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ABSTRACT

Large language models (LLMs) have become an integral component in solving a
wide range of NLP tasks. In this work, we explore a novel use case of using LLMs
to build performance predictors (PP): models that, given a specific deep neural net-
work architecture, predict its performance on a downstream task. We design PP
prompts for LLMs consisting of: (i) role: description of the role assigned to the
LLM, (ii) instructions: set of instructions to be followed by the LLLM to carry out
performance prediction, (iii) hyperparameters: a definition of each architecture-
specific hyperparameter and (iv) demonstrations: sample architectures along with
their efficiency metrics and ‘training from scratch’ performance. For machine
translation (MT) tasks, we discover that GPT-4 with our PP prompts (LLM-PP)
can predict the performance of architecture with a mean absolute error matching
the SOTA and a marginal degradation in rank correlation coefficient compared to
SOTA performance predictors. Further, we show that the predictions from LLM-
PP can be distilled to a small regression model (LLM-Distill-PP). LLM-Distill-PP
models surprisingly retain the performance of LLM-PP largely and can be a cost-
effective alternative for heavy use cases of performance estimation. Specifically,
for neural architecture search (NAS), we propose a Hybrid-Search algorithm for
NAS (HS-NAS), which uses LLM-Distill-PP for the initial part of search, resort-
ing to the baseline predictor for rest of the search. We show that HS-NAS performs
very similar to SOTA NAS across benchmarks, reduces search hours by ~50%,
and in some cases, improves latency, GFLOPs, and model size.

1 INTRODUCTION

Large language models (LLMs) are useful in a wide range of tasks, which includes open-ended
tasks (e.g., generation, brainstorming, and chat) and closed-ended tasks (e.g., summarization, ques-
tion answering, and rewriting). In this work, we explore a novel use case of using LLMs: building
a performance predictor (LLM-PP) for a deep neural network (DNN) architecture. The input to the
predictor is the DNN architecture description, which is typically its hyperparameters (e.g., #layers,
#attention heads per layer). The predictor outputs the performance (e.g., BLEU score (Papineni
et al.,|2002a)) of that architecture for a given downstream task. An ideal performance predictor (PP)
should have low prediction errors (e.g., absolute difference) with respect to the performance ob-
tained by training from scratch. We hypothesize that LLMs have a ‘general understanding” of DNN
architectures, which is learned from relevant training data sources such as DNN research papers
and GitHub repositories. The main goal of this work is to unearth the architecture understanding
capability of LLMs to design PPs that are: (i) accurate, (ii) efficient, and (iii) beneficial to other use
cases (e.g., neural architecture search).

How to design accurate performance predictor (PP)? To answer this, we design PP prompts that
specify the PP task precisely. Specifically, the prompts contain: (i) role: high-level description of
the role assigned to the LLM, (ii) instructions: set of instructions to explain the details of the task
(e.g., downstream task, architecture, performance/efficiency metric), which the LLM is expected
to follow, (iii) hyperparameters: a definition of each architecture-specific hyperparameter and (iv)
demonstrations: a set of supervised examples for the PP task, where each example contains the
architecture description (e.g., hyperparameters, FLOPs) and its performance on the downstream task
(e.g., BLEU score). In this work, we primarily use GPT-4 (OpenAll|2023b) as the LLM and machine
translation on popular WMT datasets as our downstream tasks. We discover that GPT-4 with our
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PP prompts (LLM-PP) can predict the performance of an architecture with a mean absolute error
matching the SOTA and a marginally worse performance in rank correlation coefficient, compared
to SOTA weight-sharing supernet based performance predictors (Wang et al, [2020; Jawahar et al.,
2023b).

Given our choice of GPT-4 for the LLM, LLM-PP requires using the GPT-4 API for scoring each
architecture, which makes LLM-PP prohibitively expensive to be applied for many use cases. One
such use case is neural architecture search (NAS), where the goal is to find an architecture that has
optimal performance for a given constraint on a given hardware. In NAS, PP is typically used for
each constraint (e.g., latency < 100ms) to score roughly 3,000 candidate architectures (Wang et al.,
2020). The pricing of GPT-4 as of August 2023 is 0.03$ per 1K tokens [H Assuming PP prompts
takes roughly one-third of 1K tokens, the estimated cost can be ~30$ for a single constraint on
the target hardware. With different constraint values (e.g., 100ms, 200ms), constraint types (e.g.,
latency, FLOPs, memory), target hardwares (e.g., Nvidia A100, Raspberry Pi), the total cost can
quickly become exorbitant (e.g., 1,8003).

How to design cost-effective PP? To answer this, we distill the performance predictions of LLM-
PP into a multilayer perceptron (MLP) based regression model (LLM-Distill-PP), while taking the
architecture description (e.g., list of hyperparameters) as input features. Surprisingly, we find that
LLM-Distill-PP can largely retain the performance of LLM-PP. Assuming LLM-Distill-PP needs
only 3,000 examples, the estimated cost can be ~30$ for a single downstream task, which is amor-
tized across different constraint values, constraint types, and target hardwares.

Can LLM-Distill-PP speed up architecture search, while maintaining the efficiency and the
quality of SOTA NAS? To answer this, we use LLM-Distill-PP as PP for designing efficient
MT architectures via SOTA NAS methods such as HAT (Wang et al.l 2020) and Mixture-of-
Supernets (Jawahar et al.| [2023b). We propose Hybrid-Search search algorithm (HS-NAS) where
LLM-Distill-PP is used as PP for the first half of the search budget (i.e., 15 iterations) and a weight-
sharing supernet (SOTA performance predictor) is used as PP for the remaining 15 search iterations.
HS-NAS is roughly 50% faster than SOTA NAS search, while performing similarly to (or improv-
ing on) architecture designed by SOTA NAS, and in some cases, enjoying reduced latency (~2%),
FLOPs (~1%), and smaller model size (~2%).

Main contributions: (1) We propose LLM-PP, which uses few-shot prompting of LLM to build
accurate performance predictors, achieving SOTA mean absolute error. (2) We further build LLM-
Distill-PP, which naturally enjoys a better amortized cost than LLM-PP and is applicable for PP-
heavy use cases (3) We introduce HS-NAS, a search algorithm that cuts the NAS search time by half
compared to SOTA and identifies better efficient architectures, by exploiting advantages of LLM-
Distill-PP and SOTA performance estimators. (4) We share the prompts, data used to train and
evaluate LLM-Distill-PP models, alongside the code with detailed instructions for reproducibility.

2 RELATED WORK

Performance Predictors. A popular approach in NLP to build performance predictors is to train
a weight-sharing supernet model that jointly trains a collection of architectures by sharing their
weights with the largest model from the given search space (Wang et al., 2020; |Y1in et al.} 2021} [ Xu
et al., |2022a}; Jawahar et al.l [2023ajb)). In each training step, an architecture is randomly sampled
from the search space, weights corresponding to that architecture are extracted from the correspond-
ing rows/columns from the weight matrices of the largest model and those weights are trained for
the task of interest. After training, the performance of an architecture can be predicted by extracting
weights corresponding to that architecture and measuring on the validation set of the task. The main
challenges in supernet training include: (i) weight co-adaptation (Bender et al.| 2018}, Zhao et al.,
2021)), (ii) capacity bottleneck (Jawahar et al.|[2023b)), and (iii) gradient conflict (Gong et al.|[2021).

NAS for NLP. Neural architecture search (NAS) is a general framework used to design efficient
NLP architectures that satisfy user-defined constraints. The generality of NAS spans the following
key dimensions: (i) architecture family: encoder-only (Yin et al., [2021; Xu et al., [2022a; 2021}
2022b), decoder-only (Javaheripi et al., 2022), encoder-decoder (Wang et al., 2020; Jawahar et al.,
2023ab) without restricting to Transformers, (ii) constraint types: latency, FLOPs, model size, and
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(iii) fasks: task-agnostic pretraining (Xu et al.l[2022a; |Javaheripi et al., 2022} Jawahar et al.| 2023b)),
task-specific training (Wang et al., |2020; Jawahar et al., |2023a)). The search algorithm is generally
based on evolutionary search, which uses a performance predictor to identify architectures of high
quality. The algorithm also uses real or predicted efficiency metric to discard architectures that do
not satisfy user defined efficiency constraint from the progressively evolving search space.

LLMs for NAS. GENIUS (Zheng et al., [2023)) is a recent search algorithm that uses LLMs to
generate candidate convolution based architectures for image classification tasks. GENIUS trains
the candidate architecture from scratch to convergence to measure its performance, which can be
prohibitively expensive for practical tasks. The key differences between GENIUS and our work are:
(1) LLM use case: while GENIUS uses LLMs to generate candidate architectures, we use LLMs
to predict performance of architecture, (ii) search cost: while GENIUS requires 8§ NVIDIA V100
GPUs for training candidate architectures and roughly takes 5 days, the search cost for our work is
upper bounded by SOTA NAS for MT, which is 1 NVIDIA V100 GPU and under 5 hours (Jawahar
et al.,|2023b), and (iii) DNN backbone: while GENIUS focuses on convolution based encoder-only
architecture for image classification task, our work focuses on Transformer based encoder-decoder
architecture for machine translation task. See [Tornede et al.| (2023)) for a thorough survey on how
LLM and AutoML (parent field of NAS) fields can reinforce each other. The background for other
relevant topics such as LLMs and distilling LLMs can be found in [A.T]

3 PERFORMANCE PREDICTION PROBLEM

We next formally define the performance prediction problem. Let 7" denote a downstream task and
Ar the corresponding search space of architectures. Let Yy C R denote the real space of perfor-
mance scores for the task 7. Let Dt denote the data distribution defined over Ar x Yr. Then,
the performance predictor can be denoted by fr : Ap — Vr. Let L5550 = {(a;,p;)}, ~ (D)7,
consisting of architecture, performance pairs (a;, p;) drawn i.i.d. from Dy, denote the labeled test
set. Note that p; is obtained by training the architecture a; from scratch to convergence on task 7',
which we refer to as ‘training from scratch’ (TFS) performance. The quality of performance predic-
tor can be gauged using two metrics: Mean absolute error (MAE) computes the mean of the absolute
difference between predictions and their corresponding TFS performances, which can be formalized

|fr(ai)—pil i ient i ;
a8 D (a; pi)m(D)r (D)7 Kendall rank correlation coefficient is another metric that computes

the ranking correlation between a set of predictions and their corresponding TFS performances, and
can be formalized as Kendall-Tau([fr(ai1),..., fr(am)], [p1,---,Pm]). Recently, Jawahar et al.
(2023b)) showed that both MAE and Kendall-Tau metrics are crucial for evaluating the performance
predictor quality. For instance, a predictor with 38% better MAE and 12% worse Kendall-Tau com-
pared to a base predictor can power NAS to find an architecture that enjoys 4% BLEU improvement.
On the other hand, a predictor with 5% worse MAE and 6% higher Kendall-Tau compared to a base
predictor can lead to a NAS architecture that enjoys 0.1% BLEU improvement.

4 BASELINE PERFORMANCE PREDICTORS

The SOTA approach for building performance predictors (fr) is to train a weight-sharing supernet
model on the task 7. We formalize the training objective of the supernet. Let the training data
distribution be denoted X;,4;,. Let the training sample and label be denoted by z, y, where x,y ~
Xirain. Let the architecture sampled uniformly from the search space A7 be denoted by a4,q. Let
Alarge and asmqy denote the largest and smallest architecture from the search space Ap. Let the
subnet with architecture a be denoted by s,. Let s be parameterized by the supernet model weights
W. The training objective of the supernet using sandwich sampling (Yu et al.,[2020) is given by

InMi/n Bz y~irgin [Earand’\‘A[‘c(SaTa,nd (z; W), y)] + E(Sala,rgf: (z;W),y) + ‘C(Sasm,a,ll (z; W), y)}

Hardware-aware Transformers (Wang et al.l |2020) uses single path one-shot (SPOS) optimiza-
tion (Guo et al [2020), where only a,q,q is optimized at every training step. Mixture-of-
Supernets (Jawahar et al.l [2023b) (MoS) uses mixture-of-experts (MoE) (Fedus et al., [2022) to
increase the capacity of the supernet, and the router specializes the weights for each architecture.
MoS was proposed in two variants: layer-wise MoS and neuron-wise MoS, which differ in the
degree of freedom for weight generation. MoS uses sandwich sampling to train the supernet.
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5 LLM PERFORMANCE PREDICTOR (LLM-PP)

LLM exhibits “general understanding” of
DNN architectures, which is likely ob-
tained by training on relevant data sources
that describe DNN architectures such as
research papers and GitHub repositories.
These architecture understanding capabil-
ities can be tested by prompting LLM
to generate definition of hyperparameters,
and generate design principles for archi-
tecture search (Zheng et all) 2023). For
performance prediction, these capabili-
ties can in turn help the LLM in map-
ping the DNN architectures to their per-
formances well. To this end, we pro-
pose LLM based Performance Predictor
(LLM-PP), which introduces the general
idea of prompting an LLM to generate
performance predictions for DNN archi-
tectures. The prompts, which we call as
PP prompts, need to be carefully designed
to communicate the performance predic-
tion task precisely to the LLM. As shown
in Figure (I} PP prompts decompose the
task into four main components: role, in-
structions, hyperparameters, and demon-
strations, followed by the test architecture.
The role component contains the high-
level description of the role assigned to
the LLM, including the mention of down-
stream task (e.g., machine translation) and
performance metric (e.g., BLEU). The in-
structions component contains a set of five
instructions, which explain the details of
the downstream task, the DNN architec-

You are a performance estimator for machine translation task, where you will estimate the
BLEU score for the test architecture.

You should follow these instructions:

1. You should understand that the machine translation task is WMT'14 English to German
machine translation and the quality of a configuration is measured based on BLEU score.

2. Some examples for WMT'14 English to German machine translation are as follows:
Example 1:

Input: Resumption of the session

Output: Wiederaufnahme der Sitzungsperiode

Example Negy:

Input: Please rise, then, for this minute' s silence.

Output: Ich bitte Sie, sich zu einer Schweigeminute zu erheben.

3. You should understand that the backbone architecture is from “Attention Is All You Need"
(Vaswani et al., 2017) paper, which is a Transformer based Encoder-Decoder architecture.
We use the same hyperparameters and optimization algorithms.

4. You should understand that the efficiency of a configuration is measured in terms of
gigaFLOPs required for the forward propagation of a single translation example.

5. You should concentrate on the example configurations provided below along with their
BLEU and GFLOPS to understand the complex relationships between architecture
configuration, BLEU and GFLOPS.

Hyperparameters

Hyperparameter definition:

‘encoder-embed-dim-subtransformer' corresponds to encoder embedding dimension
‘encoder-layer-num-subtransformer' corresponds to number of encoder layers
‘encoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in encoder

—
Example 1:
encoder-embed-dim-subtransformer: 512
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [1024, 1024, 2048, 2048, 2048, 1024]

BLEU: 24.30
GFLOPS: 2.7

Example Nacn:

.

Test Architecture:

encoder-embed-dim-subtransformer: 640

encoder-layer-num-subtransformer: 6

encoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024, 2048, 1024]

BLEU:

Figure 1: Prompt template to prompt LLM to gener-
ate performance predictions for WMT’ 14 EN-DE task.

downstream task, and specify the type of The expanded version of the prompt template can be

the task (e.g., machine translation), dataset S¢€T 10 Appendix[A.2]

(e.g., WMT’ 14 En-De), performance metric (e.g. BLEU), and inputs/outputs (e.g., source/target lan-
guage) of ny, s examples from the dataset. The third instruction is specific to the DNN architecture,
which includes architecture backbone (e.g., Transformer), type (e.g., encoder-decoder) and a ref-
erence to the original DNN paper. The fourth instruction contains the details of efficiency metric
(e.g., GFLOPs), which will be included as part of demonstrations. The final instruction requires the
LLM to condition its generation on the complex relationships between architecture configuration,
performance, and efficiency metric. The third component of PP prompts, hyperparameters, contains
the definition of each hyperparameter, which is specific to the architecture. Demonstrations is the
final component which contains n,.., supervised examples for the PP task. Each supervised exam-
ple corresponds to an architecture sampled from the search space, with its hyperparameter values,
efficiency score, and TFS performance score.

ture, and model efficiency metrics. The
first two instructions are specific to the

5.1 EVALUATION SETUP

Downstream tasks. For downstream tasks, we follow existing research (Wang et al., |2020; Jawa-
har et al.l 2023ajb) and use the popular machine translation (MT) benchmarks: WMT’14 En-De,
WMT’ 14 En-Fr, and WMT’19 En-De. The statistics of these benchmarks can be seen in[A.4.1] We
use BLEU (Papineni et al., [2002b) as the performance metric.
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Figure 2: Training from scratch validation BLEU vs. performance predictor validation BLEU for
WMT benchmarks. Performance scores from the optimal predictor should lie on the diagonal (red
line). LLM-PP predicted performance scores are largely closer to the diagonal than other predictors.

Dataset WMT’14 En-De WMT’14 En-Fr WMT’19 En-De Average
Performance Predictor MAE Kendall MAE Kendall MAE Kendall MAE (|) Kendall (1)
Baseline

HAT 1.14 0.71 1.59 0.79 0.91 0.72 1.21 (0.00)  0.74 (0.02)
Supernet (Sandwich) 1.05 0.81 1.27 0.78 0.91 0.72 1.08 (0.00)  0.77 (0.02)
Layer-wise MoS 0.97 0.56 1.16 0.79 0.96 0.74 1.03 (0.01)  0.70 (0.04)
Neuron-wise MoS 0.87 0.79 1.18 0.87 0.87 0.67 0.97 (0.00) 0.78 (0.01)
LLM-PP

ChatGPT 0.42 0.52 0.82 0.61 0.72 0.56 0.65(0.12)  0.56 (0.04)
GPT-4 0.28 0.65 0.28 0.75 0.32 0.65 0.29 (0.00)  0.68 (0.03)
LLM-Distill-PP

ChatGPT 0.32 0.6 1.01 0.79 0.95 0.65 0.76 (0.09)  0.68 (0.00)
GPT-4 0.22 0.64 0.34 0.76 0.38 0.68 0.31(0.01)  0.69 (0.01)
LLM-PP GPT-4 Ablation

Demonstraions only 0.31 0.52 0.30 0.66 0.34 0.61 0.32(0.02)  0.60 (0.01)
+ Role + Hyperparameters 0.27 0.53 0.32 0.71 0.32 0.67 0.30 (0.01) 0.64 (0.03)
+ First instruction 0.26 0.60 0.34 0.68 0.34 0.58 0.31(0.02)  0.62 (0.00)
+ Second instruction 0.27 0.60 0.31 0.72 0.35 0.66 0.31 (0.01)  0.66 (0.02)
+ Third instruction 0.31 0.50 0.33 0.73 0.29 0.67 0.31(0.01)  0.63(0.02)
+ Fourth instruction 0.25 0.63 0.32 0.65 0.33 0.71 0.30(0.02)  0.66 (0.03)
+ Fifth instruction 0.28 0.65 0.28 0.75 0.32 0.65 0.29 (0.00)  0.68 (0.03)

Table 1: Average MAE and Kendall-Tau between the performance predictor performance and the
TES performance, across three different seeds. The standard deviation is enclosed in parenthesis.

DNN architecture. We use the Transformer-based Encoder-Decoder architecture (Vaswani et al.,
2017). The implementation and training settings as well as the search space (.A) are taken fromWang
et al.| (2020), which can be seen in[A.4.2] The evaluation dataset (TFS-Eval) is taken from Jawahar
et al. (2023b), which contains 30 architectures with their TFS performance scores for each WMT
dataset. We use the implementation from Wang et al.|(2020) to compute FLOPs, latency, and model
size of architectures.

Performance predictors. The baseline performance predictors are as follows: (i) HAT (Wang et al.,
2020), (ii) Supernet (Sandwich) (Jawahar et al.l [2023b) (HAT, with sandwich sampling instead of
SPOS), (iii) Layer-wise MoS (Jawahar et al.l 2023b)), and (iv) Neuron-wise MoS (Jawahar et al.,
2023b). We build two LLM-PP variants, which differ in the choice of LLM: (i) ChatGPT (OpenAlL
2023al) (GPT-3.5-turbo, June version) and (ii) GPT-4 (OpenAll 2023b)) (June version) from OpenAl
API. For PP prompts, we randomly sample: (i) 5 examples (n¢qsx = 5) from the downstream task
for the second instruction and (ii) 10 examples (n:4sx = 10) from TFS-eval for the demonstrations
component. The remaining 20 examples from TFS-eval will be used for reporting the predictor
quality. For all predictors, we repeat the experiments with three different seeds and report the average
MAE and Kendall-Tau between the predictor performance and the TFS performance.

5.2 RESULTS

LLM-PP predictions are closer to TFS performance scores than the baselines. Figure 2displays
the training from scratch (TFS) versus performance predictor validation BLEU for different WMT
benchmarks. The diagonal line (red line) corresponds to the perfect predictor, where the predicted
performance exactly matches the TFS score. The predictions from the supernet based predictors (i.e.,
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all non-LLM based ones) are clearly underestimates of the TFS performance for all architectures
across three benchmarks. On the other hand, LLM-PP predictions are largely closer to the diagonal
line, which showcases the high accuracy of LLM-PP.

LLM-PP achieves SOTA MAE, while being marginally worse than baselines in Kendall-Tau.
The first and the second major rows of Table |1| show the MAE and Kendall-Tau of baseline and
LLM-PP predictors. On average across datasets (last two columns), neuron-wise MoS is the best
baseline, with the lowest MAE and highest Kendall-Tau score. LLM-PP ChatGPT and LLM-PP
GPT-4 outperform Neuron-wise MoS in MAE, with LLM-PP GPT-4 achieving the SOTA MAE
score. LLM-PP falls behind baselines marginally in terms of Kendall-Tau. In[A.3] we inspect the
histogram of distance between the items in the discordant pairs in the gold ranking for Neuron-
wise MoS and LLM GPT-4. The discordant pairs of LLM-PP lie mostly around low gold ranking
distances region (like Neuron-wise MoS), which should not ideally have a big negative impact for PP
usecases (as seen in Section [7.3). The resulting CDF of gold ranking distances for discordant pairs
for LLM-PP GPT-4 and Neuron-wise MoS are very similar. These results show that PP prompts can
be used to design accurate performance predictors. Within LLM-PP, GPT-4 exceeds ChatGPT on
both metrics across datasets.

LLM-PP benefits from all the components of PP prompts. The last major row of Table [I| shows
the performance of ablating different components of PP prompts. LLM-PP’s superior average per-
formance stems from having all the PP prompt components together. Surprisingly, LLM-PP outper-
forms baselines in terms of MAE without any instructions (Demonstration only), which indicates the
remarkable ability of LLM to pick up the performance prediction task just based on demonstrations.
Although the MAE performance of different ablation variants is largely similar, the Kendall-Tau
performance is different across variants. The second instruction which introduces downstream task
specific examples and the fourth instruction which describes the efficiency metric are crucial for
achieving high Kendall-Tau for LLM-PP.

6 DISTILLATION OF LLM-PP

Although LLM-PP achieves higher quality in performance prediction, the cost of LLM-PP increases
linearly with the number of predictions. This cost can become exorbitant especially for high work-
load applications such as NAS, where the number of predictions is in several thousands. To illustrate
the cost, we can look at the cost of NAS run by HAT (Wang et al., [2020) for a latency constraint
on a given hardware, which requires evaluating roughly 3, 000 candidate architectures. The pricing
of GPT-4 is 0.03$ per 1K tokens, as of August 2023. Assuming PP prompts take roughly one-
third of 1K tokens, the estimated cost will be roughly 30$ (%:93£3000) for a single constraint on a
given hardware. The total number of search runs depends directly on the number of constraint types
(e.g., latency, memory, and FLOPs), values (e.g., 100ms, 200ms), and hardware (e.g., Nvidia A100,
Raspberry Pi). If the number of constraint types is three, each constraint takes five possible val-
ues and there are four target hardwares, the estimated cost will become as high as roughly 1, 800$
(w) per downstream task. To build a cost-effective LLM-PP, we propose LLM- Dlstlll-
PP, Whlch is trained on distilled outputs of LLM-PP. Specifically, LLM-Distill-PP is a multilayer
perceptron based regressor, which is trained as follows: (1) A distillation dataset for the PP task is
first created by sampling a few thousand architectures from the search space and recording the down-
stream task performance predicted by LLM-PP, (2) A regression model is trained using architecture-
specific hyperparameters as features and the distilled output as label. Once trained, LLM-Distill-PP
can be used to predict the performance of unseen architectures for the given downstream task. If the
number of distillation examples is small (e.g., 3, 000), the estimated cost to query LLM-PP will be
roughly 30$ (W). This one-time cost of LLM-Distill-PP is amortized across different con-
straint types, values, and hardwares (e.g., 60 search runs), thereby leading to 98.3% (from 1, 800$
to 30$) reduction in cost.

Setup. The feature vector (or encoding) of each architecture is detailed in[A.4.3] The hyperparam-
eters of LLM-Distill-PP’s regression model are borrowed from HAT’s latency predictor: 3 hidden
layers, 400 as hidden dimension, 128 as batch size, le-5 as learning rate, and 5000 as training steps.
For each downstream task, we use only 3000 architecture examples to distill from LLM-PP.

Results. LLM-Distill-PP’s results are shown in the third major row of Table[I] Despite the sim-
ple model design, LLM-Distill-PP can largely perform similarly or better than LLM-PP for both
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ChatGPT and GPT-4. For ChatGPT, LLM-Distill-PP improves over LLM-PP on average MAE and
Kendall-Tau by roughly 17%. For GPT-4, LLM-Distill-PP lags behind LLM-PP in average MAE by
7%, while enjoying similar Kendall-Tau. Impressively, LLM-Distill-PP achieves the SOTA MAE
for WMT’ 14 En-De task, with an improvement over LLM-PP by 20%. The improvements of LLM-
Distill-PP can be due to two factors. First is regularization, where LLM-Distill-PP’s simple model
design of using regression model of few layers outweighs the complicated modeling of LLM un-
derlying LLM-PP. Another regularization aspect is due to LLM-Distill-PP’s simplistic architecture-
specific features. The second factor is LLM-Distill-PP’s context specialization where few thousands
of examples are used to follow the task. On the other hand, LLM-PP has to rely only on the compo-
nents of PP prompt (including few demonstrations) and pretrained knowledge to follow the task.

7 LLM-DISTILL-PP FOR ARCHITECTURE SEARCH

Algorithm 1 Hybrid-Search algorithm for Neural Architecture Search (HS-NAS). Changes to
HAT (Wang et al.l 2020)’s search algorithm are in red color.

Input: LLM-Distill-PP model: 11m-distill-pp, Weight-sharing supernet: supernet,
Latency predictor: latency-predictor, #Search iterations: num-iterations, Popula-
tion size: population-size, #Parents: num-parents, #Mutations: num-mutations,
#Crossovers: num-crossover, Mutate probability: mutate-prob, Latency constraint:
latency-constraint, LLM-Distill-PP Start Iteration: 1lm-start—-iteration, LLM-
Distill-PP End Iteration: 11m-end-iteration

Output: best—-architecture

1: popu < population-size random samples from the search space // create init. population
2: for iter <+~ 1tonum-iterations do
3: /I generate parents by picking top candidate architectures

4: if llm-start-iteration < iter < llm-end-iteration then

5: parents < top ‘num-parents’ architectures from popu by 11lm-distill-pp
6: else

7: parents < top ‘num-parents’ architectures from popu by supernet

8: mutate-popu = {} // generate candidates via mutation

9: for mi < 1 to num-mutations do
10: gene < mutate a random example from popu with mutate-prob
11: if gene satisfies latency—constraint via latency-predictor then
12: mutate—-popu = mutate-popu U gene
13: crossover—popu = {} // generate candidates via cross-over

14: for ci + 1 tonum-crossover do

15: gene < crossover two random examples from popu
16: if gene satisfies latency—constraint via latency-predictor then
17: crossover—-popu = crossover—popu U gene

18: popu = parents Umutate-popu U crossover—popu // update population

19: return top architecture from popu

Given that LLM-Distill-PP can achieve high performance prediction quality while being cost-
effective, we study their application for a real world task: NAS. In NAS, performance predictors
are typically used to rank a set of candidate architectures to identify high-performing architectures.
As discussed in Section [2] existing NAS research for NLP primarily use weight-sharing supernet as
a performance predictor. Hence, we study the interesting research question: Can LLM-Distill-PP
speed up architecture search, while maintaining the efficiency and the quality of SOTA NAS? To this
end, we propose the Hybrid-Search algorithm for NAS (HS-NAS), which will be detailed now.

7.1 HYBRID-SEARCH ALGORITHM FOR NAS

The key idea behind HS-NAS algorithm is to use the LLM-Distill-PP for subset of the search it-
erations, while resorting to supernet for the rest of the iterations. In this work, we apply this
general idea on the evolutionary search algorithm proposed in HAT. The details of the HS-NAS
algorithm is shown in Algorithm [T} where the changes to HAT’s search algorithm are high-
lighted in red color. LLM-Distill-PP will be used as performance predictor for all the search it-
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Search Algorithm BLEU (1) Latency (ms) () GFLOPs(]/) Model Size (M) (])  Search Hours ()
WMT’14 En-De

HAT 27.9 102.0 3.0 64.4 1.09
Layer-wise MoS 27.8 100.4 3.08 64.4 1.45
Neuron-wise MoS 28.0 99.0 3.26 72.2 1.39
HS-NAS (GPT-4, HAT, 1, 15) 279 99.7 2.96 63.1 0.56
WMT’14 En-Fr

HAT 40.8 96.4 2.61 63.8 6.33
Layer-wise MoS 40.5 99.4 2.96 70.5 6.81
Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03
HS-NAS (GPT-4, HAT, 1, 15) 40.7 98.2 2.54 63.8 3.15
WMT’19 En-De

HAT 44.7 100.8 3 73.06 1.11
Layer-wise MoS 44.9 96.8 3.26 82.95 1.13
Neuron-wise MoS 44.9 1224 3.34 82.95 1.21
HS-NAS (GPT-4, HAT, 1, 15) 444 70.0 2.51 66.36 0.46

Table 2: HS-NAS versus SOTA NAS on three MT benchmarks for latency constraint of 100ms -
Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours.

Search Algorithm BLEU (1) Latency (ms) () GFLOPs(]/) Model Size (M) (J)  Search Hours ()
100ms

HAT 40.8 96.4 2.61 63.8 6.33
Layer-wise MoS 40.5 99.4 2.96 70.5 6.81
Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03
HS-NAS (GPT-4, HAT, 1, 15) 40.7 98.2 2.54 63.8 3.15
150ms

HAT 413 176.4 331 74.3 7.33
Layer-wise MoS 414 158.7 43 92.8 8.39
Neuron-wise MoS 414 200.2 4.26 92.8 8.35
HS-NAS (GPT-4, HAT, 1, 15) 414 172.6 331 74.3 3.69
200ms

HAT 41.5 187.5 3.7 79.5 7.8
Layer-wise MoS 414 205.6 4.49 99.4 8.63
Neuron-wise MoS 41.6 184.1 4.53 994 8.77
HS-NAS (GPT-4, HAT, 1, 15) 42.0 187.8 3.7 79.5 3.88

Table 3: HS-NAS versus SOTA NAS on WMT’14 En-Fr for different latency constraints - Test
BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours.

erations in between 11lm-start-iteration and 1lm-end-iteration. In rest of the it-
erations, supernet will be used as performance predictor. When 11lm-start-iteration=1
and llm-end-iteration=num-iterations, HS-NAS uses LLM-Distill-PP as perfor-
mance predictor for all the search iterations. @~ When llm-start-iteration=-1 and
llm-end-iteration=-1, HS-NAS applies supernet as performance predictor for all the search
iterations, which is exactly HAT’s original search algorithm. HS-NAS comes with four arguments:
(11lm-distill-pp, supernet, llm-start-iteration, l1lm-end-iteration).

7.2 SEARCH AND EVALUATION SETUP

For all our search experiments, we use LLM-Distill-PP GPT-4 as 1lm-distill-pp
due to its superior performance over the ChatGPT counterpart (see the third ma-
jor row in Table [I). The hyperparameters of HS-NAS’s search algorithm are taken
from HAT: num-iterations=30, population-size=125, num-parents=25,
num-mutations=50, num-crossover=50, and mutate-prob=0.3. We exper-
iment with three latency-constraints: 100ms, 150ms, and 200ms. We use the
latency-predictor and supernet from HAT. Once the search returns the best architecture,
the final weights for this architecture is obtained by training the architecture from scratch to
convergence using HAT’s training settings (see[A.4.2)). The details of the target hardware, efficiency
metric for search (search hours), and architecture (latency, GFLOPs, model size) can be seen in@
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Search Algorithm BLEU (1) Latency (ms) ({) GFLOPs ({) Model Size (M) ({,) Search Hours (|)
HAT 27.9 102.0 3.0 64.4 1.09
HS-NAS (GPT-4, HAT, 1, 30) 27.5 99.3 3.34 72.2 0.04
HS-NAS (GPT-4, HAT, 1, 5) 27.4 100.4 2.96 63.1 0.97
HS-NAS (GPT-4, HAT, 25, 30) 28.0 119.1 3.18 70.9 0.95
HS-NAS (GPT-4, HAT, 1, 15) 27.9 99.7 2.96 63.1 0.56
HS-NAS (GPT-4, HAT, 16, 30) 27.6 101.7 3.34 722 0.75
HS-NAS (GPT-4, HAT, 1, 25) 27.7 98.9 3.01 63.1 0.23

Table 4: HS-NAS versus HAT on WMT’ 14 En-De for latency constraint: 100ms - Test BLEU,
latency in milliseconds, GFLOPs, model size in millions, and search hours.

7.3 RESULTS

Varying benchmarks. HS-NAS performs largely similar to SOTA across benchmarks, reduces
search hours by ~50% and in some cases, improves latency, GFLOPs, and model size. This trend
is evident from Table @] that shows the comparison of HS-NAS (GPT-4 as LLM-Distill-PP, HAT as
supernet, 1 as LLM start iteration, 15 as LLM end iteration) and SOTA NAS for latency constraint
of 100ms. This trend highlights that LLMs are good initializers for architecture search.

Varying latency constraints. HS-NAS’s trend largely holds true across different latency con-
straints. Table [3| shows the comparison of the HS-NAS recipe (GPT-4, HAT, 1, 15) against SOTA
NAS for various latency constraints: 100ms, 150ms, and 200ms. Besides reducing the search hours
by 50%, HS-NAS achieves similar or better GFLOPs and same model size compared to SOTA NAS.

Varying start and end iteration pairs. Among different start and end iteration pairs, HS-NAS that
uses LLM-Distill-PP GPT-4 for first 50% of iterations and HAT supernet for the rest, performs sim-
ilarly or improves over HAT on all metrics. Table ] shows the results of HS-NAS for various start
and end iteration pairs. Using LLM-Distill-PP for all search iterations achieves lower performance,
which indicates that marginal degradation in Kendall-Tau prevents LLM-Distill-PP from fully han-
dling the search. These trends highlights that predictor having SOTA MAE scores seems useful for
the first part of search, while predictor having SOTA Kendall-Tau seems useful for the rest of search.

Varying initialization seeds, FLOPs constraints, underlying supernet. HS-NAS seems robust to
initialization effects caused by different seeds, achieving largely similar numbers on all metrics. This
result is detailed in[A.6.1} HS-NAS performs similarly to HAT for different FLOPs constraints, with
at least 16% reduction in search hours, 1.2% improvement in latency, same GFLOPs and same model
size. These trends largely hold true across benchmarks as well, as detailed in[A.6.2] The dominance
of HS-NAS seems consistent across the underlying supernet (second argument), as detailed in[A.6.3]

Trivially constructed efficient adaptations of SOTA Search hours can be trivially reduced in sev-
eral ways: halving the total number of search iterations and/or using distilled SOTA predictor instead
of using supernet predictor directly. While these adaptations lead to a big drop in BLEU perfor-
mance (1.8% for HAT (num—iter.=15)) or a big increase in latency and GFLOPs (9.7% and 32%
respectively for Distilled HAT (num-iter.=15)), HS-NAS dominates these adaptions in search
hour reductions, while maintaining SOTA performance and not degrading on any footprint metric,

as detailed in

Putting all the observed trends of HS-NAS together, we find that the generality of HS-NAS extends
to constraint types (latency, FLOPs), constraint values (different latencies, different FLOPs), differ-
ent tasks (MT benchmarks), and underlying supernet (HAT, Neuron-wise MoS), while being robust
to initialization effects.

8 CONCLUSION

In this work, we showed that LLM can be used to design accurate, cost-effective performance pre-
dictor, which also benefits neural architecture search. Our work contributes to the growing area of
research in using LLM for NAS, with a new direction on building performance predictor. Future
NAS research should explore the full potential of LLM by studying the application of LLM for
candidate architecture generation and performance prediction jointly.
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Dataset Year Source Lang Target Lang #Train #valid  #Test

WMT 2014  English (en) German (de) 4.5M 3000 3000
WMT 2019  English (en) German (de) 43M 2900 2900
WMT 2014  English (en) French (fr) 35M 26000 26000

Table 5: Statistics - Machine translation benchmark.

A APPENDIX

A.1 RELATED WORK - EXTENDED

LLMs. LLMs can be classified into two categories based on their training methods: founda-
tion and instruction-tuned LLMs. Foundation LLMs, which includes GPT-3 (Brown et al., [2020),
GLaM (Du et al., [2022)), LLaMA-1 (Touvron et al., 2023a), undergo language model training on
unannotated corpus from the web. These LLMs typically encode a lot of useful knowledge in their
parameters and can be used for a downstream task by either fine-tuning or zero/few-shot prompt-
ing. Instruction-tuned LLMs are usually foundation LLMs that undergo instruction-tuning, where
LLMs are explicitly fine-tuned to follow user defined instructions well. Such LLMs include Instruct-
GPT (Ouyang et al., 2022), ChatGPT (OpenAl, 2023a), GPT-4 (OpenAl, 2023b), LLaMA-2 (Tou-
vron et al.,[2023b), and PaLM-2 (Anil et al.,[2023)). In practice, instruction-tuned LLMs can follow
a wide range of user’s instructions, even those that are outside the instruction tuning data distribu-
tion (Ouyang et al.| [2022)). However, depending on the task, instruction-tuned LLLMs are prone to
generating content that are factually incorrect, hallucinated, ignores user’s instruction, toxic, and so
on (Ouyang et al.l [2022). These challenges make the current SOTA LLMs unreliable for critical
applications such as medical diagnosis (Singhal et al., 2022).

Distilling LLMs. Distilling the generations from LLMs to smaller student models has become
commonplace in NLP these days (Taori et al., 2023} |Chiang et al., 2023} Wu et al., 2023; Mukherjee
et al.,[2023)). The key motivations for such efforts include: (i) cost reduction: most LLMs are either
behind a paywall or require high-end GPUs (e.g., NVIDIA A100) with high GPU memory (e.g.,
80GB) to use, (ii) latency reduction: most LLMs are too slow even on high-end hardware (e.g., OPT-
175B takes 4s for decoding 16 sequences of length 1024 on 8 NVIDIA A100 80GB GPUs (Xiao
et al} [2022)), and (iii) customization: most LLMs are general purpose and are difficult to finetune.
The commonly used distillation technique is sequence level knowledge distillation (Kim & Rush,
2016), where the student models are finetuned on responses from teacher LLMs via a standard
language modeling objective.

A.2 PROMPT TEMPLATE - EXPANDED VERSION

The expanded version of the prompt template can be seen in Figure 3]

A.3 KENDALL-TAU - FINE-GRAINED ANALYSIS

We perform a fine-grained analysis of Kendall-Tau performance for Neuron-wise MoS and LLM-
PP GPT-4. In figure @ we plot the histogram of distance between the items in the discordant pairs
in the gold ranking for Neuron-wise MoS and LLM GPT-4 across three MT benchmarks. The
discordant pairs of LLM-PP lie mostly around low gold ranking distances region (like Neuron-wise
MoS), which should not ideally have a big negative impact for the NAS task. In figure 5} we plot
the corresponding cummulative distribution function (CDF). The CDF of gold ranking distances for
discordant pairs for LLM-PP GPT-4 and Neuron-wise MoS are very similar.

A.4 MACHINE TRANSLATION DETAILS
A.4.1 MACHINE TRANSLATION - DATASET STATISTICS

The statistics of the MT benchmarks is shown in Table
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— ~

You are a performance estimator for machine translation task, where you will estimate the
BLEU score for the test architecture. )

— T ~

You should follow these instructions:

1. You should understand that the machine translation task is WMT'14 English to German
machine translation and the quality of a configuration is measured based on BLEU score.

2. Some examples for WMT'14 English to German machine translation are as follows:
Example 1:

Input: Resumption of the session

Output: Wiederaufnahme der Sitzungsperiode

Example ngek:

Input: Please rise, then, for this minute' s silence.

Output: Ich bitte Sie, sich zu einer Schweigeminute zu erheben.

3. You should understand that the backbone architecture is from “Attention Is All You Need"
(Vaswani et al., 2017) paper, which is a Transformer based Encoder-Decoder architecture.
We use the same hyperparameters and optimization algorithms.

4. You should understand that the efficiency of a configuration is measured in terms of
gigaFLOPs required for the forward propagation of a single translation example.

5. You should concentrate on the example configurations provided below along with their
BLEU and GFLOPS to understand the complex relationships between architecture

\conflguratlon, BLEU and GFLOPS. )

Hyperparameters ™

Hyperparameter definition:

‘encoder-embed-dim-subtransformer' corresponds to encoder embedding dimension
‘encoder-layer-num-subtransformer' corresponds to number of encoder layers
‘encoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in encoder

‘encoder-self-attention-heads-all-subtransformer’ correspond to number of self attention
heads in each encoder layer

‘decoder-embed-dim-subtransformer' corresponds to decoder embedding dimension
‘decoder-layer-num-subtransformer' corresponds to number of decoder layers
’decoder-ffn-embed-dim-all-subtransformer' correspond to embedding dimension of each FFN
layer in decoder

‘decoder-self-attention-heads-all-subtransformer’ correspond to number of self attention
heads in each decoder layer

‘decoder-ende-attention-heads-all-subtransformer' correspond to number of cross attention
heads in each decoder layer

‘decoder-arbitrary-ende-attn-all-subtransformer' correspond to number of encoder layers
attended by cross-attention heads in each decoder layer (-1 means only attend to the last
layer; 1 means attend to last two layers, 2 means attend to last three layers) )

—

Example 1:

encoder-embed-dim-subtransformer: 512
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [1024, 1024, 2048, 2048, 2048, 1024]
encoder-self-attention-heads-all-subtransformer: [4, 8, 8, 8, 4, 4]
decoder-embed-dim-subtransformer: 512
decoder-layer-num-subtransformer: 4
decoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024]
decoder-self-attention-heads-all-subtransformer: [4, 4, 8, 4]
decoder-ende-attention-heads-all-subtransformer: [4, 8, 8, 8]
decoder-arbitrary-ende-attn-all-subtransformer: [-1, -1, 1, -1]

BLEU: 24.30

GFLOPS: 2.7

Example ngcn:

— R ~

Test Architecture:

encoder-embed-dim-subtransformer: 640
encoder-layer-num-subtransformer: 6
encoder-ffn-embed-dim-all-subtransformer: [2048, 1024, 1024, 1024, 2048, 1024]
encoder-self-attention-heads-all-subtransformer: [4, 8, 8, 4, 4, 4]
decoder-embed-dim-subtransformer: 512
decoder-layer-num-subtransformer: 3
decoder-ffn-embed-dim-all-subtransformer: [1024, 2048, 2048]
decoder-self-attention-heads-all-subtransformer: [8, 8, 8]
decoder-ende-attention-heads-all-subtransformer: [8, 4, 4]
decoder-arbitrary-ende-attn-all-subtransformer: [-1, 1, 1]

BLEU:

/)

Figure 3: Prompt template to prompt LLM to generate performance predictions for WMT’ 14 EN-
DE task.

15



Under review as a conference paper at ICLR 2024

Frequency
N W & o o

—

o
~

v
=

S
[l

S

Frequency
)

Frequency
N
~

—
—-

6 7 8

2 3 4 5
Gold Ranking Distance

5

2 3 4 2 3 4 5 6 7
Gold Ranking Distance Gold Ranking Distance

(a) Neur. MoS - WMT’14 En-De  (b) Neur. MoS - WMT’ 14 En-Fr (c) Neur. MoS - WMT’19 En-De

Frequency
N W s >

—-

N
o

&

w
S

w

~
Frequency

Frequency
~

—
—

8

5

2 3 4 5 6 1 2 3 [ 2 4 6 8
Gold Ranking Distance Gold Ranking Distance Gold Ranking Distance

(d) LLM GPT-4 - WMT 14 En-De  (e) LLM GPT-4 - WMT 14 En-Fr  (f) LLM GPT-4 - WMT’19 En-De

Figure 4: Histogram of distance between the items in the discordant pairs in the gold ranking for
Neuron-wise MoS and LLM GPT-4 across three MT benchmarks. The discordant pairs of LLM-
PP lie mostly around low gold ranking distances region (like Neuron-wise MoS), which should not
ideally have a big negative impact for the NAS task.

A.4.2 MACHINE TRANSLATION - TRAINING DETAILS AND SEARCH SPACE

Settings for training machine translation model include: 40K training steps, a cosine learning rate
scheduler, Adam optimizer, and a warmup of learning rate from 10~7 to 10~3 with cosine annealing.
The validation loss is used for model selection. The beam size is four with length penalty of 0.6.

The search space (A) is borrowed from HAT 2020), which is also shown in Table|[6}

A.4.3 ARCHITECTURE ENCODING

Each machine translation architecture is encoded using a list of following 10 values:

1. Encoder embedding dimension corresponds to embedding dimension of the encoder.
. Encoder #layers corresponds to number of encoder layers.

3. Average encoder FFN. intermediate dimension corresponds to average of FFN intermediate

dimension across encoder layers.

. Average encoder self attention heads corresponds to average of number of self attention

heads across encoder layers.

5. Decoder embedding dimension corresponds to embedding dimension of the decoder.
. Decoder #Layers corresponds to number of decoder layers.

7. Average Decoder FFN. Intermediate Dimension corresponds to average of FFN intermedi-

ate dimension across decoder layers.

. Average decoder self attention heads corresponds to average of number of self attention

heads across decoder layers.

. Average decoder cross attention heads corresponds to average of number of cross attention

heads across decoder layers.
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Figure 5: Cummulative distribution function of distance between the items in the discordant pairs
in the gold ranking for Neuron-wise MoS and LLM GPT-4 across three MT benchmarks. The
cummulative distribution function of gold ranking distances for discordant pairs for LLM-PP GPT-4
and Neuron-wise MoS are very similar.

Hyperparameter Attribute

Value choices

Encoder-Embedding-Dim {512, 640}
Decoder-Embedding-Dim {512, 640}
#Encoder-Layers {6}
#Decoder-Layers {1,2,3,4,5,6}
Encoder-QKV-Dim {512}
Decoder-QKV-Dim {512}
#Encoder-Self-Attention-Heads (PL) {4, 8}
#Decoder-Self-Attention-Heads (PL) {4, 8}
#Decoder-Cross-Attention-Heads (PL) {4,8}
#Decoder-Arbitrary-Attention (PL) {-1,1,2}

Encoder-FFN-Intermediate-Embed-Dim (PL)
Decoder-FFN-Intermediate-Embed-Dim (PL)

{1024, 2048, 3072}
{1024, 2048, 3072}

Table 6: Search space (A), borrowed from HAT (Wang et al.,[2020). ‘PL’ refers to hyperparameters

that vary per layer.

10. Average arbitrary encoder decoder attention corresponds to average number of encoder
layers attended by cross-attention heads in each decoder layer (-1 means only attend to the
last layer, 1 means attend to the last two layers, 2 means attend to the last three layers).

A.5 SEARCH AND EVALUATION SETUP - DETAILS

The target hardware for search is NVIDIA V100 GPU with 32GB GPU RAM. The efficiency metric
for search is search hours, which accounts for the time taken to complete all the search iterations.
We focus on the following architecture-specific efficiency metrics: (i) latency - time taken in mil-
liseconds to encode a sentence in source language and generate the translation in target language,
(i) GFLOPs - gigaFLOPs taken for the feedforward propagation, and (iii) model size - number of
architecture-specific parameters in millions. Scripts to compute these metrics are taken from HAT’s
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Seed BLEU (1) Latency (ms) ({) GFLOPs (]) Model Size (M) ({) Search Hours ()

100ms
1 40.7 104.1 2.54 63.8 3.14
2 40.7 98.2 2.54 63.8 3.15
3 40.7 101.2 2.58 63.8 3.16
150ms
1 41.5 160.4 3.35 74.3 3.89
2 414 172.6 3.31 74.3 3.69
3 41.5 158.5 3.35 74.3 3.84

Table 7: Initialization effects of HS-NAS (GPT-4, HAT, 1, 15) on WMT’14 En-Fr for different la-
tency constraints - Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search
hours. HS-NAS seems robust to initialization effects, achieving similar numbers on all metrics of
interest.

Search BLEU (1) Latency (ms) ({) GFLOPs () Model Size (M) ({) Search Hours (|)
2.5 GFLOPs
HAT 26.9 69.5 247 41.0 2.54
HS-NAS 26.7 68.6 247 41.0 2.13
3.0 GFLOPs
HAT 27.5 1254 2.98 494 2.08
HS-NAS 27.6 1239 2.98 494 1.51

Table 8: HS-NAS (GPT-4, HAT, 1, 15) vs. HAT on WMT’ 14 En-De for different FLOPs constraints
- Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS
(GPT-4, HAT, 1, 15) performs similarly to HAT, with at least 16% reduction in search hours, 1.2%
improvement in latency, same GFLOPs and same model size.

codebase E] and we refer readers to the HAT paper for more details about how these metrics are
computed.

A.6 LLM-DISTILL-PP - EXTENDED RESULTS
A.6.1 VARYING INITIALIZATION SEEDS.

HS-NAS seems robust to initialization effects caused by different seeds, achieving largely similar
numbers on all metrics. This result is shown in Table [/] where latency numbers change slightly
while numbers for other metrics are almost the same.

A.6.2 VARYING FLOPS CONSTRAINTS.

HS-NAS performs similarly to HAT for different FLOPs constraints, with at least 16% reduction in
search hours, 1.2% improvement in latency, same GFLOPs and same model size. Table B] contains
these superior results of HS-NAS across 2.5 and 3.0 GFLOPs constraints. These trends largely hold
true across benchmarks as well, as shown in Table[9]

A.6.3 VARYING UNDERLYING SUPERNET.

The dominance of HS-NAS seems consistent across the underlying supernet. In the results so far,
HAT is the supernet used by HS-NAS. In Table [I0] we replace HAT with Neuron-wise MoS and
show that HS-NAS performs similarly to Neuron-wise MoS, with at least 50% reduction in search
hours, better or similar model size and GFLOPs.

A.6.4 TRIVIALLY CONSTRUCTED EFFICIENT ADAPTATIONS OF SOTA

Search hours can be trivially reduced in several ways: halving the total number of search itera-
tions and/or using distilled SOTA predictor instead of using supernet predictor directly. As shown

https://github.com/mit-han-lab/hardware-aware—transformers
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Search BLEU (1) Latency (ms) ({) GFLOPs (]) Model Size (M) () Search Hours (])
WMT’14 En-De
HAT 27.5 125.4 2.98 494 2.08
HS-NAS 27.6 (+04%) 1239 (-1.2%) 2.98 494 1.51 (-27.4%)
WMT’14 En-Fr
HAT 39.4 69.6 2.99 49.1 6.69
HS-NAS 39.8 (+1%) 96.8 (+39.1%) 3 49.1 4.2 (-37.2%)
WMT’19 En-De
HAT 429 85.5 2.99 49.6 2.35
HS-NAS 43.1 (+0.5%)  71.9 (+15.9%) 2.99 49.6 2.03 (-13.6%)

Table 9: HS-NAS (GPT-4, HAT, 1, 15) vs. HAT across benchmarks for 3.0 GFLOPs constraint -
Test BLEU, latency in milliseconds, GFLOPs, model size in millions, and search hours. HS-NAS
(GPT-4, HAT, 1, 15) performs similarly or better than HAT, with at least 13% reduction in search
hours, at least 1.2% improvement in latency (in most cases), same GFLOPs, and same model size.

Search BLEU (1) Latency (ms) () GFLOPs ({) Model Size (M) ({) Search Hours (])
100ms

Neuron-wise MoS 40.9 97.6 3.13 70.5 7.03

HS-NAS (GPT-4, Neur., 1, 15)  40.9 126.9 (+30%) 3.13 70.5 3.36 (-52.2%)
150ms

Neuron-wise MoS 41.4 200.2 4.26 92.8 8.35

HS-NAS (GPT-4, Neur., 1, 15)  41.3 (-0.2%) 162.2 (19.0%) 4.22 (-0.9%) 91.5 (1.4%) 4.14 (-50.4%)
200ms

Neuron-wise MoS 41.6 184.1 4.53 994 8.77

HS-NAS (GPT-4, Neur., 1, 15)  41.7 (+0.2%) 191.2 (+3.9%) 4.53 99.4 4.22 (-51.8%)

Table 10: HS-NAS (GPT-4, Neuron-wise MoS, 1, 15) versus SOTA NAS on WMT’ 14 En-Fr for
different latency constraints - Test BLEU, latency in milliseconds, GFLOPs, model size in millions,
and search hours. HS-NAS is accompanied by four arguments: (L1m-distill-pp, supernet,
llm-start—-iteration, l1lm-end-iteration ). Across latency constraints, HS-NAS per-
forms similarly or improves upon SOTA NAS, with at least 50% reduction in search hours, better or
similar model size and GFLOPs.
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Search BLEU (1) Latency (ms) ({) GFLOPs (|) Model Size (M) ({) Search Hours (])
HAT (num-iter.=30) 279 102.0 3.0 64.4 1.09

HAT (num-iter.=15) 274 (-1.8%)  107.6 (+5.5%) 2.96 (-1.3%)  63.1(-2%) 0.65 (-40.4%)
Distilled HAT (num-iter.=15)  27.8(-04%) 111.9 (+9.7%) 3.97 (+32%) 63.1 (-2%) 0.58 (-46.8%)
HS-NAS (GPT-4, HAT, 1, 15) 279 99.7 (-2.3%) 296 (-1.3%)  63.1(-2%) 0.56 (-48.6%)

Table 11: HS-NAS versus trivial efficient adaptations of SOTA with half of the original search iter-
ations (original num—iterations = 30): original SOTA, distilled SOTA on WMT’ 14 En-De for
100ms latency constraint - Test BLEU, latency in milliseconds, GFLOPs, model size in millions,
and search hours. HS-NAS is accompanied by four arguments: (11m-distill-pp, supernet,
llm-start-iteration, llm-end-iteration). Efficient adaptations of SOTA reduce
search hours by at least 40%, at the expense of either a big drop in BLEU performance (1.8%
for HAT (num-iter.=15) ) or big increase in latency and GFLOPs (9.7% and 32% respectively
for Distilled HAT (num-iter.=15)). On the other hand, HS-NAS dominates these adaptions in
search hour reductions, while maintaing the performance of SOTA and not degrading on any foot-
print metric.

in Table [[1] the former approach suffers from a big drop in BLEU performance (1.8% for HAT
(num-iter.=15)), while the latter approach suffers from a big increase in latency and GFLOPs
(9.7% and 32% respectively for Distilled HAT (num-iter.=15)). On the other hand, HS-NAS
dominates these adaptions in search hour reductions, while maintaining the performance of SOTA
and not degrading on any footprint metric.
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