (31.1%), Information Retrieval
(21.9%), Productivity (17.7%), and Financial Management (7.9%).

The 13 standard tasks serve multiple evaluation purposes: they represent the contextual awareness
component of short-term memory evaluation, provide baseline performance benchmarks for com-
puting the Memory-Task Proficiency Ratio (MTPR), and support long-term memory assessment
through our pass@k evaluation protocol. By comparing performance ratios between memory-
intensive and standard tasks, we can objectively isolate and quantify agents’ memory-specific capa-
bilities.

A.4.4 INFORMATION RETENTION PATHWAYS

Our memory-intensive tasks implement diverse information transfer patterns across application
boundaries. These patterns range from single-app scenarios (e.g., FindAndCompareProducts: com-
paring product ratings and prices within Amazon to identify the best value item) to complex four-app
workflows (e.g., AnalyzeApartmentCommute: extracting apartment details from Apartments.com,
searching company addresses via Bing, calculating commute times through Citymapper, and record-
ing analysis in Joplin). This hierarchical complexity ensures comprehensive evaluation of memory
capabilities across different spatial and temporal scales.

A.4.5 MIRROR TASK PAIRS FOR LONG-TERM LEARNING

To support long-term memory evaluation, the 128 tasks are organized into 64 mirror task pairs with
similar application combinations and cognitive demands but distinct specific requirements. This
design enables systematic assessment of cross-task learning, where agents can potentially trans-
fer knowledge and strategies from earlier task attempts to improve performance on related tasks.
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Table 7: Detailed distribution of task categories in MemGUI-Bench. The suite covers diverse do-
mains including Commerce, Information Retrieval, Productivity, Finance, and Social, reflecting real-
world mobile usage patterns. Counts represent category instances, as tasks may involve multiple
categories.

Main Category Sub Category Count % within Main  Global %
Communication Messaging 13 59.1% 2.9%
Data Sharing 9 40.9% 2.0%

Text Creation 14 58.3% 3.1%

Content Creation Translation 8 33.3% 1.8%
Multimedia Creation 2 8.3% 0.4%

Device Configuration Setting Adjustment 9 100.0% 2.0%
. . Knowledge Acquisition 6 60.0% 1.3%
Education & Learning Course Search 4 40.0% 0.9%
Financial Calculation 28 77.8% 6.2%

Financial Management Add Transaction 6 16.7% 1.3%
& Create Budget 1 2.8% 0.2%

Set Saving Goal 1 2.8% 0.2%

Data Extraction 62 62.6% 13.7%

Web Search 23 23.2% 5.1%

Information Retrieval =~ Image Search & Understanding 7 7.1% 1.5%
Fact Checking 6 6.1% 1.3%

Image Analysis 1 1.0% 0.2%

Note Taking 58 72.5% 12.8%

Productivity Time Management 18 22.5% 4.0%
Checklist Management 4 5.0% 0.9%

Product Search 57 40.4% 12.6%

Filter & Sort 18 12.8% 4.0%

Price Comparison 18 12.8% 4.0%

Shoppin Review Analysis 14 9.9% 3.1%
pping Multi-App Comparison 12 8.5% 2.6%
Category Navigation 8 5.7% 1.8%

Specification Comparison 8 5.7% 1.8%

Compatibility Check 6 4.3% 1.3%

Sports Content Navigation 8 50.0% 1.8%
pOoTis Data Extraction 8 50.0% 1.8%
Route Planning 12 75.0% 2.6%

Travel & Navigation Local Search 2 12.5% 0.4%
Flight Booking 2 12.5% 0.4%

Table [§] provides the complete task suite with detailed specifications for each task, including task
descriptions, applications involved, difficulty levels, and category classifications.

Table 8: Task details for MemGUI-Bench task suite.

Description App(s) #Apps X- Category RUM Steps Diff.
App
Open the Amazon app, search for ”’running shoes for men”, [’Amazon’] 1 N [’E-commerce: Product N 11 1
then filter for the brand ”ASICS™” and size 7”10, Search’, ’E-commerce:
Filter & Sort’]
Open the Amazon app, search for ”’women’s handbag™”, then [’Amazon’] 1 N ["E-commerce: Product N 11 1
filter for the brand ””ALDO™” and color ””"Black™”. Search’, ’E-commerce:
Filter & Sort’]
Open the audio recorder app. Set the recording format to WAV, ["audio 1 N [’Content Creation: Mul- N 12 1
48 kHz, Mono. Record an audio clip for more than 10 seconds, recorder’] timedia Creation’, 'De-
then stop the recording. Save the file with the name "”MyTes- vice Configuration: Set-
tAudio™. ting Adjustment’]
Open the audio recorder app. Set the recording format to M4a, ["audio 1 N ['Device Configuration: N 12 1
8 kHz, 48kbps. Record an audio clip for more than 15 sec- recorder’] Setting Adjustment’,
onds, then stop the recording. Save the file with the name *Content Creation: Mul-
”"M4aTestAudio™. timedia Creation’]
Open the BBC Sports app, find and tap on the Football cat- ['BBC Sports’] 1 N [’Sports:  Content Nav- N 8 1
egory, proceed to ’Scores & Fixtures’, and then perform a igation’, ’Sports: Data
search for "Real Madrid’. Extraction’]
Open the BBC Sports app, navigate into the Football section, ["BBC Sports’] 1 N [’Sports:  Content Nav- N 8 1

open the "Scores & Fixtures’ view, and then execute a search
for "Bayern Munich’

17
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Open the bluecoins app, record an expense transaction for an
amount of 89.95, named 'New Sneakers’, in the *Clothing’
category, and assign the label "Personal’ to it.

Open the bluecoins app, create an expense entry for a’Summer
Dress’ with an amount of 65.00, categorized under *Clothing’,
and add the "Personal’ label to the transaction.

Open the Clock app. Add two new alarms: one for 7:30
AM tomorrow labeled ””’Morning Workout™”, and another for
10:15 PM tomorrow labeled ””Read Book™ . Then, navigate
to the world clock and add "”Tokyo, Japan™” and "”’London,
UK™”. Finally, switch to the stopwatch and let it run for at
least 15 seconds before stopping (but not resetting) it.

Open the Clock app. Navigate to the timer and set three timers
simultaneously: one for 15 minutes labeled ””’Laundry””, one
for 45 minutes labeled ’Baking™”, and one for 1 hour 30 min-
utes labeled ””Study Session™”. After starting all three, go to
the world clock, delete any existing cities, and add "’Sydney,
Australia™.

Open the Clock app and add *Beijing, China’ and 'New-York,
USA’ to the world clock. By comparing their current times,
find a suitable meeting time for tomorrow that falls between
8 AM and 10 PM in both cities. Then, set an alarm for this
meeting, using the local time in Beijing as the reference.
Open the Clock app and add ’Beijing, China’ and ’Buenos
Aires, Argentina’ to the world clock. By comparing their cur-
rent times, find a suitable meeting time for tomorrow that falls
between 9 AM and 11 PM in both cities. Then, set an alarm
for this meeting, using the local time in Beijing as the refer-
ence.

In the Coursera app, search for courses offered by " Stanford
University””. For the first six courses in the search results,
find and remember each course’s star rating, total number of
reviews, and number of available languages. Then, for all six
courses, calculate a ’popularity score’ (star rating * number
of reviews * number of languages). Finally, navigate to the
course page with the highest calculated popularity score.

In the Coursera app, search for courses offered by the *”’Uni-
versity of Michigan™. For the first six courses in the search
results, find and remember each course’s star rating, total num-
ber of reviews, and number of available languages. Then,
for all six courses, calculate a popularity score’ (star rating
* number of reviews * number of languages). Finally, navi-
gate to the course page with the highest calculated popularity
score.

Open the joplin app, create a new note with the title ””Shop-
ping List”™” and the content ””Milk and bread™”.

Open the joplin app, create a new note with the title "”’Meeting
Minutes™” and the content "’Discuss progress on Project A™”.

In the Meesho app, find the first search result for three sa-
rees: "’Banarasi Silk””, ””Kanjivaram Silk™”, and ”Paithani
Silk™. For each, remember its star rating and price. Then,
navigate to the product page of the saree with the best value
(highest rating-to-price ratio).

In the Meesho app, find the first search result for three kur-
tas: ””Chikankari Kurta™, ””Rayon Anarkali Kurta””, and
*Jaipuri Cotton Kurta™”. For each, remember its star rating
and price. Then, navigate to the product page of the kurta with
the best value (highest rating-to-price ratio).

In the Meesho app, first navigate to the "Kids & Toys’ -; "Toys
& Games’ category. From the first five results, find the item
with the best value (highest rating-to-price ratio) and remem-
ber its name. Then, repeat this process for the 'Baby Gears’
category. Finally, navigate to the product page of the toy with
the better value between the two you identified.

In the Meesho app, first navigate to the "Home & Kitchen’ -;
*Kitchen Tools’ category. From the first five results, find the
item with the best value (highest rating-to-price ratio) and re-
member its name. Then, repeat this process for the ’Storage &
Organizers’ category. Finally, navigate to the product page of
the item with the better value between the two you identified.

In the Net-a-Porter app, find the following four items: the first
"black™ handbag, the first *”leather”™ belt, the first " cash-
mere”” scarf, and the first pair of ””’white”” sneakers. For each
item, remember its price and its designer or brand name (pri-
oritize designer). Identify the most and least expensive items.
If the designer/brand of the most expensive item comes first
alphabetically, navigate to its page. Otherwise, navigate to the
page of the least expensive item.

In the Net-a-Porter app, find the following four items: the
first "”red”” dress, the first pair of ’gold”™” sandals, the first
”’green” skirt, and the first ””white™” top. For each item,
remember its price and its designer or brand name (prioritize
designer). Identify the most and least expensive items. If they
are by the same designer/brand, navigate to the page of the
most expensive item. Otherwise, navigate to the page of the
least expensive item.

Open the Setting app and go to the "Navigation mode’ settings.
Find the ’Circle to Search’ feature and turn its toggle switch
to the off position.
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Open the Setting app and go to the *Navigation mode” settings.
Find the ’Circle to Search’ feature and turn its toggle switch
to the on position.

Open the Wikipedia app, search for "English Wikipedia® and
find the current number of articles it contains. Remember this
number. Then, search for *German Wikipedia’ and find its
current number of articles. Go to and stay on the page of the
Wikipedia edition that has more articles

Open the Wikipedia app, first search for "Beijing’ and remem-
ber its population. Next, search for *Shanghai’ and remember
its population. Compare the two, and then go to and remain
on the Wikipedia page for the city with the larger population

In the Wish app, identify two items: the cheapest in "Jewelry &
watches’ -; "Fashion jewelry’ (from top 6), and the cheapest
in the "Watches’ sub-category (from top 6). Remember the
number of reviews for both. Navigate to the page of whichever
of these two items has more reviews.

In the Wish app, identify two items: the one with the most re-
views in *Office & tech’ -;, *Parts & storage’ (from top 6), and
the one with the most reviews in the "Hardware’ sub-category
(from top 6). Remember the price for both. Navigate to the
page of whichever of these two items is cheaper.

Open the Amazon Kindle app and locate this month’s "Best-
sellers’ list. From the top 10, identify the three books with the
highest number of customer ratings. For each, remember its
title, price, and description. Open Joplin app and create a note
titled " Top Rated Books™” listing the title, price, and descrip-
tion for all three books.

Open the Amazon Kindle app and navigate to "Bestsellers’.
Find the first three books that support audio narration. For
each, remember its title, rating, and description. Open Joplin
app and create a note titled "’ Audiobooks Found™” listing the
title, rating, and description for all three books.

In the Amazon Kindle app, find the title, customer rating, and
page count for the first four books of the "Dune’ series. Then,
in Joplin, create a note titled "Dune Series Analysis’ listing the
books ordered by highest rating, showing all collected data for
each.

In the Amazon Kindle app, find the title, customer rating, and
page count for the first four books of the A Song of Ice and
Fire’ series. Then, in Joplin, create a note titled *A Song of Ice
and Fire Series Analysis’ listing the books ordered by highest
rating, showing all collected data for each.

Open Amazon app and search for these three products: 'Log-
itech C920°, "Razer Kiyo’, "Elgato Facecam’. For each, find
and remember its price, star rating, and total number of re-
views. In Joplin app, create a note titled *’Webcam Value
Score™. For each camera, calculate a “value score’ using the
formula: (star rating * number of reviews) / price. List each
camera and its score, then state which has the highest score.

Open Amazon app and search for these three products: "Kin-
dle Paperwhite’, *Kobo Libra 2’, 'reMarkable 2’. For each,
find and remember its price, screen size (in inches), and stor-
age capacity (in GB). In Joplin app, create a note titled E-
reader Value Score™. For each device, calculate a ’value
score’ using the formula: (screen size * storage capacity) /
price. List each device and its score, then state which has the
highest score.

Open Amazon app, search for *Anker 737 Power Bank’. Find
its price, capacity (in mAh), and all output port types. Then,
search for "MacBook Air M2’ and find its required charging
port. Next, search for *iPhone 15 Pro’ and find its charging
port. In Joplin app, note all the collected data and answer if
the power bank can simultaneously charge both devices.
Open Amazon app, search for ’Samsung T7 Shield SSD’. Find
its price, storage capacity, and read/write speeds. Then search
for "PlayStation 5” and find its USB port specifications. Next,
search for *Xbox Series X’ and find its USB port specifica-
tions. In Joplin app, note all collected data and answer if the
SSD is fully compatible with both consoles’ USB standards
for external storage.

Open the Amazon app. First, search for *iPhone 15 Pro’ and
remember its screen size, battery capacity, and storage options.
Second, search for *Samsung Galaxy S24 Ultra’ and remem-
ber the same three specifications. Third, search for *Google
Pixel 8 Pro’ and remember the same three specifications. Fi-
nally, open the Joplin app, create a note titled "Phone Spec
Matrix’, and list all nine specifications for the three phones.
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Open the Amazon app. First, search for ’Sony WH-1000XM5”
and remember its weight, battery life, and Bluetooth version.
Second, search for Bose QuietComfort Ultra Headphones’
and remember the same three specifications. Third, search
for *Sennheiser Momentum 4’ and remember the same three
specifications. Finally, open the Joplin app, create a note titled
"Headphone Spec Matrix’, and list all nine specifications for
the three headphones.

In the Amazon app, search for the ’Instant Pot Duo’ and nav-
igate to its customer reviews section. Read and remember the
full original text of the top ten reviews listed. Do not use the
copy function. Then, open the Joplin app and create a new
note titled 'Instant Pot - Full Reviews’. In the note, accurately
type out the full original text for all ten reviews you remem-
bered.

In the Amazon app, search for the 'Bose QuietComfort Ul-
tra Headphones’ and navigate to its customer reviews section.
Read and remember the full original text of the top ten reviews
listed. Do not use the copy function. Then, open the Joplin app
and create a new note titled "Bose QC - Full Reviews’. In the
note, accurately type out the full original text for all ten re-
views you remembered.

Open the Amazon app, search for ””32GB DDRS RAM™”,
filter for the "”Corsair”™” brand, and remember the price and
clock speed of the first item in the search results. Then, open
the Bing app and search for ””ASUS ROG Strix Z790-E moth-
erboard maximum supported memory speed””. Finally, con-
firm if the clock speed of that Corsair RAM is less than or
equal to the motherboard’s maximum supported speed. Di-
rectly answer with its price if it is compatible, or ””’Not com-
patible”” if it isn’t.

Open the Amazon app, search for ””’1TB External SSD™”, fil-
ter for the ””Samsung™ brand, and remember the price and
the read/write speed of the first item in the search results.
Then, open the Bing app and search for *”’PlayStation 5 ex-
ternal SSD speed requirement™”. Finally, confirm if the SSD’s
speed meets or exceeds the PS5’s requirement. Directly an-
swer with its price if it is compatible, or ””’Not compatible™”
if it isn’t.

In the AP News app, find the three most recent articles from
the "U.S. NEWS’ section and the three most recent from the
*World’ section. For each of the six articles, open it, read the
full text, and remember its title and main content. Then, in the
Joplin app, create a note titled ””’News Digest™”. For each of
the six articles, list its title followed by a 50-word summary of
its content, grouped by section.

In the AP News app, find the three most recent articles from
the "Technology” section and the three most recent from the
’Business’ section. For each of the six articles, open it, read
the full text, and remember its title and main content. Then,
in the Joplin app, create a note titled *”Tech & Business Di-
gest””. For each of the six articles, list its title followed by a
50-word summary of its content, grouped by section.

In the Apartments.com app, search for listings in ’ Austin, TX".
For the first ten results, enter each detail page and remember
the address, monthly rent, and square footage. Then, open the
Joplin app and create a note titled " Austin Apartment Data™”.
In the note, list all ten apartments, ordered from the largest
square footage to the smallest, including their address, rent,
and square footage for each.

In the Apartments.com app, search for listings in 'Denver,
CO’. For the first ten results, enter each detail page and re-
member the address, monthly rent, and number of bedrooms.
Then, open the Joplin app and create a note titled *’Denver
Apartment Data™”. In the note, list all ten apartments, ordered
from the lowest rent to the highest, including their address,
rent, and number of bedrooms for each.

Open the Apartments.com app, search for listings in San Fran-
cisco, and filter for “fitness center’ and "pool’. Then, go into
the detail pages for the first three results and remember the
address and phone number for each. Finally, open the Joplin
app, create a new note, and record all collected addresses and
phone numbers.

Open the Apartments.com app, search for listings in New
York, NY, and filter for ’cat friendly’ and ’in-unit washer’.
Then, go into the detail pages for the first three results and re-
member the address and phone number for each. Finally, open
the Joplin app, create a new note, and record all collected ad-
dresses and phone numbers.
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In the AutoUncle app (UK), first search for a *Ford Focus’
and remember the price and mileage of the first non-sponsored
result. Then, separately search for a *Vauxhall Corsa’ and re-
member the price and mileage of its first non-sponsored result.
In the Calculator app, determine which car has a lower price-
to-mileage ratio (price/mileage). Then, for that better-value
car, calculate the loan amount needed for an 80% financing.
In the AutoUncle app (Germany), first search for a ’Mercedes-
Benz C-Class’ and remember the price and mileage of the first
non-sponsored result. Then, separately search for a ' BMW 3
Series’ and remember the price and mileage of its first non-
sponsored result. In the Calculator app, determine which car
has a lower price-to-mileage ratio (price/mileage). Then, for
that better-value car, calculate the loan amount needed for an
80% financing.

In the AutoUncle app (UK), find a "Honda Civic’, a *Toyota
Corolla’, and a "Mazda 3’. For each car, remember its engine
size, fuel type, and price. In the Joplin app, create a note titled
”’Compact Car Comparison™ and list all three cars with all
three of their specs.

In the AutoUncle app (Germany), find a ’BMW 3 Series’, an
*Audi A4’, and a "Mercedes-Benz C-Class’. For each car, re-
member its mileage, transmission type, and price. In the Joplin
app, create a note titled ”’German Sedan Comparison”™” and
list all three cars with all three of their specs.

In the AutoUncle app (Germany), search for *Audi’ with fil-
ters: after 2021, mileage below 50,000 km, automatic, petrol.
From the results, find the most expensive car and the least
expensive car. Remember the model and price for both. In
the messages app, send ””’Most Expensive: [Model] - [Price].
Least Expensive: [Model] - [Price].”” to +8613911112222.

In the AutoUncle app (UK), search for *Land Rover’ with fil-
ters: after 2020, mileage below 80,000 km, diesel. From the
results, find the car with the highest mileage and the car with
the lowest mileage. Remember the price and mileage for both.
In the messages app, send "”’Highest Mileage: [Mileagelkm
- [Price]. Lowest Mileage: [Mileagelkm - [Price].” to
+8613933334444.

In Bing app, find the current exchange rates for USD to EUR
and USD to GBP. Remember both rates. In the Calculator app,
first calculate how much $1500 USD is in EUR. Then, calcu-
late how much the resulting EUR amount is worth in GBP (this
requires a second conversion step using the two initial rates).
Directly answer with the final GBP amount.

In Bing app, find the current stock prices for NVIDIA (NVDA)
and Apple (AAPL). Remember both prices. In the Calculator
app, first calculate the value of 50 NVDA shares. Then, calcu-
late the value of 75 AAPL shares. Finally, calculate the total
combined value of both holdings. Directly answer with the fi-
nal combined value.

On the NASA APOD website found via Bing app, locate the
three most recent daily pictures. For each of the three pictures,
create a separate note in Joplin app. Each note must use the
picture’s title as its own title, contain a brief visual description,
and have the corresponding image directly inserted or attached
into the note’s body.

On the "”Smithsonian Magazine Photo of the Day”” page
found via Bing app, locate the three most recent daily pho-
tos. For each of the three photos, create a separate note in
Joplin app. Each note must use the photo’s title as its own
title, contain a brief description, and have the corresponding
image directly inserted or attached into the note’s body.

In Bing app, find the date for next year’s Thanksgiving and for
next year’s Easter. Remember both dates. Open the N calendar
app. Create an all-day event on the Thanksgiving date named
”’Thanksgiving Dinner””. Then, create a second all-day event
on the Easter date named ”Easter Egg Hunt”™”.

In Bing app, find the date for the next leap day and for next
year’s Halloween. Remember both dates. Open the N calen-
dar app. Create an all-day event on the leap day named "”’Leap
Day Fun™. Then, create a second all-day event on the Hal-
loween date named "’Halloween Party””.

In the Bing app, search for the host cities and years of the next
three Summer Olympics. Remember all three cities and years.
Open the N Calendar app and create an all-day event on July
1st of the first Olympic year titled ””[City] Olympics™”. Then,
create two more all-day events on July 1st of the subsequent
Olympic years with their appropriate titles.
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In the Bing app, search for the host countries and years of the
next three FIFA World Cups. Remember all three countries
and years. Open the N Calendar app and create an all-day
event on June Ist of the first World Cup year titled ’[Country]
World Cup™”. Then, create two more all-day events on June
1st of the subsequent World Cup years with their appropriate
titles.

Open the bing app and perform an image search for *Global
Smartphone Shipments Market Share 2021°. From the image
results, locate and carefully analyze the chart that specifically
displays the data for Q3 2021. Identify the top three brands
from this Q3 chart, and remember their names and their exact
market share percentages. Finally, open the joplin app, create
anew note titled *Smartphone Market Share 2021 Q3’, and list
the top three brands with their corresponding percentages.
Open the bing app and perform an image search for *Global
Vehicle Sales Trend by region November 2023°. Carefully an-
alyze the first clear chart that appears in the search results.
From this chart, identify the top three regions with the highest
sales growth or volume, and remember the names of these re-
gions and their corresponding data values (e.g., sales numbers
or percentage growth). Finally, open the joplin app, create a
new note titled *Vehicle Sales Trend November 2023’, and list
the top three regions with their data

In the Citymapper app, plan a route from ”’Central Park,
NYC”” to ””JFK Airport™. Find the time, cost, and number
of transfers for four transport options: Public Transit, Driv-
ing, Taxi, and Bikeshare. In the Joplin app, create a note ti-
tled ""JFK Transit Analysis™”, list the full data for all four op-
tions, then summarize which is the fastest, cheapest, and has
the fewest transfers.

In the Citymapper app, plan a route from “”’Golden Gate
Bridge, SF”” to ””SFO Airport”™. Find the time, cost, and
number of transfers for four transport options: Public Transit,
Driving, Taxi, and Walking. In the Joplin app, create a note
titled ””SFO Transit Analysis™”, list the full data for all four
options, then summarize which is the fastest, cheapest, and has
the fewest transfers.

In the Citymapper app, find the travel times for a two-leg jour-
ney in Washington D.C.: 1) The White House to the Lincoln
Memorial, and 2) the Lincoln Memorial to the National Air
and Space Museum. For each leg, find the times for Public
Transit, Walking, and Taxi. Determine the fastest possible to-
tal travel time by combining the modes for each leg. Send a
message to +8613811118888 stating this fastest route combi-
nation and the total time.

In the Citymapper app, find the travel times for a two-leg jour-
ney in New York City: 1) Statue of Liberty to the Empire State
Building, and 2) the Empire State Building to The Metropoli-
tan Museum of Art. For each leg, find the times for Public
Transit, Walking, and Taxi. Determine the fastest possible to-
tal travel time by combining the modes for each leg. Send a
message to +8613822229999 stating this fastest route combi-
nation and the total time.

Open the Citymapper app, plan a public transport route from
’London Eye’ to "The British Museum’, and remember the
estimated travel time. Then open the N calendar app and cre-
ate an event for next Monday at 10 AM titled " Visit British
Museum™”, setting the event duration to the travel time you
remembered.

Open the Citymapper app, plan a walking route from "Notre-
Dame Cathedral’ to 'Louvre Museum’, and remember the esti-
mated travel time. Then open the N calendar app and create an
event for next Tuesday at 3 PM titled ™" Trip to the Louvre™”,
setting the event duration to the travel time you remembered.
Open the Coursera app, search for the ’Financial Markets™”
course, and find its total time to complete. Then, open the
N Calendar app. Create a recurring event titled ’Study Fi-
nance”” for all 7 days of next week (Monday to Sunday). Set
the duration for each daily event by dividing the course’s total
completion time equally across the seven days.

Open the Coursera app and find the total time required for
”The Science of Well-Being™”. Then, open the N Calendar
app to create a daily event, ””Study Finance™”, from the 6th to
the 15th of next month, starting at 2 PM. Calculate the daily
duration by dividing the total course time by 10.

In the DeepL Translate app, translate the following para-
graph into five languages: Spanish, Japanese, Russian, Ara-
bic, and Portuguese: "The project’s quarterly review meeting
is scheduled for next Monday. Key discussion topics will in-
clude the budget forecast for Q4, which is currently estimated
at $1,250,000, and the initial user feedback analysis from the
beta test group.”” After remembering all five translations, open
the messages app. Important: Do not use the copy-paste func-
tion for the translations. Send each translation as a sepa-
rate message to a different recipient: the Spanish translation
to +8613100001111, Japanese to +8613100002222, Russian
to +8613100003333, Arabic to +8613100004444, and Por-
tuguese to +8613100005555.
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In the DeepL Translate app, translate the following paragraph
into five languages: German, French, Korean, Hindi, and Ital-
ian: Please be advised that due to a system upgrade, net-
work services will be unavailable from 11:00 PM on Friday
until 5:00 AM on Saturday. The expected downtime is ap-
proximately 6 hours. We apologize for any inconvenience this
may cause.”” After remembering all five translations, open the
messages app. Important: Do not use the copy-paste func-
tion for the translations. Send each translation as a sepa-
rate message to a different recipient: the German translation
to +8613200001111, French to +8613200002222, Korean to
+8613200003333, Hindi to +8613200004444, and Italian to
+8613200005555.

In Net-a-Porter app, for the designer *Isabel Marant’, find the
first ””’New In”” item from each of the following four cate-
gories: Dresses, Bags, Shoes, and Accessories. For each of
the four items, remember its price and primary material/color.
Then, in Joplin app, create a single note titled "Isabel Marant
Collection’ listing the details for all four items.

In Net-a-Porter app, for the designer *Jimmy Choo’, find the
first item from each of the following four categories: Boots,
Heels, Sandals, and Sneakers. For each of the four items, re-
member its price and primary material/color. Then, in Joplin
app, create a single note titled "Jimmy Choo Collection’ list-
ing the details for all four items.

Open the Setting app and go to ’Special app access’. First,
view the apps with *"Wi-Fi control’ permission and remember
the list of app names. Next, view the apps allowed "Picture-in-
picture” access and remember that list of names. Finally, open
the joplin app, create a note titled *App Access Permissions’,
and list the names you remembered under two headings: *Wi-
Fi Control’ and "Picture-in-picture’.

Open the Setting app and go to ’Special app access’. First,
check how many apps have *"Wi-Fi control’ permission and
remember the count. Then, check how many apps are allowed
to ’Install unknown apps’ and remember that count. Finally,
open the joplin app and create a note titled *App Permissions’
that records both counts.

In the wikiHow app, sequentially find the main ingredients for
the following five dishes: 1. Salad, 2. Spaghetti, 3. Fried
Chicken, 4. Chocolate Cake, 5. Mashed Potatoes. After gath-
ering the ingredients for all five dishes, open the Joplin app.
Create a single note titled "Dinner Shopping List’. In this note,
create a comprehensive shopping list, grouping all collected
ingredients by category (e.g., Produce, Dairy, Pantry, Meat).
In the wikiHow app, sequentially find the main ingredients for
the following five items: 1. Snow Cones, 2. Egg Sandwiches,
3. Green Tea, 4. Feta Cheese (how to make), 5. Chicken Al-
fredo. After gathering all ingredients, open the Joplin app.
Create a single note titled *Snack & Lunch Plan’. In this
note, first create a comprehensive shopping list, grouping all
ingredients by category. Then, create a second heading named
’Preparation Order” and list the five items in a logical sequence
for preparation.

In the Yahoo Sports app, find the three most recent news arti-
cles in the NBA section and the three most recent in the MLB
section. For each of the six articles, read it and remember its
title and main content. Then, in Joplin, create a note titled
””Sports News Summary””. For each of the six articles, write
down its title followed by a 40-word summary of its content,
grouped under "NBA’ and "MLB’ headings.

In the Yahoo Sports app, find the three most recent news arti-
cles in the NFL section and the three most recent in the Men’s
Tennis section. For each of the six articles, read it and remem-
ber its title and main content. Then, in Joplin, create a note
titled " General Sports Briefing””. For each of the six articles,
write down its title followed by a 40-word summary of its con-
tent, grouped under "NFL’ and "Men’s Tennis’ headings.
Open Yahoo Sports app, go to the “Soccer” section and open
the “Premier League” fixture list. Identify the next three
scheduled league matches. For each match, remember the date
and the two teams involved. Open N Calendar app and create
three separate events, each titled

Open Yahoo Sports app, go to the “Basketball” section and
open the “NBA” schedule. Identify the next three scheduled
league games . For each game, remember the date and the
two teams involved. Open N Calendar app and create three
separate events, each titled “[Team A] vs [Team B]”.

Open the Amazon app. Search for and remember the price
and star rating for these four components: ””AMD Ryzen 7
7800X3D™”, ””’NVIDIA GeForce RTX 4070 Super””, *”Cor-
sair Vengeance 32GB DDRS5 RAM””, and "’Samsung 990 Pro
2TB SSD™”. Then, open the Calculator app and calculate the
total cost of all four components. Finally, open the Joplin app,
create a note titled ””’PC Build Cost & Rating™”, and list each
component with its price, rating, and the calculated total cost
at the end.
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Open the Amazon app. Search for and remember the price
and star rating for these four components: "”Intel Core i9-
14900K™”, "”AMD Radeon RX 7900 XTX"”, *"G.Skill Tri-
dent Z5 32GB DDR5 RAM™”, and "”"WD Black SN850X 4TB
SSD””. Then, open the Calculator app and calculate the total
cost of all four components. Finally, open the Joplin app, cre-
ate a note titled ”’High-End PC Parts & Rating™”, and list each
component with its price, rating, and the calculated total cost
at the end.

In the Amazon app, find the price and star rating for four com-
ponents: "”AMD Ryzen 7 7800X3D””, ””NVIDIA GeForce
RTX 4070 Super™, »’Samsung 990 Pro 2TB SSD””, and
””Corsair Vengeance 32GB DDR5 RAM””. In the Calculator
app, calculate the subtotal, then a final total by adding an 8%
sales tax. Finally, in the Joplin app, create a note titled "”AMD
Build Analysis™ listing each component with its price and rat-
ing, plus the subtotal and final total.

In the Amazon app, find the price and star rating for four com-
ponents: “Intel Core i9-14900K™”, *”NVIDIA GeForce RTX
40907, WD Black SN850X 4TB SSD™”, and *’G.Skill Tri-
dent Z5 64GB DDR5 RAM™”. In the Calculator app, calculate
the subtotal, then a final total by adding an 8% sales tax. Fi-
nally, in the Joplin app, create a note titled ’Intel Build Anal-
ysis™” listing each component with its price and rating, plus
the subtotal and final total.

In the Amazon app, search for ’Insta360 Ace Pro’ and go to its
customer reviews section. Read and remember the full origi-
nal text and the star rating of the top five reviews. Do not use
the copy-paste function. Then, in the DeepL Translate app,
translate the full text of all five reviews into French. Finally,
in the Joplin app, create a note titled ”’Insta360 Review Anal-
ysis™”. For each of the five reviews, list its original star rating,
its original full text, and its French translation.

In the Amazon app, search for 'DJI Mini 4 Pro’ and go to its
customer reviews section. Read and remember the full original
text and the star rating of the top five reviews. Do not use
the copy-paste function. Then, in the DeepL Translate app,
translate the full text of all five reviews into Russian. Finally,
in the Joplin app, create a note titled *”’DJI Review Analysis™”.
For each of the five reviews, list its original star rating, its
original full text, and its Russian translation.

First, in Amazon, find the price and star rating for the *GoPro
HEROI2 Black’, then find the founding year and founder of
’GoPro’ in Wikipedia. Second, repeat this entire process for
the "Insta360 Ace Pro’ camera and ’Insta360’ company. Fi-
nally, send a single message to +8613412345678 containing
all eight pieces of collected data for both products.

First, in Amazon, find the price and star rating for the "DJI
Mini 4 Pro’, then find the founding year and founder of *DJI’
in Wikipedia. Second, repeat this entire process for the *Au-
tel EVO Lite+’ drone and *Autel Robotics’ company. Finally,
send a single message to +8613487654321 containing all eight
pieces of collected data for both products.

Search for *Bose QuietComfort Ultra Headphones” on both the
Amazon and Wish apps, remembering the price and currency
from each. If the currencies are different, use the bing app to
find the exchange rate to compare them. Directly answer with
the name of the app, *’Amazon’ or *"Wish’, where the price is
lower.

Search for *iPhone 16 Pro Max’ on both the Amazon and Wish
apps, remembering the price and currency from each. If the
currencies are different, use the bing app to find the exchange
rate to compare them. Directly answer with the name of the
app, "’Amazon’ or "Wish’, where the price is lower.

Open the Amazon app and search for the ’Intel Core i5-
13600K’ CPU, remembering its price. Open the bing app and
search for ””what socket does Intel Core i5-13600K use™”.
Remember the socket type. Return to the Amazon app, search
for a motherboard with that socket type, and remember the
price of the first result. Finally, open the joplin app, create
a note titled ””CPU/Mobo Combo™, and list the names and
prices of the CPU and the compatible motherboard.

Open the Amazon app and search for the ’AMD Ryzen 5
7600X’ CPU, remembering its price. Open the bing app and
search for "”what socket does AMD Ryzen 5 7600X use™”.
Remember the socket type. Return to the Amazon app, search
for a motherboard with that socket type, and remember the
price of the first result. Finally, open the joplin app, create a
note titled ””AMD Build Parts™”, and list the names and prices
of the CPU and the compatible motherboard.

In the AP News app, find the top three stories from the "World”
section and the top three from the "U.S. News’ section. For
each of the six stories, summarize its first paragraph (30
words) and translate its headline into German in DeepL Trans-
late app. Then, in the Joplin app, create a note titled *”Global
News Report™ listing the original headline, its summary, and
its German translation for all six stories, grouped by section.
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In the AP News app, find the top three stories from the Tech-
nology’ section and the top three from the ’Sports’ section.
For each of the six stories, summarize its first paragraph (30
words) and translate its headline into Spanish in DeepL Trans-
late app. Then, in the Joplin app, create a note titled ”"Tech &
Sports Report™ listing the original headline, its summary, and
its Spanish translation for all six stories, grouped by section.
In the Apartments.com app, search for *Chicago, IL" apart-
ments with "2 beds’ and ’in-unit laundry’. For the first three
results, remember the monthly rent and square footage of each.
In the Calculator app, calculate the rent per square foot for all
three. Finally, open the messages app and send a message
to +8613355556666 identifying the apartment with the best
value (lowest rent per sq ft) and stating its calculated value.

In the Apartments.com app, search for "Miami, FL" apartments
with ’2 beds’ and ’in-unit laundry’. For the first three results,
remember the monthly rent and square footage of each. In
the Calculator app, calculate the rent per square foot for all
three. Finally, open the messages app and send a message
to +8613377778888 identifying the apartment with the best
value (lowest rent per sq ft) and stating its calculated value.

Open Apartments.com app, search *Austin, TX’, and apply
three filters: ’2 Beds’, 'Dog Friendly’, and a max price of
’$3000°. For the top two results, go to the details page, find the
list of amenities, and remember three specific ones. Also, find
the address. Then, use Citymapper app to find the commute
time from each address to ’University of Texas at Austin’.
In Joplin app, note which apartment has more of the desired
amenities and a shorter commute.

In the Apartments.com app, search for *Seattle, WA’, and ap-
ply three filters: "1 Bed’, *Cat Friendly’, and a max price of
’$2500°. For the top two results, go to the details page, find
the list of amenities, and remember if they have these three
specific ones: “In-unit Washer’, *Balcony’, and "Fitness Cen-
ter’. Also, find the address. Then, in the Citymapper app, find
the commute time from each address to "University of Wash-
ington’. In the Joplin app, note which apartment has more of
the desired amenities and a shorter commute.

In the BBC Sports app, go to the 'Formula 1’ -; "Drivers”
standings. Remember the names and points of the top three
drivers. Then, for each driver, search in the Bing app for their
age. In the Joplin app, create a note titled ””’F1 Top 3 Ages™
listing each driver with their points and age.

In BBC Sports app, go to the "Formula 1° -; *Constructors”
standings. Remember the names and points of the top three
teams. Then, for each team, search in Bing app for their
"’team principal”™” name. In Joplin app, create a note titled
””F1 Top 3 Principals™ listing each team with their points
and team principal.

In Bing app, find the current USD prices for both Bitcoin
(BTC) and Ethereum (ETH). In the Calculator app, calculate
the total value of a portfolio with 1.5 BTC and 25 ETH. Then,
in Bluecoins app, create a new asset account under the "Invest-
ments’ group named "’Crypto Portfolio””, with the calculated
total as its initial value.

In Bing app, find the current USD prices for one ounce of gold
and silver. In the Calculator app, calculate the total value of
a portfolio with 10 ounces of gold and 500 ounces of silver.
Then, in Bluecoins app, create a new asset account under the
*Investments’ group named “’Precious Metals™”, with the cal-
culated total as its initial value.

In the Bing app, find the cheapest flight from London to Rome
within the next seven days. Remember its airline, departure
date and time, and price. In the Citymapper app, find the jour-
ney duration from “”Trafalgar Square™ to ”Heathrow Air-
port™.  Finally, in the N calendar app, create an event on
the cheapest flight’s date and time, title it ”’[Airline] Flight
- [Price]””, and set a reminder for [journey duration + 2 hours]
before departure.

In the Bing app, find the cheapest flight from Tokyo to Seoul
within the next seven days. Remember its airline, arrival
date and time, and price. In the Citymapper app, find the
journey duration from "”Incheon International Airport™ to
””Myeong-dong””. Finally, in the N calendar app, create
an arrival event on the cheapest flight’s date and time, titled
””[Airline] Arrival - [Price]””, then create a second event im-
mediately following it for the transit to Myeong-dong, using
the remembered duration.

AP News’,
‘DeepL.  Trans-
late’, ’joplin’]

[’ Apartments.com
Rental Search’,
*Calculator’,
‘messages’]

[’ Apartments.com
Rental Search’,
’Calculator’,
‘messages’ |

[’ Apartments.com
Rental Search’,
’Citymapper’,
’joplin’]

[’ Apartments.com
Rental Search’,
*Citymapper’,
*joplin’]

['BBC Sports’,
’bing’, ’joplin’]

['BBC  Sports’,
*bing’, ’joplin’]
[’bing’, *Calcula-

tor’, "bluecoins’]

[’bing’, *Calcula-
tor’, "bluecoins’]

['bing’, "N calen-
dar’, ’Citymap-
per’]

[’bing’, "N calen-
dar’, ’Citymap-
per’]

25

3

3

3

3

3

3

3

3

3

[’Sports: Content Navi-
gation’, "Information Re-
trieval: Data Extraction’,
’Content Creation: Text
Creation’, 'Content Cre-
ation: Translation’, Pro-
ductivity: Note Taking’]
["E-commerce: Product
Search’, ’E-commerce:
Filter & Sort’, ’Infor-
mation Retrieval: Data

Extraction’,  ’Financial
Management: Financial
Calculation’, *Commu-
nication: Messaging’,
’Communication: ~ Data
Sharing’]

["E-commerce: Product
Search’, ’E-commerce:

Filter & Sort’, Infor-
mation Retrieval: Data

Extraction’,  “Financial
Management:  Financial
Calculation’, ’Commu-
nication: Messaging’,

’Communication: ~ Data
Sharing’, "Travel & Nav-
igation: Local Search’]

[’E-commerce: Product
Search’, ’E-commerce:
Filter & Sort’, ’Infor-
mation Retrieval: Data
Extraction’, "Travel
& Navigation:  Route
Planning’, "E-commerce:
Multi-App Comparison’,
’Productivity: Note Tak-

ing’]
[’E-commerce: Product
Search’, ’E-commerce:

Filter & Sort’, ’E-
commerce: Specification

Comparison’, *Infor-
mation Retrieval: Data
Extraction’, "Travel

& Navigation:  Route
Planning’, ’Productivity:
Note Taking’]

[’Sports: Content Nav-
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ing’]
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cial Management: Add
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Open the bing app, search for 'NVIDIA stock price’, and re-
member the current price. Then open the AP News app, find
the latest news about NVIDIA earnings report, and remember
the reported revenue growth rate. Finally, open the Calculator
app and calculate: stock price * (1 + revenue growth rate).

Open the bing app, search for ’Apple stock price’, and remem-
ber the current price. Then open the AP News app, find the
latest news about Apple earnings report, and remember the re-
ported revenue growth rate. Finally, open the Calculator app
and calculate: stock price * (1 + revenue growth rate).

Open the bing app and search for "minimalist black and white
wallpaper” images. From the results, find the first image that
has a portrait (vertical) orientation suitable for a phone wall-
paper. Long-press to download this image. Then, open the
Setting app, navigate to wallpaper settings, and change your
home screen wallpaper to the image you just downloaded.
Open the bing app and search for "abstract blue ocean wall-
paper’ images. From the results, find the first image that is
in a portrait (vertical) format. Long-press and download this
image. Afterwards, open the Setting app, navigate to the wall-
paper settings, and change your lock screen wallpaper to the
downloaded image.

Open Cars.co.za app, search for *Toyota’ cars. Apply filters:
price between R150,000-R200,000, year after 2020. From the
results, find the top three cars. For each, remember its price
and mileage. Open the Calculator app and calculate the price-
to-mileage ratio (price/mileage) for each car. In Joplin app,
list the three cars and their ratios, and state which has the best
(lowest) ratio.

Open Cars.co.za app, search for 'BMW’ cars. Apply filters:
price between R250,000-R300,000, year after 2019. From the
results, find the top three cars. For each, remember its price
and engine size. Open the Calculator app and calculate the
average engine size. In Joplin app, list the three cars with their
prices and state the calculated average engine size.

Open the wikiHow app and search for ”’how to bake choco-
late chip cookies™”. Create a checklist in the joplin app named
"Cookie Ingredients™ with the first four ingredients listed.
Then, open the Calculator app and calculate the total cost, as-
suming each of the four ingredients costs $3.50.

Open the wikiHow app and search for ””how to make a
pizza™”. Create a checklist in the joplin app named “”Pizza
Ingredients™” with the first four ingredients listed. Then, open
the Calculator app and calculate the total cost, assuming each
of the four ingredients costs $4.25.

In the Wish app, find and remember the prices for three items:
an 'RGB Mechanical Keyboard’, a *Wireless Gaming Mouse’,
and a 'Large Gaming Mousepad’. In the Calculator app, first
sum the prices of all three items to get a subtotal. Then, calcu-
late a 15% discount on this subtotal. Finally, add a 7% tax to
the discounted price to get the final total. Open the messages
app and send a message to +8613211112222 with the content:
””Subtotal: [sum], After 15% discount: [discounted price], Fi-
nal Total (incl. 7% tax): [final price]””.

In the Wish app, find and remember the prices for three items:
’Bluetooth Earbuds’, a Portable Power Bank’, and a 'Phone
Stand for Desk’. In the Calculator app, first sum the prices of
all three items. Then, calculate the final grand total by adding
a fixed shipping fee of 3 units per item and a 4% import duty
on the item subtotal. Open the messages app and send a mes-
sage to +8613233334444 with the content: *”’Subtotal: [sum],
Shipping: 9.00, Duty (4%): [duty amount], Grand Total: [final
price]™”.

In the Amazon app, find the USD prices for two items: ””Sony
‘WH-1000XM5 headphones™ and a “”’Logitech MX Master
3S mouse™”. In the Bing app, find the "’USD to EUR™” ex-
change rate. In the Calculator app, sum the two item prices,
convert the subtotal to EUR, then add a fixed EUR2S shipping
fee to get the grand total. Finally, in the bluecoins app, add
a single expense transaction for the grand total, named ””’EU
Tech Import™”, and add a note: "’Items: [USD subtotal], Ship-
ping: EUR25™.

In the Amazon app, find the USD prices for two items: "’ Ap-
ple Watch Series 9" and "”Apple AirPods Pro 2””. In the
Bing app, find the ””USD to GBP™” exchange rate. In the Cal-
culator app, sum the two item prices, convert the subtotal to
GBP, then add a fixed GBP20 shipping fee to get the grand
total. Finally, in the bluecoins app, add a single expense trans-
action for the grand total, named UK Apple Import™”, and
add a note: ”’Items: [USD subtotal], Shipping: GBP20™”.
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’joplin’]

["wikiHow’,
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lator’]

['wikiHow’,
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['Wish’,  ’Cal-
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[’ Amazon’,
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Open the Apartments.com app, search in ’Mountain View, [’ Apartments.com [’E-commerce: Product Y 19
CA’, and remember the address and rent of the first result. Rental Search’, Search’, ’Information
Open the bing app and search for the address of the "”Google- ’bing’, *Citymap- Retrieval: Web Search’,
plex””. Open the Citymapper app and find the public transit per’, “joplin’] "Travel & Navigation:
commute time between the apartment address and the Google- Route Planning’, ’Pro-
plex. Finally, open the joplin app and create a note titled ductivity: Note Taking’,
"Google Commute™ with the apartment’s rent and the cal- ’Information  Retrieval:
culated commute time. Data Extraction’]
Open the Apartments.com app, search in *Cupertino, CA’, and [’ Apartments.com ["E-commerce: Product Y 25
remember the address and rent of the first result. Open the bing Rental Search’, Search’, “Information
app and search for the address of "”Apple Park”™”. Open the ’bing’, ’Citymap- Retrieval: Web Search’,
Citymapper app and find the driving time between the apart- per’, ’joplin’] ’Information  Retrieval:
ment address and Apple Park. Finally, open the joplin app and Data Extraction’, *Travel
create a note titled ””Apple Commute™” with the apartment’s & Navigation:  Route
rent and the calculated driving time. Planning’, ’Productivity:
Note Taking’]
Open Apartments.com, search for 'Los Angeles, CA’, filter [’ Apartments.com ["E-commerce: Product Y 25
for 2 beds’, and remember the monthly rent of the first result. Rental Search’, Search’, ’E-commerce:
Open the Calculator app and calculate the annual rent. Open ’Calculator’, Filter & Sort’, ’Financial
the bluecoins app and create a new monthly budget for 'Rent’ ’bluecoins’, N Management:  Financial
with the remembered monthly amount. Finally, open the N calendar’] Calculation’, ’Financial
calendar app and set a reminder for the 1st of next month titled Management: Create
”’Pay Rent”™”. Budget’, ’Productivity:
Time Management’]
Open Apartments.com, search for Chicago, IL’, filter for "in- [’ Apartments.com [’E-commerce: Product Y 17
unit laundry’, and remember the monthly rent of the first re- Rental Search’, Search’, ’E-commerce:
sult. Open the Calculator app and calculate a 1.5x security *Calculator’, Filter & Sort’, ’Infor-
deposit based on the rent. Open the bluecoins app and create a ’bluecoins’, N mation Retrieval: Data
savings goal named "’ Apartment Deposit™ for this calculated calendar’] Extraction’,  ’Financial
amount. Finally, open the N calendar app and set a reminder Management: Financial
for tomorrow titled "”’Follow up on Chicago apartment™”. Calculation’, ’Financial
Management: Set Saving
Goal’, ’Productivity:
Time Management’]
In the Bing app, search for and observe four paintings: *”The [’bing’, ’joplin’, ["Information Retrieval: Y 40
Scream™” by Munch, ”Guernica™” by Picasso, ””"The Third of ‘DeepL.  Trans- Image Search & Un-
May 1808 by Goya, and “’Saturn Devouring His Son™” by late’, "messages’] derstanding’,  ’Content
Goya. In the Joplin app, write a note comparing how these four Creation: Text Creation’,
artworks depict human suffering and fear (60 words total). In *Content Creation:
the DeepL Translate app, translate your entire comparison into Translation’, *Communi-
Spanish. Finally, open the messages app and send the Spanish cation: Messaging’]
translation to +8613511112222.
In the Bing app, search for and observe four paintings: [’bing’, ’joplin’, ['Information Retrieval: Y 40
””Mona Lisa™ by da Vinci, ””The Starry Night™ by van ’DeepL.  Trans- Image Search & Un-
Gogh, "Les Demoiselles d’Avignon™ by Picasso, and late’, *messages’] derstanding’,  "Content
””’Composition VII"” by Kandinsky. In the Joplin app, write a Creation: Text Creation’,
note comparing the use of realism, color, and form across these Productivity: Note Tak-
four distinct art movements (60 words total). In the DeepL ing’, ’Content Creation:
Translate app, translate your entire comparison into Italian. Translation’, *’Communi-
Finally, open the messages app and send the Italian transla- cation: Messaging’]
tion to +8613633334444.
Open Cars.co.za app, search for a ’Volkswagen Polo’, and [*Cars.co.za’, ["E-commerce: Product Y 12
remember the price of the first result. Then search for a ’bing’, ’joplin’, Search’, ’E-commerce:
’Hyundai i20” and remember the price of the first result. Open ’Calculator’] Price Comparison’, 'E-
the Calculator app and find the price difference. Open the commerce:  Multi-App
joplin app to note which car is more expensive and by how Comparison’, ’Financial
much. Finally, open the bing app and search for ””Volkswa- Management:  Financial
gen Polo vs Hyundai i20 safety rating””. Stay on the search Calculation’,  "Produc-
results page. tivity: ~ Note Taking’,
’Information  Retrieval:
Web Search’]
Open Cars.co.za app, search for a "Ford Ranger’, and remem- [’Cars.co.za’, [’E-commerce: Product Y 19
ber the price of the first result. Then search for a "Toyota ’Calculator’, Search’, ’E-commerce:

Hilux’ and remember the price of the first result. Open the
Calculator app and find the price difference. Open the joplin
app to note which car is more expensive and by how much.
Finally, open the bing app and search for "”’Ford Ranger vs
Toyota Hilux reliability””. Stay on the search results page.

’joplin’, *bing’]

Price Comparison’, ’'E-
commerce:  Multi-App
Comparison’, ’Financial
Management: Financial
Calculation’, "Produc-
tivity:  Note Taking’,
’Information  Retrieval:
Web Search’]

A.5 DETAILS OF FRAMEWORK ARCHITECTURE

This section provides comprehensive technical specifications for the snapshot-based plug-and-play
framework presented in Section 3.2}

A.5.1 PARALLEL EXPERIMENT IMPLEMENTATION

Our framework achieves scalable parallel execution through a sophisticated emulator management
system. We pre-configured MemGUI-AVD (Android Virtual Device), a customized emulator im-
age that includes all required applications with pre-established permissions (file access, location
services, etc.) and optimized settings for GUI automation. Each experimental instance creates an
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independent emulator from this base image, ensuring identical starting conditions across all parallel
executions.

The system implements port-based isolation using Android Debug Bridge (ADB) connections,
where each emulator instance is assigned a unique port number (e.g., 5554, 5556, 5558) to en-
able simultaneous agent-environment communication without interference. This architecture sup-
ports concurrent execution of multiple agents on the same hardware while maintaining strict exper-
imental isolation. The mirror task design ensures sequential execution within each parallel stream,
preserving the integrity of long-term learning assessment where task order may influence learning
outcomes.

A.5.2 LONG-TERM MEMORY SUPPORT THROUGH MULTI-ATTEMPT MECHANISM

Our framework implements long-term memory evaluation through the pass@k protocol, where
agents are allowed up to k attempts per task (default £ = 3). Between attempts, agents with long-
term memory capabilities can analyze failure patterns, update their knowledge bases, and adjust
strategies for subsequent tries. The framework maintains persistent agent state across attempts while
ensuring environment consistency through snapshot-based resets, enabling fair assessment of cross-
session learning capabilities.

A.5.3 COMPREHENSIVE AGENT INTEGRATION

The framework supports twelve prominent GUI agents across diverse architectural paradigms
through a unified interface that accommodates both agentic workflows and end-to-end models. Ta-
ble[5|provides detailed specifications for each integrated agent, including their memory mechanisms,
backbone models, and deployment configurations. All agents utilize standardized action spaces and
observation formats while preserving their unique architectural characteristics.

A.5.4 ADVANTAGES OVER EXISTING APPROACHES

Our framework provides significant improvements over existing benchmarking environments in
three key areas:

Environment Scalability and Convenience. Unlike AndroidWorld (Rawles et al.,|2024) and An-
droidLab (Xu et al.| [2024), which rely on pre-written expert scripts for environment recovery and
setup, our approach offers superior extensibility without requiring specialized knowledge for script
development. While expert scripts facilitate environment reset for pre-configured applications, they
are fundamentally limited by application constraints—mainstream software like Amazon cannot be
easily manipulated through script injection or state reading mechanisms. Additionally, the scalabil-
ity is severely constrained by the expert knowledge required for script development.

Rapid Environment Recovery. In contrast to SPA-Bench (Chen et al., 2024) and A3 (Chai et al.}
2025), which include mainstream applications but require manual environment reset and partially
depend on physical devices, our snapshot-based approach enables instant environment recovery.
This advantage stems from our strategic application selection constraints: emulator compatibility en-
sures reliable operation in virtualized environments, while login-free operation eliminates the need
for manual cleanup of user-generated data (favorites, search history, etc.). As demonstrated in our
application selection strategy, Amazon, Apartments.com, and Citymapper provide comprehensive
functionality in guest mode, enabling automated state recovery while maintaining task authenticity.

Native Long-Term Memory Support. Our framework uniquely provides built-in support for long-
term memory evaluation through the pass@k protocol and persistent agent state management across
multiple attempts. This capability is absent in existing benchmarks, which focus exclusively on
single-attempt evaluation and cannot assess agents’ ability to learn from experience and improve
performance over time.

A.6 DETAILS OF MEMORY-SPECIALIZED METRICS

This section provides comprehensive mathematical definitions and computational procedures for the
7 specialized metrics introduced in Section [4.1]
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A.6.1 SHORT-TERM MEMORY ASSESSMENT METRICS

Overall Success Rate (SR) serves as our baseline metric, measuring the fundamental ability to
complete tasks and providing essential context for interpreting memory-specific performance. This
metric provides a foundation for understanding overall agent capabilities before analyzing memory-
specific performance patterns.

Information Retention Rate (IRR) constitutes our core memory fidelity metric, quantifying the
proportion of required information units that agents correctly recall and utilize during task exe-
cution. Unlike binary success indicators, IRR provides fine-grained insights into partial memory
failures—for instance, distinguishing an agent that correctly processes 7 out of 9 required informa-
tion pieces from one that fails entirely. This metric specifically targets the temporary information
buffering capability that characterizes human-like short-term memory in GUI interactions.

Mathematical Definition:

Correctly recalled and used information units in task @

IRR; = x 100%

Total required information units in task ¢

The average IRR across all memory-intensive tasks is computed as:

1
Avg. IRR = ——— Z IRR;

memory i€memory-tasks

where Ny, cmory T€presents the number of memory-intensive tasks (115 in MemGUI-Bench).

Memory-Task Proficiency Ratio (MTPR) isolates memory-specific capabilities by comparing per-
formance on our 115 memory-intensive tasks against 13 standard tasks, enabling researchers to dis-
tinguish memory limitations from general task execution deficits.

Mathematical Definition:

MTPR = SRmemory,tasks
SRstandard,ta,sk,s

where SR,cmory_tasks and SRiandard_tasks TEPresent success rates on memory-intensive and stan-
dard tasks, respectively.

A.6.2 LONG-TERM MEMORY ASSESSMENT METRICS

Multi-Attempt Success Rate (pass@k SR) serves as our primary long-term learning indicator,
measuring agents’ ability to leverage knowledge from previous attempts to eventually succeed
within k trials. This metric directly reflects the cumulative benefit of long-term memory mecha-
nisms in helping agents overcome initial failures through experience accumulation.

Mathematical Definition:

Number of tasks succeeded within & attempts

pass@k SR = x 100%

Total number of tasks

Failure Recovery Rate (FRR) specifically targets the speed and effectiveness of learning from
failure, employing a harmonic decay weighting model that rewards agents capable of rapid recovery
from initial failures. This metric recognizes that superior long-term memory should enable faster
learning rather than merely eventual success.

Mathematical Definition: N
Z =9 w; X Rl

FRR =
Ntaited

x 100%

where: - Nyqie4 = number of tasks that failed on the first attempt - R; = number of tasks that
succeeded for the first time on attempt i - w; = - = harmonic decay weight for attempt i > 2

This weighting scheme ensures that earlier recoveries contribute more significantly to the overall
score, reflecting the principle that effective long-term memory should enable rapid learning from
experience.
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A.6.3 EXECUTION EFFICIENCY ASSESSMENT METRICS

Average Step Ratio measures path efficiency by comparing agent execution paths against golden
standards exclusively for successfully completed tasks, revealing whether sophisticated memory
systems enable more direct task completion when they do succeed.

Mathematical Definition:
Agent steps in task ¢

Step Ratio, =
°p Ratlo; Golden steps in task ¢
A Step Rati ! > Step Rati
verage Step Ratio = —— ep Ratio,
g p NSUCCESS p ‘

i€success ful_tasks

Average Time Per Step quantifies the computational overhead of memory-enhanced decision-
making across all task attempts, providing insights into the speed-accuracy trade-offs inherent in
different memory architectures.

Mathematical Definition:

. Total execution time for task ¢
Time Per Step; =

Agent steps in task ¢

Niotal
Z Time Per Step;
1

Average Time Per Step =
total

Average Cost Per Step evaluates the economic efficiency of memory mechanisms across all execu-
tions, particularly relevant for comparing framework-based agents with dedicated memory modules
against end-to-end model approaches.

Mathematical Definition:

Total API cost for task ¢
Cost Per Step, = - -
Agent steps in task ¢
Niotat
Average Cost Per Step = Cost Per Step,
Ntotul

A.6.4 COMPUTATIONAL CONSIDERATIONS

For tasks where agents achieve perfect success (SR = 100%), the IRR is automatically set to 100%.
For failed tasks, IRR is computed based on the actual proportion of correctly recalled and utilized
information units. In cases of early failure where no information units are processed, IRR = 0%.

The MTPR provides insights into memory-specific capabilities: MTPR > 1 indicates superior per-
formance on memory tasks, MTPR = 1 suggests equivalent performance across task types, and
MTPR < 1 reveals memory-specific deficits.

For pass@k evaluation, tasks are considered successful if they achieve success in any of the k at-
tempts. The FRR metric specifically focuses on the subset of initially failed tasks to quantify learning
effectiveness from failure experiences.

A.7 DETAILS OF EVALUATION PIPELINE VALIDATION

This section provides comprehensive technical details for the evaluation pipeline validation experi-
ments presented in Section
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A.7.1 EXPERIMENTAL SETUP DETAILS

Task Selection Strategy. Our validation employs two complementary evaluation datasets to com-
prehensively assess pipeline reliability. First, we selected 26 tasks from SPA-Bench (Chen et al.|
2024)—18 single-app and 8 cross-app tasks—executing each three times with M3A (Rawles et al.,
2024) to generate 78 trajectories (54 single-app, 24 cross-app) for direct comparison with SPA-
Bench’s evaluator. This selection ensures cross-benchmark transferability assessment while main-
taining fair comparison conditions. Second, we utilized all 128 MemGUI-Bench tasks executed by
both M3A and T3A under pass@1 settings, yielding 256 trajectories that represent the full spec-
trum of our memory-intensive evaluation scenarios.

Model Configuration Design. To systematically assess evaluator robustness and cost-performance
trade-offs, we designed comprehensive model configurations for both MemGUI-Eval and baseline
methods. For MemGUI-Eval, we tested three strategic configurations: M1 (Gemini 2.5 Pro + Pro)
where all specialized agents—Triage Judge, Step Descriptor, Semantic Judge, Visual Judge, and
IRR Analyzer—use Gemini 2.5 Pro for maximum accuracy; M2 (Gemini 2.5 Flash + Pro) where
the Step Descriptor uses Gemini 2.5 Flash for cost efficiency while judgment agents use Pro for
accuracy; and M3 (Gemini 2.5 Flash + Flash) where all agents use Flash for maximum cost reduc-
tion. For SPA-Bench baseline comparisons, we evaluated G1 (Gemini 2.5 Pro), G2 (Gemini 2.5
Flash), and G3 (GPT-40) configurations. This design enables systematic analysis of evaluator ro-
bustness across different cost-accuracy configurations while ensuring fair comparison with existing
evaluation methodologies.

Human Annotation Process. To establish ground truth labels, each trajectory was independently
annotated by three human experts for success/failure determination. Annotators achieved consensus
through structured discussion, resolving any disagreements to produce final labels that serve as
the gold standard for evaluator performance assessment. The annotation process followed strict
guidelines to ensure consistency and reliability across all evaluation scenarios.

A.7.2 DETAILED RESULTS ANALYSIS

Cross-Benchmark Performance. The cost metric represents the average API expense per trajectory
evaluation, encompassing all model calls made by the evaluator during the progressive scrutiny pro-
cess. On SPA-Bench trajectories, our M1 configuration achieves near-perfect performance (99.0%
Fl-score), significantly outperforming the best baseline (G1: 92.5% F1-score). The M2 configu-
ration provides an optimal balance with 95.9% F1-score at substantially reduced cost ($0.031 vs
$0.055), while even our most economical M3 configuration (93.7% F1-score) maintains competitive
accuracy with dramatic cost reduction.

Memory-Intensive Task Performance. For MemGUI-Bench trajectories, our evaluation main-
tains consistent high performance across diverse memory-intensive scenarios. The M1 configuration
achieves 93.1% F1-score, demonstrating robustness across different task complexities and memory
requirements. Notably, the performance gap between single-app and cross-app tasks reveals the
sophistication of our progressive scrutiny approach: while baseline methods struggle with cross-
app complexity (achieving only 40-61.5% F1-score), MemGUI-Eval maintains exceptional perfor-
mance (94.1-100% F1-score) across all task types.

Cost-Effectiveness Analysis. The progressive scrutiny approach demonstrates superior cost-
effectiveness compared to traditional evaluation methods. The M2 configuration achieves the op-
timal balance between evaluation quality and computational efficiency, providing robust assessment
capabilities while maintaining economic feasibility for large-scale evaluation scenarios.

A.7.3 DETAILED PERFORMANCE BREAKDOWN

This section provides a more granular breakdown of the evaluator validation experiments with com-
prehensive performance analysis across different task complexities and agent types.

Table 9] presents the comprehensive evaluation performance breakdown on SPA-Bench task subsets.
The results clearly demonstrate MemGUI-Eval’s superiority over baseline methods across differ-
ent model configurations. For single-app tasks, our method consistently outperforms SPA-Bench’s
evaluator across all accuracy metrics, with the M1 configuration achieving near-perfect performance
(98.8% F1-score vs. 92.5% for the best baseline). The advantage becomes even more pronounced
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Table 9: Detailed evaluation performance breakdown on SPA-Bench task subsets.

| Accuracy Metrics (%) | Efficiency

Task Subset Evaluator Model Config. FTI Pl:rec. Re?all C0s¢t ®)
SINGLE-APP TASKS (N=54)
Single-App MemGUIvaa]FG,ri)mlm 25Pro+| 988 100.0 97.6 0.059
(N=54) OUrS)  Gemini 2.5 Flash | 963 97.5  95.1 0.027
+ Pro
Gemini 2.5 Flash | 93.7 974 902 0.018
+ Flash
cpA_pency Cemini2SPro 925 949 902 0.040
i nS® Gemini 2.5 Flash | 868 943 80.5 0.037
a GPT-40 842 914 780 0.099
CROSS-APP TASKS (N=24)
Cross-App  MemGUT _Eva GEMIni 25 Pro+[100.0 1000 1000 | 0.075
(N=24) OUrs)  Gemini 2.5 Flash| 94.1 889 1000 | 0.030
+ Pro
Gemini 2.5 Flash | 93.3 100.0  87.5 0.024
+ Flash
GPT-40 615 80.0  50.0 0.110
Sf’gfl‘fﬁjh Gemini2.5Pro | 615 80.0 500 | 0.031
AEIE) T Gemini 2.5 Flash | 40.0 100.0  25.0 0.004

for cross-app tasks, where MemGUI-Eval achieves perfect performance with the M1 configura-
tion, while baseline methods struggle significantly (achieving only 40-61.5% F1-score). This per-
formance gap highlights the critical importance of our progressive scrutiny approach in handling
complex, memory-intensive cross-application scenarios where traditional evaluation methods fail to
maintain accuracy.

Table 10: Agent-specific evaluation performance of MemGUI-Eval on MemGUI-Bench trajectories.

| Accuracy Metrics (%) | Efficiency

Trajectory Source Model FTI PrTec. Re;all Cosj ®)
Configuration
M3A AGENT TRAJECTORIES (N=128)
M3A Agent Gemini 2.5 Pro + 92.7 92.7 92.7 0.190
(N=128) Pro
Gemini 2.5 Flash + | 85.0 87.2 82.9 0.062
Pro
Gemini 2.5 Flash + | 77.9 83.3 73.2 0.059
Flash
T3A AGENT TRAJECTORIES (N=128)
T3A Agent Gemini 2.5 Pro + 93.9 92.0 95.8 0.235
(N=128) Pro
Gemini 2.5 Flash + | 75.0 75.0 75.0 0.077
Pro
Gemini 2.5 Flash + | 79.2 79.2 79.2 0.062
Flash

Table [I0] shows agent-specific evaluation performance across different model configurations on
MemGUI-Bench trajectories. The results demonstrate consistent evaluation quality across diverse
agent types, validating the generalizability of our approach. Both M3A and T3A trajectories show
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similar performance patterns, with the M1 configuration achieving the highest accuracy (92.7-93.9%
F1-score) at higher cost, while the M2 configuration provides the optimal balance of accuracy and
efficiency. Notably, even our most economical M3 configuration maintains reasonable accuracy
(77.9-79.2% F1-score) while achieving the lowest evaluation costs. These results confirm our selec-
tion of the M2 configuration for the main experiments, as it provides robust evaluation quality while
maintaining cost-effectiveness for large-scale memory assessment.

A.7.4 KEY VALIDATION INSIGHTS

The validation results establish several key insights about MemGUI-Eval’s capabilities. First, our
progressive scrutiny approach achieves superior accuracy across diverse task complexities, with flex-
ible model configurations allowing researchers to balance evaluation quality and budget constraints
based on specific requirements. Second, the substantial performance advantage on cross-app tasks
validates our design motivation: traditional "LL.M-as-Judge” approaches struggle with the long con-
texts and complex information dependencies inherent in memory-intensive scenarios, while our tar-
geted visual verification maintains high fidelity. Third, the consistent performance across both SPA-
Bench and MemGUI-Bench datasets demonstrates the generalizability of our evaluation methodol-
ogy beyond our specific benchmark domain, establishing confidence in our evaluation pipeline for
systematic memory assessment of mobile GUI agents.

A.8 ANALYSIS OF FAILURE CASES

Across all 1,265 task executions, execution timeout emerges as the dominant failure mode, account-
ing for 915 failed attempts (72.3% of all failures). This represents a fundamental inefficiency in
current GUI agents when confronting memory-intensive tasks, with individual agent timeout rates
ranging from 22.6% (Agent-S2) to 93.9% (AppAgent). The systematic prevalence of execution
timeouts indicates that agents struggle to maintain task coherence and efficient exploration strate-
gies over extended interaction sequences, particularly when memory demands increase.

However, execution timeout failures provide limited diagnostic value as they represent cases where
agents exceed step limits without task completion, offering no insight into the specific cognitive or
memory-related causes of failure. To gain deeper insights into the fundamental limitations and ar-
chitectural dependencies of current mobile GUI agents, we leveraged MemGUI-Eval’s sophisticated
evaluation pipeline to conduct detailed failure analysis on the remaining 343 failed task executions
that completed within step limits but failed to meet task requirements.

Through MemGUI-Eval’s fine-grained categorization system and Information Retention Rate (IRR)
calculations, we systematically categorized these failures into six distinct failure modes: Partial
Memory Hallucination, Process Memory Hallucination, Output Memory Hallucination, Knowledge
Deficiency, Intent Misunderstanding, and Other. This analysis reveals critical patterns that illumi-
nate both the challenges and opportunities for advancing memory-enhanced GUI systems.

This section provides comprehensive failure mode definitions and detailed analysis of the 343 non-
timeout failures across all evaluated agents.

A.8.1 FAILURE MODE DEFINITIONS

Based on systematic trajectory analysis and MemGUI-Eval’s Information Retention Rate (IRR) cal-
culations, we identify seven distinct failure modes. To provide deeper insights into each failure
type and facilitate understanding of their practical implications, we present representative failure
trajectories in Figures [7]through

Execution Timeout represents cases where agents fail to complete tasks within the allocated step
limit, typically indicating inefficient exploration strategies or inability to converge on successful
action sequences. Figure [/| shows UI-TARS-1.5-7B attempting to save an audio recording with
the filename “MyTestAudio”. After successfully recording (steps 9-11), the agent needs to replace
the default filename “Record1” with “MyTestAudio”. However, instead of efficiently selecting and
replacing the text, the agent attempts to delete the default name character by character through
individual click actions (steps 12-17). This extremely inefficient approach—requiring one action
per character deletion—consumes the entire step budget without completing the simple renaming
operation, exemplifying how suboptimal action granularity can lead to timeout failures.

33



Under review as a conference paper at ICLR 2026

Partial Memory Hallucination occurs when agents successfully acquire some required information
but fail to retain all necessary elements during task execution (0% < IRR < 100%). Figure 8]illus-
trates UI-TARS-1.5-7B searching for NVIDIA and Apple stock prices in Bing and Calculator apps.
The agent correctly remembers NVIDIA’s price (169.92 USD, step 6) for subsequent calculations
(step 12), but incorrectly recalls Apple’s price as 143.92 USD (step 15) when the actual observed
price was 226.91 USD (step 9). This selective memory loss results in an incorrect final calculation
of 19,290 instead of the correct value.

Process Memory Hallucination manifests when agents completely lose track of task objectives
mid-execution, leading to goal drift and irrelevant action sequences (IRR = 0%, process-oriented
failure). Figure 0] shows UI-TARS-1.5-7B tasked with finding smartphone market share data from
a Bing image search and recording it in Joplin. After successfully locating the correct chart image
containing Q3 2021 data (step 5), the agent’s internal thought process (shown in the dashed box
at the bottom) indicates it believes the task is complete: “I found a chart that perfectly meets my
needs...This is exactly the information I was looking for, so I can move on to the next step.” However,
the agent prematurely marks the task as finished without realizing that critical subsequent steps
remain—extracting the specific market share percentages for the top three brands and creating the
required Joplin note. This demonstrates a failure to maintain the complete multi-step task workflow
in working memory.

Output Memory Hallucination represents cases where agents correctly navigate task workflows
but fail to accurately encode or retrieve essential information for final outputs (IRR = 0%, output-
oriented failure). Figure[T0]depicts M3A executing a task to view and transcribe two app permission
lists (“Wi-Fi Control” and ‘Picture-in-picture’) in Settings. The agent successfully navigates to both
permission screens and observes the complete lists (steps 7 and 9). However, when creating the
final Joplin note (step 15), it only transcribes 4 out of 9 apps from the “Wi-Fi Control’ list and 7 out
of 9 from the ‘Picture-in-picture’ list, demonstrating incomplete information transcription despite
correct procedural execution.

Knowledge Deficiency indicates agents lack fundamental knowledge or skills required for task com-
pletion, independent of memory capabilities. Figure|l 1|shows UI-TARS-1.5-7B tasked with finding
leap day and Halloween dates, then creating calendar events in the N Calendar app. The agent
successfully searches for and remembers both dates (October 31 for Halloween and February 29
for leap day, steps 1-7). However, when attempting to open the calendar app (step 8), it misiden-
tifies the Google Calendar app as the “N calendar app” and clicks on it, revealing a fundamental
misunderstanding of app identification rather than a memory failure.

Intent Misunderstanding occurs when agents misinterpret task descriptions or user intentions,
leading to execution of inappropriate action sequences. Figure[I2]illustrates UI-TARS-1.5-7B mis-
interpreting a Wikipedia article comparison task. The instruction required comparing English and
German Wikipedia article counts and staying on the edition with more articles. Despite correctly
finding that English Wikipedia has more articles (step 12 shows the thought “English Wikipedia
has more articles”), the agent completes the task while remaining on the German Wikipedia page,
fundamentally misunderstanding the requirement to “stay on the page of the edition that has more
articles.”

Other encompasses remaining failure modes that do not fit the defined categories. Figure|13|cap-
tures SeeAct encountering an architectural limitation where its action space lacks a “wait” opera-
tion. When opening the Meesho app, the agent recognizes that the app is loading and determines
that waiting is the logical next step. However, since the framework only provides a “TERMINATE”
command for no-operation scenarios, the agent issues this command and prematurely ends the task,
failing to complete any of the required product comparison steps. This represents a system-level
constraint rather than a cognitive or memory failure.

A.8.2 AGENT-SPECIFIC FAILURE DISTRIBUTION ANALYSIS

Figure [T4] reveals distinct failure signatures among the 343 non-timeout failures for each agent.
Agent-S2 exhibits the highest rate of partial memory hallucinations (58.2%), while framework-
based agents show elevated memory-related failures compared to model-based systems.
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A.8.3 CROSS-AGENT FAILURE PATTERN ANALYSIS

Figure|l5|provides a comprehensive view of failure distributions across all agents. Framework-based
agents achieve lower timeout rates (51.2%) compared to model-based systems (68.9%), but exhibit
higher rates of memory-specific failures with combined memory hallucination rates averaging 19.3%
versus 8.4%.

A.8.4 DESIGN IMPLICATIONS FOR FUTURE MEMORY-ENHANCED GUI AGENTS

The comprehensive evaluation results and detailed failure analysis reveal critical insights for ad-
vancing memory-enhanced GUI agent architectures. Here we synthesize key design implications
derived from empirical findings (Section [5)) and systematic failure mode analysis (Section[A.8).

1. Multi-Granularity Memory Buffers for Fact Retention. Agent-S2’s 66.7% partial memory
hallucination rate and 39.5% IRR demonstrate that single-buffer memory architectures struggle to
maintain complete multi-item information sets across extended sequences. The 27.3% success rate
(Section [5.2) combined with high partial failures suggests memory capacity constraints rather than
acquisition deficits. Future architectures should implement structured memory with separate slots
for different information types (numerical facts, textual descriptions, Ul states) and explicit verifi-
cation mechanisms before final output generation. M3A’s superior IRR performance (39.3%) with
hierarchical conversation management provides evidence that granular memory organization im-
proves retention fidelity.

2. Hierarchical Task Decomposition with Persistent Goal Tracking. Process memory hallucina-
tion dominates failures for Mobile-Agent-V2 (86.7%), Mobile-Agent-E (61.9%), and most model-
based agents (42.9-75.0%), indicating fundamental challenges in maintaining task objectives during
execution. The dramatic performance degradation from single-app (42.9-50.0%) to four-app sce-
narios (0.0-30.0%) in Table |13| confirms that procedural complexity overwhelms current working
memory mechanisms. Effective solutions require hierarchical planning systems where high-level
goals persist throughout execution while sub-goals track progress across application boundaries.
Agent-S2’s lower process hallucination rate (27.8%) and exceptional learning capability (21.5%
FRR, 21.9 point improvement) validate that explicit goal decomposition enables robust procedural
awareness.

3. Long-Context Utilization Beyond Attention Windows. Finding 3 (Section demonstrates
that M3A-Multi-Turn achieves 51.6% success through Gemini-2.5-Pro’s long-context capability, a
57.3% relative improvement over single-turn M3A (32.8%). However, UI-TARS-1.5-7B’s trun-
cated 5-turn history leads to 3.1% success, confirming that context length constraints severely limit
memory-intensive task performance. This contrast reveals that frontier models’ extended context
windows (200K+ tokens) provide substantial memory advantages, but effective utilization requires
architectural innovations beyond naive conversation history concatenation. Future systems should
leverage long-context capabilities through strategic information organization, redundancy reduction,
and importance-weighted context management.

4. Explicit Long-Term Memory Mechanisms for Cross-Session Learning. Agent-S2’s 21.5%
FRR versus minimal FRR (0.8-4.4%) for agents without explicit memory (Section[5.4) demonstrates
that dedicated cross-session memory systems enable rapid failure analysis and strategy refinement.
The 21.9 percentage point improvement (27.3% — 49.2%) across multiple attempts validates that
long-term memory provides meaningful benefits despite computational overhead. Current underuti-
lization of long-term memory mechanisms (only 2 of 11 agents implement cross-session learning)
represents a significant missed opportunity, particularly given that real-world users repeatedly inter-
act with the same applications and task patterns.

5. Hybrid Architectures Combining Framework Flexibility with Model Efficiency. The
performance-efficiency trade-off (Finding 4, Section [5.4) reveals that framework-based agents
achieve superior memory capabilities (22.7-32.8% success) but at substantial computational cost
(27.5-38.7 seconds per step), while model-based agents provide efficiency (9.6-12.2 seconds per
step) but limited capability (0.0-6.2% success). This disparity suggests that hybrid architectures
combining framework-level memory management with efficient end-to-end models could achieve
favorable performance-cost trade-offs. Specifically, lightweight models could handle routine in-
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teractions while invoking sophisticated memory operations only for memory-intensive segments,
optimizing both capability and efficiency.

These design implications collectively emphasize that advancing GUI agent memory capabilities
requires architectural innovations beyond scaling model parameters or context windows. The sys-
tematic failure patterns observed across diverse agent architectures reveal specific, addressable de-
ficiencies that future research should target through structured memory systems, hierarchical plan-
ning, strategic long-context utilization, and hybrid architectural designs that balance performance
with computational efficiency.

A.9 ADDITIONAL EXPERIMENTAL RESULTS

This section provides comprehensive experimental details and additional results supporting the find-
ings presented in Section 3}

A.9.1 DETAILED MEMORY PERFORMANCE TABLES

To provide comprehensive analysis of memory capabilities, we present the complete experimental
results for both short-term and long-term memory evaluation that support our findings in Section 5}

Table 11: Short-term memory evaluation of GUI agents.

| Memory Performance | Efficiency Metrics
SR IRR MTPR | Step Time/Step Cost/Step

Agent Vemory P @)t (01 1 [Ratiol L )1

AGENTIC WORKFLOW
Agent-S2 Memory Agent 273 395 045 0.86 28.1 0.0510
Mobile-Agent-E  Memory Agent 5.5 24 0.02 0.85 39.3 0.0696
T3A Memory Agent 227 296 030 0.83 13.9 0.0176
M3A Memory Agent 328 393 041 0.81 14.7 0.0165
Mobile-Agent-V2 Memory Agent 3.1 0.0 0.00 0.92 294 0.0660
SeeAct Rule-based 23 02 0.00 1.01 15.9 0.0133
AppAgent Action-Thought 3.1 1.5 0.04 1.46 27.3 0.0078

AGENT-AS-A-MODEL
UI-Venus-7B Action-Thought 55 2.6 0.05 1.03 12.2 -

Multi-turn Context

UI-TARS-1.5-7B + Action-Thought 3.1 3.8 0.04 0.99 9.9 -
GUI-Owl-7B Action-Thought 6.2 5.7 0.07 0.92 9.6 -
CogAgent No History 00 0.0 0.00 - 332

Table [T1] provides detailed short-term memory evaluation results using single-attempt (pass@1)
settings. The table includes Information Retention Rate (IRR), Memory-Task Proficiency Ratio
(MTPR), and efficiency metrics across different memory mechanism types, enabling comprehensive
analysis of memory fidelity and computational trade-offs.

Table [12] examines agents’ ability to learn and improve across multiple attempts (pass@3). The
Failure Recovery Rate (FRR) metric specifically measures how effectively agents learn from pre-
vious failures, providing insights into long-term learning capabilities and cross-session knowledge
transfer.

A.9.2 LONG-TERM LEARNING ANALYSIS

Figure [16] illustrates the dramatic learning potential across multiple attempts, showing that agents
with explicit long-term memory mechanisms demonstrate 2-4x greater learning potential. While
only 2 out of 11 evaluated agents incorporate explicit long-term memory, the substantial benefits
suggest that cross-session learning mechanisms should be a standard component in robust GUI agent
architectures.

The detailed pass@1, pass@2, and pass@3 performance breakdown for each agent reveals distinct
learning patterns. Agents with explicit long-term memory capabilities (Agent-S2, Mobile-Agent-
E) show substantial improvement across multiple attempts, while most agents without dedicated
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Table 12: Long-term memory evaluation of GUI agents across multiple attempts.

| Learning Performance | Efficiency Metrics

SR FRR Step Time/Step Cost/Step
(%) T (%) T Ratio | (s)| ®4

AGENTIC WORKFLOW

Agent

Agents with Long-Term Memory
Agent-S2 49.2 21.5 0.86 27.5 0.0522
Mobile-Agent-E | 10.2 4.1 0.98 38.7 0.0705

Agents without Long-Term Memory

T3A 422 20.7 0.83 147 0.0175
M3A 477 16.3 0.80 145 0.0162
Mobile-Agent-V2| 3.9 0.8 0.94 28.8 0.0684
SeeAct 55 24 0.99 16.3 0.0134
AppAgent 94 44 122 339 0.0083

AGENT-AS-A-MODEL

UI-Venus-7B 7.8 1.7 1.03 11.6
UI-TARS-1.5-7B | 6.2 2.4 1.04 10.3
GUI-Owl-7B 10.2 33 0.93 9.6
CogAgent 0.0 0.0 - 32.8

memory systems plateau after the first attempt, confirming the critical importance of cross-session
learning mechanisms for complex memory-intensive tasks.

A.9.3 PERFORMANCE ANALYSIS BY CROSS-APPLICATION COMPLEXITY

Table 13: Performance breakdown by cross-application complexity. Tasks are categorized by the
number of applications involved (1-4 Apps), revealing how memory requirements scale with cross-
app information transfer demands. For short-term memory (pass@1), we report both Success Rate
(SR) and Information Retention Rate (IRR). For long-term memory (pass@3), only SR is reported
as IRR measures single-attempt information retention.

| Short-Term Memory (pass@1) | Long-Term Memory (pass@3)

| 1App | 2Apps | 3Apps | 4Apps |1App|2 Apps|3 Apps| 4 Apps
Agent | SR IRR| SR IRR|SR IRR|SR IRR| SR | SR | SR | SR

AGENTIC WORKFLOW

Agent-S2 50.0 51.7[19.6 37.6|26.5 38.9(10.0 33.3| 78.6 | 35.7 52.9 30.0
Mobile-Agent-E |25.0 87 [0.0 1.6 {00 16|00 0.0 | 429 1.8 0.0 0.0
T3A 42.9 26.7|16.1 33.3|23.5 30.2| 0.0 11.2| 60.7 | 37.5 38.2 30.0
M3A 46.4 31.7(28.6 43.8(/29.4 35.9|30.0 37.5| 64.3 | 41.1 44.1 50.0
Mobile-Agent-V2|14.3 0.0 | 0.0 0.0 0.0 0.0 | 0.0 0.0 | 17.9 0.0 0.0 0.0
SeeAct 10.7 0.0 0.0 0.0]0.0 06|00 0.0 ]| 250 0.0 0.6 0.0
AppAgent 143 11.1100 0.0 0.0 00|00 0.0 429 0.0 0.0 0.0

AGENT-AS-A-MODEL

UI-Venus-7B 214 67|18 27|00 15|00 0.0 28.6 1.8 29 0.0
UI-TARS-1.5-7B |14.3 11.1|/ 0.0 1.8 |0.0 40|00 29| 214 1.8 29 0.0
GUI-Owl-7B 214 11.7118 3.6 |29 7.1 |00 4.0| 357 1.8 5.9 0.0
CogAgent 00 00|00 00|00 00|00 00] 0.0 0.0 0.0 0.0

TaskCount | 28 | 56 | 34 | 10 | 28 | 56 | 34 | 10

Table presents performance breakdown by the number of applications involved in each task,
revealing how memory requirements scale with cross-app information transfer complexity. Our
benchmark includes 28 single-app tasks, 56 two-app tasks, 34 three-app tasks, and 10 four-app
tasks, providing comprehensive evaluation across different spatial memory spans. For short-term
memory (pass@1l), we report both Success Rate (SR) and Information Retention Rate (IRR) to
assess task completion and memory fidelity. For long-term memory (pass@3), only SR is reported
as IRR measures single-attempt information retention capabilities.
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The results expose dramatic performance degradation as cross-app complexity increases. For single-
attempt evaluation (pass@1), top-performing agents achieve 42.9-50.0% success on single-app
tasks but drop precipitously to 0.0-30.0% on four-app tasks, representing performance losses of 20-
50 percentage points. M3A demonstrates the most robust cross-app memory, maintaining 30.0%
SR and 37.5% IRR on four-app tasks while other agents drop to 0.0-10.0% SR. Agent-S2 shows
exceptional single-app performance (50.0% SR, 51.7% IRR) but experiences steeper degradation to
10.0% SR and 33.3% IRR on four-app scenarios, suggesting challenges in maintaining information
across extended application boundaries.

Notably, IRR analysis reveals distinct memory retention patterns across complexity levels. Agent-S2
maintains relatively high IRR (33.3-51.7%) across all complexity levels despite lower SR on multi-
app tasks, indicating that its memory mechanisms preserve information even during partial task
execution. In contrast, M3A shows an interesting pattern where IRR peaks at 43.8% for two-app
scenarios, higher than both single-app (31.7%) and three-app (35.9%) tasks, before reaching 37.5%
for four-app scenarios. This suggests that two-app workflows may represent an optimal complexity
where M3A’s memory architecture achieves maximum information retention efficiency. Agent-as-a-
Model approaches demonstrate severe IRR limitations, with GUI-Owl-7B achieving only 4.0-11.7%
IRR across all complexity levels, confirming fundamental architectural constraints for memory re-
tention in end-to-end models.

The long-term memory evaluation (pass@3) reveals that learning mechanisms partially compen-
sate for cross-app complexity. Agent-S2 improves from 50.0% to 78.6% on single-app tasks and
from 10.0% to 30.0% on four-app tasks, demonstrating that explicit long-term memory helps agents
develop strategies for complex cross-app workflows.

Agent-as-a-Model approaches show severe limitations beyond single-app scenarios. GUI-Owl-7B,
the best-performing model-based agent, achieves 21.4% on single-app tasks but degrades to 0.0-
2.9% on multi-app scenarios even with multiple attempts. This 21.4 percentage point gap between
single-app and multi-app performance highlights fundamental architectural constraints in end-to-end
models for maintaining cross-application memory state.

These cross-app complexity results validate our benchmark design principle that memory-intensive
evaluation requires substantial cross-application information transfer. The consistent performance
degradation patterns across all agents confirm that cross-app complexity is a primary driver of mem-
ory load, making it an effective dimension for systematic memory capability assessment.

A.9.4 MEMORY ABLATION STUDY

To empirically demonstrate that memory mechanisms are universal, essential components for GUI
agents rather than optional features, we conducted systematic ablation experiments on four represen-
tative agents spanning different architectural paradigms. We evaluated these agents on MemGUI-
Bench-40, a randomly sampled subset of 40 tasks from the full benchmark (13 Easy, 19 Medium, 8
Hard tasks), maintaining the original task distribution and memory-intensive characteristics.

Experimental Configurations. We systematically removed or enhanced memory components in
four agents representing distinct memory implementation strategies:

* M3A (Memory Agent Architecture): We tested three configurations: (1) Baseline with the orig-
inal Memory Agent mechanism that maintains structured action history summaries; (2) + Multi-
turn Context, an enhanced version that converts single-turn interactions to multi-turn conversa-
tions, enabling the backbone LLM (Gemini-2.5-Pro) to leverage its full 1M token context window
for cumulative memory management (similar to Finding 3 in Section [3)); (3) - Memory Agent, a
degraded version that removes the dedicated memory summarization module while keeping only
basic action logging.

* Agent-S2 (Memory Agent + Long-Term Memory): We evaluated three configurations: (1)
Baseline (STM+LTM) with both short-term memory (Memory Agent) and long-term memory
(experience-based tips and shortcuts); (2) - Long-Term Memory, removing the cross-session learn-
ing mechanism while retaining short-term memory; (3) - STM & LTM, removing both memory
components to isolate their combined contribution.

* GUI-Owl (Action-Thought Pattern): We tested two configurations: (1) Baseline with the origi-
nal Action-Thought implementation that outputs both actions and reasoning chains; (2) - Action-
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Thought, removing the explicit thought articulation and retaining only action outputs, similar to
CogAgent’s minimal memory approach.

e UI-TARS (Multi-turn Context + Action-Thought): We evaluated two configurations: (1) Base-
line with multi-turn conversation history (last 5 turns due to context constraints) plus Action-
Thought reasoning; (2) - Multi-turn & A-T, converting to single-turn interactions without thought
articulation, eliminating all memory context.

Table 14: Memory ablation study on MemGUI-Bench-40. We systematically remove or enhance
memory components in four representative agents. Numbers show absolute values with changes in
parentheses: blue indicates improvement, red indicates degradation. Bold numbers indicate baseline
performance.

SR@1 SR@1 SR@1 SR@1|SR@3 SR@3 SR@3 SR@3| IRR FRR
Agent Memory Config All Easy Med Hard| Al Easy Med Hard | (%) VPR (g

M3A: MEMORY AGENT ARCHITECTURE
M3A Baseline 32,5 538 31.6 0.0 475 538 474 375 351 0321 16.7
Workfl + Multi-t 525 615 474 500 70.0 61.5 632 1000| 53.5 0457 263
(Workflow) ui-turm (4200) (7.7) (+15.8) (+50.0)| (+22.5) (+7.7) (+15.8) (+62.5)|(+18.4) (+0.136) (+9.6)
- Memory Agent 2.5 7.7 0.0 0.0 50 154 0.0 0.0 0.0 0.000 1.3
¥ Ag (30.0) (46.1) (31.6) (0.0)| (425) (:38.4) (47.4) (37.5)] (:35.1) (:0.321) (-15.4)

AGENT-S2: MEMORY AGENT + LONG-TERM MEMORY

Acent-S2 Baseline 275 46.2 21.1 125 45.0 o61.5 421 250 333 0.250 15.5
gent- 175 154 21.1 125/ 250 308 21.1 250 213 0.190 9.1

(Workflow) -LT™M N
(10.0) (308) (0.0) (0.0)| (200) (30.7) (21.0)  (0.0)| (12.0) (:0.060) (-6.4)
50 154 0.0 0.0/ 100 30.8 0.0 0.0 0.0 0.000 3.9
-STM & LT™M (22.5) (308) (21.1) (-12.5)| (:35.0) (-30.7) (-42.1) (-25.0)| (-33.3) (-0.250) (-11.6)

GUI-OWL-7B: ACTION-THOUGHT PATTERN
GUI-Owl-7B  Baseline 7.5 231 0.0 0.0/ 125 308 53 0.0 4.6 0.000 4.1
(Model) - Action-Thoueht 7.5 231 0.0 0.0| 10.0 30.8 0.0 0.0 0.0 0.000 2.7
ug 00 00 (0.0 (00 (25 (00) (53 (00| (46 (00 (1.4
UI-TARS-1.5-7B: MULTI-TURN CONTEXT + ACTION-THOUGHT

UI-TARS Baseline 50 154 0.0 0.0 50 154 0.0 0.0 23 0.000 0.0
1.5-7B (Model) Multi-turn & A-T 2.5 7.7 0.0 0.0 2.5 7.7 0.0 0.0 0.0 0.000 0.0
- Mult-turn ce A- 25 17 ©0) 00| (25 (77 00 (00| 23) (00 (0.0)

Impact of Memory Removal. Table |14|shows consistent performance degradation upon memory
removal:

* Short-term memory is mandatory for mobile GUI agents to function: Removing short-term
memory components (Memory Agent in M3A, STM in Agent-S2, Action-Thought in GUI-Owl,
Context in UI-TARS) renders agents essentially unusable. M3A suffers a catastrophic -30.0 point
SR drop (32.5% — 2.5%) with IRR collapsing from 35.1% to 0%, essentially degenerating to a
non-functional stateless system. Agent-S2 shows similar collapse (27.5% — 5.0% SR, 33.3% —
0% IRR). The universal IRR collapse to zero across all agents confirms that without short-term
memory, mobile GUI agents cannot retain any information, making them fundamentally incapable
of handling memory-intensive tasks.

* Long-term memory is beneficial: Removing Agent-S2’s long-term memory causes a -20.0 point
drop in pass@3 SR (45.0% — 25.0%) and reduces FRR from 15.5% to 9.1%. While agents
without explicit LTM (like M3A) can still achieve reasonable performance through robust short-
term memory, the substantial gains from LTM in Agent-S2 demonstrate its value for cross-session
learning and failure recovery, marking it as a promising direction for future research.

Impact of Memory Enhancement. Enhancing M3 A with multi-turn context yields significant gains
(+20.0 points SR, +18.4 points IRR), further validating that memory quality directly determines task
capability.

Conclusion. These ablation results lead to two key conclusions regarding memory in mobile GUI
agents:
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* Short-term memory is a mandatory requirement for mobile GUI agents. Although current
mobile GUI agents implement short-term memory in various forms (e.g., Memory Agent in M3A,
Action-Thought in GUI-Owl, Multi-turn Context in UI-TARS), removing these modules consis-
tently causes severe performance degradation across all architectures. This universality confirms
that regardless of the implementation paradigm, an effective short-term memory mechanism is
indispensable for mobile GUI agents to handle complex, multi-step tasks.

* Long-term memory is beneficial and a key future direction. While mobile GUI agents without
explicit long-term memory (e.g., M3A) can still achieve reasonable baseline performance, the
integration of long-term memory provides significant benefits. For instance, removing the long-
term memory module from Agent-S2 leads to a substantial drop in multi-attempt performance
(pass@3 SR: 45.0% — 25.0%), highlighting its critical role in cross-session learning and failure
recovery. This suggests that incorporating long-term memory mechanisms is a promising and
valuable direction for advancing the capabilities of future mobile GUI agents.

A.9.5 PASS@K LEARNING CURVES FOR OPEN-SOURCE MODELS

To complement the pass@3 evaluation protocol presented in Section [5] and address questions re-
garding performance saturation patterns, we conducted extended pass@k evaluation (k=1 to 7) on
four open-source models. Figure |17|illustrates how success rates evolve with increasing attempts,
revealing distinct saturation characteristics driven primarily by LLM output stochasticity rather than
systematic learning, as none of these models incorporate explicit long-term memory mechanisms.

Stochastic Exploration Patterns and Saturation Points. The curves reveal three distinct patterns:

» Early Saturation (GUI-Owl-7B, UI-Venus-7B): These agents show initial improvement from
pass@1 to pass@2/3 but plateau quickly, with GUI-Owl saturating at 10.16% by pass@3 and
UI-Venus at 8.59% by pass@35. Since neither model has explicit long-term memory mechanisms,
the limited improvements stem purely from stochastic exploration of different action sequences,
with early saturation indicating exhaustion of viable solution paths within their architectural con-
straints.

* Extended Stochastic Gains (UI-TARS-1.5-7B): UI-TARS demonstrates continued improvement
through pass@5 (3.12% — 11.72%), with a notable jump at pass@4 (+3.91 points) before stabi-
lizing. While UI-TARS maintains multi-turn context (last 5 turns), it lacks explicit cross-session
learning mechanisms. The gradual improvements reflect its ability to explore more diverse action
sequences through output randomness, but the eventual saturation at pass @5 confirms the absence
of systematic experience accumulation.

* Complete Failure (CogAgent): CogAgent maintains 0.0% success across all attempts, indicating
fundamental architectural deficiencies that prevent task completion regardless of stochastic explo-
ration. This complete lack of improvement underscores that memory mechanisms (even minimal
ones like Action-Thought patterns) are essential prerequisites for GUI agent functionality.

Stochasticity vs. Systematic Learning. The modest improvements observed in these open-source
models (3-9 percentage points from pass@1 to saturation) stem entirely from LLM output stochas-
ticity, as none incorporate explicit long-term memory mechanisms for cross-session learning. In
contrast, Agent-S2, which incorporates dedicated long-term memory modules (as detailed in Ap-
pendix [A.3), achieves substantially larger gains of 21.9 percentage points from pass@1 to pass@3
(Table[2)), demonstrating systematic experience accumulation rather than mere random exploration.
The saturation points observed in open-source models (pass@3-5) reflect the exhaustion of viable
solution paths discoverable through stochastic sampling alone, without genuine learning across at-
tempts.

These extended pass@k results empirically demonstrate the critical distinction between stochastic
exploration and systematic learning. Open-source models without long-term memory mechanisms
show limited, rapidly saturating improvements driven purely by output randomness. This contrasts
sharply with Agent-S2, which possesses explicit cross-session learning capabilities and sustains
substantial performance gains through genuine experience accumulation, validating the necessity of
long-term memory for continued improvement in complex GUI tasks.
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A.9.6 TEST-TIME COMPUTE NORMALIZED EVALUATION

To address practical deployment constraints where computational budgets are predetermined,
we conducted test-time compute normalized evaluation under two complementary constraints:
steps/episode (reported in Tables 2] [T1] and [I2) and tokens/episode (new results presented here).
This dual-constraint analysis enables comprehensive assessment of agent efficiency across different
resource limitation scenarios.

Experimental Settings. We established two evaluation protocols with distinct failure criteria:

» Steps/Episode Constraint: For each task with golden_steps optimal steps, we set
maz_rounds = | golden_stepsx 1.4+1]. Task attempts are marked as failures if actual_steps >
maz_rounds, enforcing a step-count budget that reflects operational efficiency requirements.

* Tokens/Episode Constraint: We computed max_tokens = golden_steps x 9, 507 tokens/step,
where 9,507 represents the average token consumption across the 11 evaluated agents. For each
attempt, we calculate actual_tokens = actual_steps x agent_speci fic_tokens_per_step using
measured per-agent consumption rates (Agent-S2: 41,760 tokens/step, M3A: 12,960 tokens/step,
GUI-Owl: 5,817 tokens/step, etc.). Task attempts where actual_tokens > max_tokens are
marked as failures, and Information Retention Rate (IRR) is set to O for such attempts, reflect-
ing the reality that API calls would be rejected or interrupted when exceeding token budgets in
production deployments.

Results Analysis. Table (15| presents comprehensive performance metrics under both constraint
types, with each agent showing three rows: (1) Steps/Episode results, (2) Tokens/Episode results,
and (3) Performance delta. The table includes SR@1 by difficulty (Easy, Med, Hard), SR@3 overall
and by difficulty, and three memory-specific metrics IRR, MTPR, FRR). The results reveal dramatic
performance differences between the two constraint types, exposing fundamental trade-offs between
architectural complexity and deployment viability:

* High-token agents face complete performance collapse: Agent-S2 (41,760 tokens/step) and
Mobile-Agent-E (56,400 tokens/step) show catastrophic degradation under token constraints.
Agent-S2 drops from 27.3% — 0.0% SR@1 overall and 49.2% — 0.0% SR@3 overall (-49.2
points), with IRR collapsing from 39.5% to 0.1% and FRR from 21.5% to 0.0%. Mobile-Agent-E
exhibits similar complete failure (10.2% — 0.0% SR@3). These agents’ sophisticated memory ar-
chitectures consume 4.4-5.9x more tokens than the 9,507 baseline, causing nearly all task attempts
to exceed token budgets, resulting in zero effective performance despite their superior capabilities
under step constraints.

* M3A demonstrates optimal deployment balance: M3A (12,960 tokens/step, 1.4x baseline)
shows graceful degradation rather than collapse: SR@]1 overall drops from 32.8% to 14.8% (-
18.0 points), SR@3 overall from 47.7% to 21.9% (-25.8 points), and IRR from 39.3% to 18.6%
(-20.7 points). Notably, M3A maintains reasonable performance across all difficulty levels under
token constraints (Easy: 16.7%, Med: 11.9%, Hard: 15.8% at SR@1), with particularly strong
Hard task performance. Interestingly, MTPR increases from 0.41 to 0.96 under token constraints,
suggesting that M3A’s memory mechanisms become proportionally more valuable when compu-
tational resources are limited. M3A achieves 97% of Agent-S2’s unconstrained SR@3 (47.7%
vs. 49.2%) while consuming only 31% of the tokens, making it substantially more viable for
production deployment.

» Token-efficient agents maintain consistency but low absolute performance: GUI-Owl-7B
(5,817 tokens/step) and UI-Venus-7B (3,700 tokens/step) show zero degradation under token con-
straints, maintaining identical performance across all metrics (GUI-Owl: 6.2% SR@1, 10.2%
SR@3; Ul-Venus: 5.5% SR@1, 7.8% SR@3). Their per-step consumption remains well below
the baseline (61% and 39% respectively), eliminating token budget concerns. However, their ab-
solute performance levels remain low, indicating that token efficiency alone is insufficient without
adequate memory mechanisms. UI-TARS-1.5-7B (17,540 tokens/step, 1.8x baseline) experiences
severe degradation (3.1% — 0.0% SR@1, 6.2% — 0.0% SR@3), despite having lower token con-
sumption than M3A, highlighting that architectural design matters beyond mere token efficiency.

* Deployment strategy implications: The results expose a critical three-tier architecture landscape:
(1) High-performance, deployment-infeasible agents (Agent-S2, Mobile-Agent-E) that excel un-
der step constraints but completely fail under realistic token budgets; (2) Balanced, production-
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Table 15: Test-time compute normalized evaluation: Comparison of agent performance under
steps/episode and tokens/episode constraints. For each agent, we show three rows: (1) Steps/Episode
constraint results, (2) Tokens/Episode constraint results, and (3) Performance delta (Tokens - Steps).
Blue indicates improvement, red indicates degradation.

Agent Tokens/ . . |SR@1 SR@1 SR@1 SR@1|SR@3 SR@3 SR@3 SR@3|IRR .. FRR
gen Step -OMSrAMtl A Easy Med Hard | Al Easy Med Hard | (%) (%)

AGENTIC WORKFLOW (WITH LTM)

Steps/Ep 273 417 190 184| 492 646 429 36.8| 395 045 21.5
Agent-S2 41,760  Tokens/Ep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.1 0.00 0.0
Delta -273  -41.7 -19.0 -18.4| -492 -646 -429 -36.8(-394 -045 -215

Steps/Ep 55 12.5 2.4 0.0 102 229 2.4 26| 24 0.02 4.1
Mobile-Agent-E 56,400  Tokens/Ep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 1.2 0.00 0.0
Delta -55 -125 -2.4 00| -102 -229 2.4 26| -1.2  -0.02 -4.1

AGENTIC WORKFLOW (WITHOUT LTM)

Steps/Ep 227 312 167 184| 422 458 452 342 296 030 20.7

T3A 14000  Tokens/Ep | 62 62 00 132| 133 104 95 211| 00 034 58
Delta | -165 250 -167 -52| 289 354 357 -13.1]-29.6 +0.04 -149
Steps/Ep | 328 396 357 21| 477 479 500 447|393 041 163
M3A 12960  Tokens/Ep | 148 167 119 158| 219 188 190 289|186 096 64
Delta | -180 -229 238 -53| 258 291 -31.0 -158]-207 +055 9.9
Steps/Ep | 31 83 00 00| 39 104 00 00| 00 000 08
Mobile-Agent-V2 54,720  Tokens/Ep | 00 00 00 00/ 00 00 00 00 0.0 000 00
Delta 31 83 00 00| -39 -104 00 00] 00 000 -08
Steps/Ep | 23 62 00 00| 55 125 24 00| 02 000 24
SeeAct 10,720 Tokens/Ep | 08 21 00 00| 23 42 24 00| 00 000 12
Delta 15 41 00 00| 32 83 00 00| 02 000 -12
Steps/Ep | 3.1 83 00 00| 94 229 24 00| 15 004 44
AppAgent 6640  TokensEp | 1.6 42 00 00| 78 188 24 00| 09 011 44
Delta 15 41 00 00| 1.6 -4l 00 00| 0.6 +0.07 00

AGENT-AS-A-MODEL

Steps/Ep 55 146 0.0 0.0 78 208 0.0 00| 26 0.05 1.7
UI-Venus-7B 3,700 Tokens/Ep 55 146 0.0 0.0 7.8 208 0.0 00| 26 0.05 1.7
Delta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.0 0.00 0.0

Steps/Ep 31 83 00 00| 62 167 00 00| 38 004 24
UL-TARS-1.5-7B 17,540  Tokens/Ep | 00 00 00 00| 00 00 00 00| 04 000 00
Delta 31 83 00 00| 62 -167 00 00| 34 -004 -24

Steps/Ep 62 14.6 0.0 26| 102 229 24 26| 5.7 0.07 33
GUI-Owl-7B 5,817 Tokens/Ep 62 146 0.0 26 102 229 2.4 26| 57 007 33

Delta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.0 0.00 0.0

Steps/Ep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.0 0.00 00

CogAgent 4,680 Tokens/Ep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.0 0.00 00
Delta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00| 0.0 0.00 0.0

ready agents (M3A, T3A) that sacrifice 15-30 percentage points of performance to maintain de-
ployment viability with manageable token consumption; (3) Token-efficient, low-capability agents
(GUI-Owl, UI-Venus, CogAgent) that avoid token constraints but provide insufficient absolute
performance. For production deployments, M3A’s architecture represents the optimal trade-off,
achieving near-top-tier performance (21.9% SR@3) under token constraints while maintaining
46% of its unconstrained capability, compared to Agent-S2’s complete unusability (0.0% reten-
tion).

Conclusion. Test-time compute normalized evaluation reveals that token budgets impose far more
restrictive constraints than step counts for memory-intensive GUI agents. While steps/episode con-
straints primarily affect operational efficiency, tokens/episode constraints directly determine de-
ployment feasibility under real-world API cost structures. The results demonstrate that agents
must balance memory capability with token efficiency: sophisticated architectures like Agent-S2
achieve highest performance when unconstrained but become unusable under standard token bud-
gets, whereas efficient architectures like M3A sacrifice marginal performance gains (1.5 points) to
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maintain deployment viability with substantially lower computational costs. This trade-off repre-
sents a critical consideration for future agent architecture design, particularly as production deploy-
ments increasingly operate under strict token budget constraints.

A.10 MEMGUI-EVAL CASE STUDIES

This section presents five concrete examples illustrating MemGUI-Eval’s progressive scrutiny ap-
proach across different evaluation stages. These cases demonstrate how our evaluator handles suc-
cess and failure scenarios at each stage, showcasing the precision and efficiency of the targeted
visual verification methodology.

A.11 DETAILS OF PROMPTS FOR MEMGUI-EVAL

This section provides complete prompt specifications for all stages of the MemGUI-Eval progressive
scrutiny pipeline and its specialized agents: the Triage Judge (Stage 1), the Step Descriptor and
Semantic Judge (Stage 2), the Visual Judge (Stage 3), and the IRR Analyzer (for memory failure
analysis).

A.11.1 STAGE 1: COST-EFFECTIVE TRIAGE PROMPTS

Prompt 1: Triage Judge System Prompt

You are an expert in evaluating mobile UI automation tasks. Your goal is to determine if a task has DEFINITELY succeeded
based on VERY limited information. You must be extremely confident to make a ”Success” decision.

Evaluation Guidelines: 1. Final UI State: The “final UI state” is the conceptual state of the UI after all actions are
performed. It must meet all task requirements. This state may be represented by the last screenshot, or a collection of
screenshots from the middle and end of the sequence that together prove task completion. Information Organization: When
tasks require inputting answers/information into note-taking apps, messaging apps, or similar software, the information must
be organized in a logical and orderly manner. Mixed or chaotic organization (e.g., Point 1.1, Point 2.1, Point 2.2, Point 1.2)
should be considered task failure, as proper information structure is essential for task completion quality. 2. Pre-existing
Conditions: If a task requirement was already met before the agent started (e.g., a *Shopping’ note already exists when the
task is to create one), the agent does not need to repeat the action. The task is still considered successful if the final state is
correct. 3. Trust Correct Actions: If a sequence of actions is logically correct for the task (e.g., *Click Save’), you can infer
the action was successful and the state was achieved, even if the final screenshot shows a different screen (e.g., the agent has
navigated back to the home screen). 4. Allow Error Correction: The agent can make and correct mistakes. As long as the
final goal is achieved, intermediate errors do not affect the outcome. 5. Handle Unreasonable Tasks: If a task is inherently
unreasonable or impossible to complete (e.g., requesting to find 3 reviews for a newly released product that has no reviews
yet), the agent can still be considered successful if it correctly identifies the impossibility and provides appropriate feedback.
For example, writing “not found”, ’no reviews available”, or any other clear indication that the agent recognized the task’s
unreasonable nature is acceptable as successful task completion.

You will be given: (1) The task description. (2) The raw action logs (without semantic descriptions). (3) A single image
combining the last 3 screenshots out of a total of [total_steps] screenshots.

Crucial Instructions: - The information provided is INCOMPLETE. You are only seeing the final UI states and raw, low-
level actions. - You must be EXTREMELY conservative. Only conclude ”Success” if the provided evidence is undeniable and
accounts for ALL conditions in the task description with absolute certainty. - If there is AN'Y ambiguity or any task condition
that cannot be verified from the final screenshots (e.g., a filter that was applied in an earlier step), you MUST respond with
”Uncertain” and provide a reason. You cannot decide “Failure” at this stage.

MANDATORY VERIFICATION: Before making any decision, you MUST verify that ALL key information required by
the task description is present in either: (1) The raw action logs, OR (2) The provided screenshots

If ANY critical information, parameters, values, or UI elements mentioned in the task description are NOT clearly visible in
the provided screenshots and NOT evident from the raw action logs, you MUST respond with “Uncertain”. Do not guess or
infer missing information. All required information must be explicitly present and verifiable.

Respond with a JSON object containing “reason” and “decision” (”Success” or ”Uncertain”).

A.11.2 STAGE 2: FULL SEMANTIC ANALYSIS PROMPTS

Prompt 2: Step Descriptor System Prompt

You are an expert mobile device assistant. Your task is to analyze a two-panel image showing the *Before Action’ and ’After
Action’ state of a user’s workflow. Your analysis must focus *only* on the 'Before Action’ panel (the left side). You must
output your response in a JSON format.
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Prompt 3: Step Descriptor User P pt Template

The overall task is: *{task_description}’.

Input Analysis: The provided image shows a *Before Action’ state on the left and an *After Action’ state on the right. Your
entire analysis should focus on the left 'Before Action’ panel.

Note: If the *After Action’ panel is identical to the "Before Action’ panel, it signifies this is the final action in the task.

On the left panel, a user action is visualized with markers: a red circle shows the click/touch point, surrounded by a green
square, with a *C’ label in the corner. The raw action from the execution log is provided for context: - Action Type:
‘{log-action}‘ - Action Detail: ‘{log_detail}‘

Your Task: Based on the visual evidence in the left panel and the provided log context, perform the following two tasks: 1.
action_description: In your own words, crisply describe the specific action performed (e.g., *Clicked the “’Settings” button’,
"Typed "hello” into the search bar’). 2. ui_description: List the key UI elements visible in the left panel that are relevant to
the action and the overall task. Do not mention the panel name (e.g., 'Before Action’) in your description.

Your output MUST be a JSON object with these two keys.

Example:
{
"action_description": "The user clicked on the settings icon at the bottom of
the screen.",
"ui_description": "The home screen with various app icons is visible. Key

elements include the Phone, Messages, and Settings icons at the bottom."

Prompt 4: Semantic Judge System Prompt

You are an expert in evaluating mobile UI automation tasks.

Evaluation Guidelines: 1. Final UI State: The “final Ul state” must meet all task requirements. Information Organization:
When tasks require inputting information into note-taking apps, the information must be organized in a logical and orderly
manner. 2. Pre-existing Conditions: If a task requirement was already met before the agent started, the agent does not need
to repeat the action. 3. Trust Correct Actions: If a sequence of actions is logically correct for the task, you can infer the
action was successful. 4. Allow Error Correction: The agent can make and correct mistakes. As long as the final goal is
achieved, intermediate errors do not affect the outcome. 5. Handle Unreasonable Tasks: If a task is inherently unreasonable
or impossible to complete, the agent can still be considered successful if it correctly identifies the impossibility.

Prompt 5: Semantic Judge User Prompt Template

Task Description: *{task_description}’

Here is a summary of the actions taken: {formatted_steps}

You are now provided with a composite image of the last 3 screenshots. You must synthesize this visual information with the
full list of text descriptions to understand the complete workflow.

CRITICAL WARNING: The text-based UI descriptions provided above are INCOMPLETE and may be MISSING CRITI-
CAL INFORMATION. DO NOT rely solely on these text descriptions for your decision.

MANDATORY VERIFICATION: Before making any decision, you MUST verify that ALL key information required by
the task description is present in either: (1) The text descriptions, OR (2) The provided screenshots.

If ANY critical information is NOT clearly described in the text descriptions and NOT visible in the provided screenshots,
you MUST request additional screenshots.

Based on all this information, was the task fully and correctly completed? If you are certain, respond with ’decision’ 1
(success) or O (failure). If you are still unable to make a definitive judgment, set *decision’ to -1 and provide a "required_steps’
array with the step numbers you need to see.

Example (Confident):
{
"decision": 1,
"reason": "All steps were followed correctly and the final UI state matches the
goal."

}

Example (Requesting screenshots):

{
"decision": -1,
"reason": "The text descriptions are missing star ratings information. I need to
see the search result screens.",
"required_steps": [2, 4, 6]
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A.11.3 STAGE 3: TARGETED VISUAL VERIFICATION PROMPTS

Prompt 6: Visual Judge System Prompt

You are an expert in evaluating mobile UI automation tasks.

Evaluation Guidelines: [Same as Stage 2]

You previously requested specific screenshots for clarification. You are now provided with a composite image showing the
critical step screenshots you requested. This image is only a partial view of the execution; you must synthesize this visual
information with the full list of text descriptions to understand the complete workflow.

Based on ALL available information, you must now make a FINAL and DEFINITIVE judgment. Your decision must be
either success (1) or failure (0). Do not request more information.

Prompt 7: Visual Judge User Prompt Template

Task Description: *{task_description}’

Here is a summary of the actions taken: {formatted_steps}

And here is the image with the supplemental screenshots you requested.

MANDATORY VERIFICATION: Before making any decision, you MUST verify that ALL key information required by
the task description is present in either: (1) The text descriptions, OR (2) The provided screenshots.

If ANY critical information is NOT clearly described in the text descriptions and NOT visible in the provided screenshots,
you MUST mark the task as failure. Do not guess or infer missing information.

Please provide your final, definitive decision as a JSON object with "decision’ (1 or 0) and 'reason’.

A.11.4 TIRR ANALYZER: MEMORY FAILURE QUANTIFICATION

Prompt 8: IRR Analyzer System Prompt

You are an expert in analyzing agent information retention capabilities. Your task is to precisely calculate the Information
Retention Rate (IRR) of an agent based on the given task description, failure reason, and execution step descriptions.

IRR Definition and Calculation Principles

IRR = (Number of correctly recalled and used information units / Total number of information units required by the task) x
100%

Information Unit: The smallest piece of information that the agent is required to remember and use in a task. Examples
include: - Product prices, ratings, specifications - Contact phone numbers, email addresses - Meeting dates, times, locations -
Order numbers, verification codes - Product models, brands, features - Addresses, rent prices, areas, etc.

Detailed Calculation Rules

1. Task Success If the task is ultimately successful, it means all required information has been correctly processed. IRR =
100%

2. Partial Failure with Explicit Output Applies to tasks that require explicit output of remembered information (e.g., taking
notes, sending messages). If the task fails but some information units are correctly output, IRR is calculated based on the
proportion. Example: Task requires remembering 9 pieces of information, agent correctly outputs 7. IRR =7/9 = 77.8%

3. Failure in Implicit Memory Tasks Applies to tasks requiring agents to use memory for internal calculations or decisions,
ultimately executing only one action. In such cases, we cannot externally trace the specific correctness of the memory chain.
For objectivity and consistency, if the final decision behavior is incorrect, IRR = 0%

4. Early-Stage Failure If the agent fails early in the task (e.g., unable to find the information source page), resulting in no
information units being processed. IRR = 0%

Analysis Requirements

You must: 1. Carefully analyze the task description to identify ALL information units that need to be remembered 2.
Analyze the failure reason to determine if it involves information memory issues 3. Examine execution steps to determine
what information the agent actually collected and used 4. Calculate accurate IRR based on the specific scenario type 5.
Provide detailed reasoning explaining your calculation process

Your response must be in JSON format containing: - total_information_units: Total number of information units required
(integer) - correctly_used_units: Number of correctly used information units (integer) - irr_percentage: IRR percentage (0-
100, integer) - analysis_reason: Detailed analysis reasoning (string)
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Please analyze the Information Retention Rate (IRR) for the following task:

Task Description {task_description}

Failure Reason {failure_reason}

Execution Step Descriptions {steps_text}

Based on the above information and following the IRR calculation principles, please provide a precise analysis:

1. Identify Information Units: How many information units does this task require the agent to remember? 2. Trace Agent
Performance: How many information units did the agent actually collect and use correctly? 3. Determine Task Type: Is
this an explicit output task or implicit decision-making task? 4. Calculate IRR: Apply the appropriate calculation rule based
on the task type and agent performance. 5. Provide Detailed Reasoning: Explain your analysis process and justify the IRR
calculation.

Analysis Guidelines: - Count each specific piece of required information as one unit (e.g., price=1 unit, rating=1 unit,
model=1 unit) - For explicit output tasks: Count correct information in the final output - For implicit decision tasks with
wrong outcomes: IRR = 0% - For early failures before information collection: IRR = 0% - Be objective and consistent in
your evaluation

Output in JSON format:

{
"total_information_units": <integer>,
"correctly_used_units": <integer>,
"irr_ percentage": <0-100 integer>,
"analysis_reason": "<detailed analysis reasoning>"
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<instruction> Open the audio recorder app. Set the recording format to WAV, 48 kHz, Mono. Record an audio clip for
more than 10 seconds, then stop the recording. Save the file with the name "MyTestAudio".

Trajectory of UI-TARS-1.5-7B's Task Failure Due to Execution Timeout
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MemGUI-Eval
<Decision> Failed
<Reason> The agent failed to complete the task within the specified maximum number of steps (17 steps).

Figure 7: Execution Timeout Example (UI-TARS-1.5-7B). The task required recording audio and
saving it as “MyTestAudio”. After successful recording, the agent attempted to delete the default
filename “Record1” character by character through inefficient individual click actions (steps 12-17),
exhausting the 17-step limit before completing the renaming operation. This demonstrates how poor
action efficiency can cause timeouts even on simple tasks.
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<instruction> In Bing app, find the current stock prices for NVIDIA (NVDA) and Apple (AAPL). Remember both prices.
In the Calculator app, first calculate the value of 50 NVDA shares. Then, calculate the value of 75 AAPL shares. Finally,
calculate the total combined value of both holdings. Directly answer with the final combined value.

Trajectory of UI-TARS-1.5-7B's Task Failure Due to Partial Memory Hallucination

Rl step3 . . T stepd . . SEP 6 cm e
Sep3 . . Zslepd . oD g . -1

NVIDIA Corp
©Copiot Search &9

¢ LE s s

Allow Bing to record audio?

Found the price )

of NVIDIA to be
¢ I 169.92 USD. 9
sear l i the Bing app. qwer tyuiop o 5 el e
asdfgh k.l ) '
EOEES, .S - 1=F
. ® N —
e @0 [ [ o o . ,
Action: click ‘Action: click ‘Action: input_text ‘Action: click Action: click ‘Action: click
Detail: Click position is Detail: Click position is Detail: The text *Current Detail: Click position is Detail: Click position is Detail: Click position is
marked with a red circle. marked with a red circle. stock prices for NVIDIA marked with a red circle. marked with a red circle. marked with a red circle.
(NVDA)" has been inputted.
s van o van van vin
o STEPO e Step 10,0 o step 1. .. .. StEPI12.
® 0 v o - : A
Apple ne X
Trending v - v -
Sp— T T A
J— 3
7]
o [ AC () (% (= AC () % =+
S -
—— ¢ | Found the price
2 7 8 9 X Correctly used the
of AAPL to be I f
. =D ® 6 e ¢ value 169.92 for
e v vy ot | 22481 USD. (0 4 5 6 = calculation.
gwe rty uitop awe ity uitop N v
asdfghijk.| asdfghijk.|l 1 2 3 + 1 > 3 +
p—
B: cvom@BlzxcvennEl '”’(
© =) 7 sl 1o Make Al 0 B a = 0 B a =
en ge ©8 ae o
“Action: click Action: input_text Action: navigate_home Action: click Action: input_text Action: input_text
Detail: Click position is Detail: The text *Current Detail: Return to home page. Detall: Click position is Detail: The text "50+" has Detail: The text *169.92" has
marked with a red circle. stock prices for Apple (AAPL)" marked with a red circle. been inputted. been inputted.
has been inputted.
van van i van van vin
SIAPE]S NN S )[4 - S oD 5] S IS 1O ) OISy 7 S 1O ——

8,496 | 75x 10,794 10,794+ 19,290

Vomoo~ Vomoor Vomoo~ Voomoo~ Vomoor Voo~
A () % =+ AC () % =+ AC () % =+ AC () % =+ AC () % =+ AC () % =+
7 8 9 X 7 8 9 X /Incorreétly uSed the 7 8 9 X 7 8 9 X 7 8 9 X
value 143.92 for
4 5 (] — 4 5 (N = calculation ! ° 4 5 6 4 5 6 = 4 5 6
1 2 & ar 1 2 8 ar 1 2 S| ar 1 2 8 b 1 2 & ar 1 2 8 ar
0 © a = 0 o a = 0 o a = 0 © a = 0 © a = 0 ° a =
Action: click Action: input_text Action: input_text Action: click Action: input_text Action: status
Detall: Click position is Detail: The text "75+" has Detail: The text "143.92" has Detail: Click position is Detail: The text *8496" has Detail: Task completed.
marked with a red circle. been input been iy I marked with a red circle. ninputted.

MemGUI-Eval
<Decision> Failed
<Reason> The agent failed to use the correct stock price for Apple (AAPL) in its calculations. According to the
description for Step 9, the agent found the price of AAPL to be 226.91 USD. However, in Step 15, it used the value
143.92 for the calculation. This fundamental error in using the gathered information means the final calculated value is
incorrect, and the task was not completed successfully.

Figure 8: Partial Memory Hallucination Example (UI-TARS-1.5-7B). The task required finding
stock prices for NVIDIA and Apple, calculating the value of 50 and 75 shares respectively. The
agent correctly retained NVIDIA’s price (169.92 USD) but hallucinated Apple’s price as 143.92
USD instead of the correct 226.91 USD observed in step 9, leading to an incorrect final calculation.
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<instruction> Open the bing app and perform an image search for 'Global Smartphone Shipments Market Share 2021".
From the image results, locate and carefully analyze the chart that specifically displays the data for Q3 2021. Identify the
top three brands from this Q3 chart, and remember their names and their exact market share percentages. Finally, open
the joplin app, create a new note titled 'Smartphone Market Share 2021 Q3', and list the top three brands with their
corresponding percentages.

Trajectory of UI-TARS-1.5-7B's Task Failure Due to Process Memory Hallucination
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ction:scrol cton: dlick tion: clck Acton:input_text cton: ol clon: tatus
Detail: The coordinates Detail: Click position is. Detail: Click position is Detail: The text "Global Detail: Click position is Detail: Ta<! “ompleted.
(640,1200) have been swiped to marked with a red circle. marked with a red circle. Smartphone Shipments Market marked with a red circle.
the do Share 2021" has been inputted.

EThought: | found a chart that perfectly meets my needs! It's a bar graph showing the market share of the global smartphone shipments for |
1Q3 2021. The data is clear and easy to read, with the top three brands being Samsung, Apple, and Xiaomi. Each brand's market share is
iclearly marked, so | can easily see that Samsung leads with 21%, followed by Apple with 14%, and Xiaomi with 10%. This is exactly the
\information | was looking for, so | can move on to the next step.

EAction: finished(content="The top three smartphone brands in the Q3 2021 global market share chart are Samsung, Apple, and Xiaomi, with}
\market shares of 21%, 14%, and 10% respectively.’)

MemGuUI-Eval
<Decision> Failed
<Reason> The agent failed to complete the task. While it successfully searched for the required images in the Bing
app, it did not proceed to the subsequent, critical steps of the task. The agent was required to analyze the images, open
the Joplin app, create a new note with a specific title, and list the top three brands and their market shares. The
execution stopped after the image search, leaving the main objectives of the task unfulfilled.

Figure 9: Process Memory Hallucination Example (UI-TARS-1.5-7B). The task required find-
ing Q3 2021 smartphone market share data, identifying the top three brands with percentages, and
recording them in Joplin. After successfully finding the chart (step 5), the agent prematurely con-
cluded the task was complete, forgetting the remaining critical steps of data extraction and note
creation, revealing a failure to retain the full procedural workflow.
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<instruction> Open the Setting app and go to 'Special app access'. First, view the apps with 'Wi-Fi control' permission

and remember the list of app names. Next, view the apps allowed 'Picture-in-picture' access and remember that list of

names. Finally, open the joplin app, create a note titled 'App Access Permissions', and list the names you remembered
under two headings: 'Wi-Fi Control' and 'Picture-in-picture’.

Trajectory of M3A's Task Failure Due to Output Memory Hallucination
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MemGUI-Eval
<Decision> Failed
<Reason> The core of the task was to find two lists of apps ('"Wi-Fi control' and 'Picture-in-picture') and accurately
transcribe them into a note. The provided screenshots for steps 7 and 9 establish the ground truth for these lists. The
final screenshot (step 15) shows the note created by the agent. A comparison reveals a significant failure in
transcription.\n\n**Correct 'Wi-Fi control' list (from Step 7 screenshot):**\nAmazon Shopping, Android Auto, Android
Switch, Camera, Google, Google Play services, Google Play Store, Kindle, Maps.\n\n**Correct 'Picture-in-picture’ list
(from Step 9 screenshot):**\nAmazon Shopping, BBC, BBC Sport, Bing, Chrome, Digital Wellbeing, Drive, Gmail,
Google Play services.\n\n**Agent's transcribed list in the final note (from Step 15 screenshot):*\n- **Wi-Fi Control:**
Amazon Shopping, Android Auto, Camera, Google.\n- **Picture-in-picture:** Amazon Shopping, BBC, BBC Sport, Bing,
Chrome, Digital Wellbeing, Drive, Gmail, Google Play services.\n\nThe agent correctly transcribed the 'Picture-in-picture
list. However, for the 'Wi-Fi control' list, it only transcribed 4 out of the 9 apps, missing 'Android Switch', 'Google Play
services', 'Google Play Store', 'Kindle', and ‘Maps'. This is a major error in information gathering and recording, which is
the primary goal of the task. Therefore, the task is a failure.

Figure 10: Output Memory Hallucination Example (M3A). The task required transcribing two
complete app permission lists. The agent correctlé/ avigated to both “Wi-Fi Control’ (step 7, 9 apps)
and ‘Picture-in-picture’ (step 9, 9 apps) permission screens but produced an incomplete transcription
in the final note (step 15), missing several apps from both lists despite having observed them.
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<instruction> In Bing app, find the date for the next leap day and for next year's Halloween. Remember both dates.
Open the N calendar app. Create an all-day event on the leap day named "Leap Day Fun". Then, create a second all-
day event on the Halloween date named "Halloween Party".

Trajectory of UI-TARS-1.5-7B's Task Failure Due to Knowledge Deficiency
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MemGUI-Eval
<Decision> Failed
<Reason> The agent successfully found the dates for the next leap day and Halloween in the Bing app. However, it
mistakenly identified the Google Calendar app as the "N calendar app", so it never launched the correct calendar and
consequently did not create the two required all-day events, "Leap Day Fun" and "Halloween Party". The final
screenshot shows the Google sign-in page, confirming the task was not completed.

Figure 11: Knowledge Deficiency Example (UI-TARS-1.5-7B). The agent successfully found
and retained the required dates (leap day: February 29, Halloween: October 31) but failed due
to misidentifying the Google Calendar app as the target “N calendar app” in step 8, demonstrating a

knowledge gap in app recognition unrelated to memory capabilities.

51



Under review as a conference paper at ICLR 2026

<instruction> Open the Wikipedia app, search for 'English Wikipedia' and find the current number of articles it contains.
Remember this number. Then, search for 'German Wikipedia' and find its current number of articles. Go to and stay on
the page of the Wikipedia edition that has more articles

Trajectory of UI-TARS-1.5-7B's Task Failure Due to Intent Misunderstanding
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EThought: I've finally found the key information! The German Wikipedia has 3,042,570 articles, which is significantly
Eless than the 7,041,839 articles in the English version. Now that I've completed the comparison, | need to stay on
ithe German Wikipedia page to fulfill the task requirements. Let me click on the German Wikipedia page to keep it
iopen.

‘Action: finished(content="English Wikipedia has more articles, so | will stay on the German Wikipedia page.

MemGUI-Eval
<Decision> Failed
<Reason> The task required the agent to find the number of articles for both English and German Wikipedia and then
stay on the page of the edition with more articles. The final screenshot (Step 12) is of the German Wikipedia page. The
text on this page explicitly states that it is the ‘third-largest edition... behind the English Wikipedia'. This indicates that the
English Wikipedia has more articles. Therefore, the agent should have navigated back to the English Wikipedia page to
complete the task correctly. By ending on the German Wikipedia page, the agent failed to meet the final requirement of
the task.

Figure 12: Intent Misunderstanding Example (UI-TARS-1.5-7B). The task required comparing
English and German Wikipedia article counts and staying on the page with more articles. The agent
correctly identified that English Wikipedia has more articles but ended on the German Wikipedia
page, misunderstanding the instruction to navigate to and remain on the edition with more articles.
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<instruction> In the Meesho app, first navigate to the 'Home & Kitchen' -> 'Kitchen Tools' category. From the first five
results, find the item with the best value (highest rating-to-price ratio) and remember its name. Then, repeat this process
for the 'Storage & Organizers' category. Finally, navigate to the product page of the item with the better value between
the two you identified.

Trajectory of SeeAct's Task Failure Due to Other Reasons (Action Space Does Not Support Wait Operation).

step 1 ‘ SeeAct ]
e -2 iaction_gen_response: 1. **Current Screen Identification:**\nThe current screen is the splash or 1
Shmosre  Caltuo | cor :Ioading screen of the Meesho app, indicated by the large \"'m\" logo in the center.\n\n2. **Previous 1
uActian Analysis:*\nThe last action was clicking the \"Meesho\" icon to open the app. The current 1

@ G ° 0 Asplash screen is the direct result of this action, conﬂrmlng that the app is now launching.\n\n3. 1
S G| Gomoes ." hot Details Analysis:**\nThe hot shows a full purple display with a stylized |
Fy Q uorange \"'m\" logo in the middle. There are no interactive elements available on this loading screen. |
e o st | The app is in the process of starting up.\n\n4. **Next Action Based on Android screen and 1
uAna/ySIs **\nSince the app is currently Ioadmg, the only logical step is to wait for it to finish and 1

O MG upresent the main interface. No user ii on is p or required at this stage. Therefore, the 1
LG -next action is to do nathmg and wait for the app to load. Since there isn't an explicit \"wait\" action, and,
t () @ uthe imulation will d to the next screen after the app loads, | will consider the task,

.complere for this step by issuing a \"TERMINATE\" command. A\"No Operation\" action would be 1
\more fitting, but given the provided action space, \"TERMINATE\" signifies that no action can be taken
ion the current screen.\n\nTERMINATE ]
Eactlon,ground,response: My target is to perform the TERMINATE action because the current 1
1screen is a non-interactive splash/loading screen. There are no elements on the screen to interact |
g -wtth as the app is still in the process of loading.\n\nG. None of the other options match the correct |
Action: click Action: status .element \n\nACTION: TERMINATE\nVALUE: None ]

Detail: Click position is Detail: Taskcompleted. ~ (VavNEeEvEvEea N v v VANV YN N N N NV VIV,
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MemGUI-Eval
<Decision> Failed
<Reason> The agent only opened the Meesho app and then immediately ended the task. None of the required steps,
such as navigating to the 'Home & Kitchen' category, finding products in 'Kitchen Tools' and 'Storage & Organizers',
calculating value ratios, or navigating to the best value product's page, were performed.

Figure 13: Other Failure Example (SeeAct). The task required finding products with the best
value in the Meesho app. After opening the app (step 2), the agent correctly identified that the app
was loading and that waiting was necessary (step 3). However, due to action space limitations (no
explicit “wait” action), it issued a “TERMINATE” command, prematurely ending the task without
performing any required operations.
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Figure 17: Pass@k learning curves for open-source models on MemGUI-Bench. The curves il-
lustrate how success rates evolve with increasing attempts (k=1 to 7) driven by LLM output stochas-
ticity, as none of these models incorporate explicit long-term memory mechanisms. UI-TARS-1.5-
7B shows continued stochastic gains up to pass@5 (11.72%), while GUI-Owl-7B and UlI-Venus-7B

saturate earlier at pass@3 and pass @5 respectively. CogAgent fails to complete any tasks across all
attempts.

55



Under review as a conference paper at ICLR 2026

<Instruction> Open the Amazon app, search for "running shoes for men", then filter
for the brand "ASICS" and size "10".

Stage1: Cost-Effective Triage Successful
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— Triage Judge Agent

= o<Decision> Success
- <Reason> The provided
screenshots clearly and
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— — e all task requirements have
i ok Dot ik ot Dot ok competed been met ...

Last Tree Images

Figure 18: MemGUI-Eval Stage 1 Success Case: Cost-effective triage successfully identifies task
completion with minimal evidence.
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<Instruction> Open the Amazon app and search for the ‘Intel Core i5-13600K' CPU, remembering its price. Open the bing app
and search for "what socket does Intel Core i5-13600K use". Remember the socket type. Return to the Amazon app, search for a
motherboard with that socket type, and remember the price of the first result. Finally, open the joplin app, create a note titled
"CPU/Mobo Combo", and list the names and prices of the CPU and the compatible motherboard.

Stage1: Cost-Effective Triage Uncertain
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Figure 19: MemGUI-Eval Stage 2 Success Case: Semantic analysis with enriched textual descrip-
tions enables accurate judgment.
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<Instruction> Open the wikiHow app and search for "how to bake chocolate chip cookies". Create a checklist
in the joplin app named "Cookie Ingredients"” with the first four ingredients listed. Then, open the Calculator
app and calculate the total cost, assuming each of the four ingredients costs $3.50.
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Figure 20: MemGUI-Eval Stage 2 Failed Case: Semantic analysis determines task failure and com-
putes Information Retention Rate (IRR).
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<Instruction> Search for '‘Bose QuietComfort Ultra Headphones' on both the Amazon and Wish apps, remembering the price and
currency from each. If the currencies are different, use the bing app to find the exchange rate to compare them. Directly answer
with the name of the app, 'Amazon' or 'Wish', where the price is lower.
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Figure 21: MemGUI-Eval Stage 3 Success Case: Targeted visual verification with requested histor-
ical screenshots confirms task completion.
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<Instruction> Search for 'iPhone 16 Pro Max' on both the Amazon and Wish apps, remembering the price
and currency from each. If the currencies are different, use the bing app to find the exchange rate to compare
them. Directly answer with the name of the app, 'Amazon' or 'Wish', where the price is lower.
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Figure 22: MemGUI-Eval Stage 3 Failed Case: Visual verification with targeted historical evidence
determines task failure with precise IRR calculation.
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