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Abstract: Multi-object state estimation is a fundamental problem for robotic ap-
plications where a robot must interact with other moving objects. Typically, other
objects’ relevant state features are not directly observable, and must instead be
inferred from observations. Particle filtering can perform such inference given
approximate transition and observation models. However, these models are often
unknown a priori, yielding a difficult parameter estimation problem since obser-
vations jointly carry transition and observation noise. In this work, we consider
learning maximum-likelihood parameters using particle methods. Recent meth-
ods addressing this problem typically differentiate through time in a particle filter,
which requires workarounds to the non-differentiable resampling step, that yield
biased or high variance gradient estimates. By contrast, we exploit Fisher’s iden-
tity to obtain a particle-based approximation of the score function (the gradient of
the log likelihood) that yields a low variance estimate while only requiring step-
wise differentiation through the transition and observation models. We apply our
method to real data collected from autonomous vehicles (AVs) and show that it
learns better models than existing techniques and is more stable in training, yield-
ing an effective smoother for tracking the trajectories of vehicles around an AV.

Keywords: Autonomous Driving, Particle Filtering, Self-supervised Learning

1 Introduction

Multi-object state estimation is a fundamental problem in settings where a robot must interact with
other moving objects, since their state is directly relevant for decision making. Typically, other
objects’ relevant state features are not directly observable. Instead, the robot must infer them from
a stream of observations it receives via a perception system. For example, an autonomous vehicle
(AV) selects actions based on the state of nearby road users. However, such road users are only
partially observed, owing to limited field of view, occlusions, and imperfections in the AV’s sensors
and perception systems. Such partial observability negatively affects many downstream tasks in a
robot’s behavioural stack that depend on observations, e.g., action planning.

Addressing partial observability requires sequential state estimation, to which Bayesian filtering of-
fers a generic probabilistic approach. In particular, sequential Monte Carlo methods, also known as
particle filtering, have been successfully applied to state estimation in many robotics applications [1].
However, Bayesian filters require models that reasonably approximate the transition and observation
models of a state-space model (SSM). In some special cases, these models can be derived analyti-
cally from first principles, e.g., when the physical dynamics are well understood, or by modeling a
sensor’s physical characteristics. In many real-world applications, however, these models cannot be
specified analytically. For example, the transition model may encode complicated motion dynamics
and environmental physics. In multi-agent settings, other agents’ behaviour must also be modelled.

*These authors contributed equally to this work.
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Modelling observations is also difficult. Modern perception systems often involve multiple stages
and combine information from multiple sensors, making observation models practically impossible
to specify by hand. By contrast, collecting observations from a robotic system is relatively easy and
cheap. We are interested, therefore, in algorithms that can leverage such observations to learn tran-
sition and observation models in a self-supervised fashion, and yield an effective particle smoother.
Learned transition and observation models can also be independently useful for other applications,
such as the evaluation of AVs by simulating realistic observations.

In this work, we propose Particle Filtering-Based Score Estimation using Fisher’s Identity (PF-
SEFI), a method for jointly learning maximum-likelihood parameters of both the transition and
observation models, that is applicable to a wide class of SSMs. Unlike many recently proposed
methods [2, 3, 4, 5, 6, 7], our approach avoids differentiable approximations of the resampling step.
We achieve this by revisiting a methodology originally proposed in statistics [8, 9] that relies on a
particle approximation of the score, i.e., the gradient of the log likelihood of observation sequences,
obtained through Fisher’s identity. This only requires differentiating through the transition and
observation models. Unfortunately, a direct particle approximation of this identity provides a high
variance estimate of the score. While [8] propose an alternative low variance estimate, it admits a
O(N2) cost, where N is the number of particles. Furthermore, these methods compute and store
the gradient of the marginal log-likelihood with respect to model parameters for each particle. This
requires computing Jacobian matrices, which are slow to compute using automatic differentiation
tools such as TensorFlow and PyTorch [10, 11] which rely on Jacobian-vector products. This makes
these methods impractical for large models. By contrast, PF-SEFI is a simple scalable O(N) variant
with only negligible bias. PF-SEFI marginalises over particles before computing gradients, allowing
automatic differentiation tools to make use of efficient Jacobian-vector product operations, making it
significantly faster and allowing us to scale to larger models. To the best of our knowledge, previous
particle methods estimating the score have been limited to SSMs with few parameters, whereas we
apply PF-SEFI to neural network models with thousands of parameters.

We apply PF-SEFI to jointly learn transition and observation models for tracking multiple objects
around an AV, using a large set of noisy trajectories, containing almost 10 hours of road-user tra-
jectories observed by an AV. We show that PF-SEFI learns an SSM that yields an effective object
tracker as measured by average displacement and yaw errors. We compare the learned observation
model to one trained through supervised learning on a dataset of manually labelled trajectories, and
show that PF-SEFI yields a better model (as measured by log-likelihood on ground-truth labels)
even though it requires no labels for training. Finally, we compare PF-SEFI to a number of existing
particle methods for jointly learning transition and observation models and show that it learns better
models and is more stable to train.

2 Related Work

Particle filters are widely used for state estimation in non-linear non-Gaussian SSMs where no closed
form solution is available; see e.g., [12] for a survey. The original bootstrap particle filter [13] sam-
ples at each time step using the transition density particles that are then reweighted according to
their conditional likelihood, which measures their “fitness” w.r.t. to the available observation. Parti-
cles with low weights are then eliminated while particles with high weights are replicated to focus
computational efforts into regions of high probability mass. Compared to many newer methods,
such as the auxiliary particle filter [14], the bootstrap particle filter only requires sampling from the
transition density, not its evaluation at arbitrary values, which is not possible for the compositional
transition density used in this work.

In most practical applications, the SSM has unknown parameters that must be estimated together
with the latent state posterior (see [9] for a review). Simply extending the latent space to include
the unknown parameters suffers from insufficient parameter space exploration [15]. While particle
filters can estimate consistently the likelihood for fixed model parameters, a core challenge is that the
such estimated likelihood function is discontinuous in the model parameters due to the resampling
step, hence complicating its optimization; see e.g. [6, Figure 1] for an illustration.

Instead, the score vector can be computed using Fisher’s identity [8]. However, as shown in [8],
performance degrades quickly for longer sequences if a standard particle filter is used, due to the
path degeneracy problem: repeated resampling of particles and their ancestors will leave few or even
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just one remaining ancestor path for earlier timesteps, resulting in unbiased, but very high variance
estimates. Methods for overcoming this limitation exist [8, 16, 17], but with requirements making
them unsuitable in this work. Poyiadjis et al. [8] store gradients separately for each particle, making
this approach infeasible for all but the smallest neural networks. Ścibior and Wood [17] propose
an improved implementation with lower memory requirements by smartly using automatic differen-
tiation. However, their approach still requires storing a computation graph whose size scales with
O(N2) as the transition density for each particle pair must be evaluated during the forward pass.
Both previous methods’ computational complexity also scales quadratically with the number of par-
ticles, N , which is problematic for costly gradient backpropagation through large neural networks.
Lastly, Olsson and Westerborn [16] require evaluation of the transition density for arbitrary values,
which our compositional transition model does not allow. Instead, in this work, we show that fixed-
lag smoothing [18, 19] is a viable alternative to compute the score function of large neural network
models in the context of extended object tracking.

There is extensive literature on combining particle filters with learning complex models such as
neural networks [2, 3, 4, 5, 6, 20, 21, 22, 23, 24]. In contrast to our work, they make use of a
learned, data-dependent proposal distribution. However, for parameter estimation, they rely on dif-
ferentiation of an estimated lower bound (ELBO). Due to the non-differentiable resampling step,
this gradient estimation has either extremely high variance or is biased if the high variance terms
are simply dropped, as in [2, 3, 4]. As we show in Section 5, this degrades performance noticeably.
A second line of work proposes soft resampling [5, 20, 21], which interpolates between regular
and uniform sampling, thereby allowing to trade off variance reduction through resampling with
the bias introduced by ignoring the non-differentiable component of resampling. Lastly, Corenflos
et al. [6] make the resampling step differentiable by using entropy-regularized optimal transport,
also inducing bias and a O(N2) cost.

Extended object tracking [25] considers how to track objects which, in contrast to “small” objects
[26], generate multiple sensor measurements per timestep. Unlike in our work, transition and mea-
surement models are assumed to be known or to depend on only a few learnable parameters. Similar
to our work, the measurement model proposed in [27] assumes measurement sources lying on a
rectangular shape. However, our model is more flexible, for example, allowing non-zero probability
on all four sides simultaneously.

3 State-Space Models and Particle Filtering

3.1 State-Space Models

A SSM is a partially observed discrete-time Markov process with initial density, x0 ⇠ µ(·), transi-
tion density xt|xt�1 ⇠ f✓(·|xt�1), and observation density yt|xt ⇠ g✓(·|xt), where xt is the latent
state at time t and yt the corresponding observation. The joint density of x0:T , y0:T satisfies:

p✓(x0:T , y0:T ) = µ(x0)g✓(y0|x0)
TY

t=1

f✓(xt|xt�1)g✓(yt|xt). (1)

Given this model, we are typically interested in inferring the states from the data by
computing the filtering and one-step ahead prediction distributions, {p(xt|y0:t)}t20,...,T

and {p(xt+1|y0:t)}t20,...,T�1 respectively, and more generally the joint distributions
{p(x0:t|y0:t)}t20,...,T satisfying

p✓(x0:t|y0:t) =
p✓(x0:t, y0:t)

p✓(y0:t)
, p✓(y0:T ) =

Z
p✓(x0:T , y0:T )dx0:T . (2)

Additionally, to estimate parameters, we would also like to compute the marginal log likelihood:

`T (✓) = log p✓(y0:T ) = log p✓(y0) +
TX

t=1

log p✓(yt|y0:t�1), (3)

where p✓(y0) =
R
g✓(y0|x0)µ(x0)dx0 and p✓(yt|y0:t�1) =

R
g✓(yt|xt)p✓(xt|y0:t�1)dxt for t � 1.

For non-linear non-Gaussian SSMs, these posterior distributions and the corresponding marginal
likelihood cannot be computed in closed form.
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3.2 Particle Filtering

Particle methods provide non-parametric and consistent approximations of these quantities. They
rely on the combination of importance sampling and resampling steps of a set of N weighted parti-
cles (xi

t, w
i
t), where xi

t denotes the values of the ith particle at time t and wi
t is corresponding weight

satisfying
PN

i=1 w
i
t = 1. We focus on the bootstrap particle filter, shown in Algorithm 1, which

samples particles according to the transition density. Let k ⇠ Cat(↵1, ...,↵N ) denote the categori-

Algorithm 1 Bootstrap Particle Filter

Sample Xi
0

i.i.d.
⇠ µ(·) for i 2 [N ] and set ˆ̀0(✓) log

⇣
1
N

PN
i=1 g✓(y0|x

i
0)
⌘

.
For t = 1, ..., T

1. Compute weights wi
t�1 / g✓(yt�1|xi

t�1) with
PN

i=1 w
i
t�1 = 1.

2. Sample ait�1 ⇠ Cat(w1
t�1, ..., w

N
t�1) then xi

t ⇠ f✓(·|x
ai
t�1

t�1 ) for i 2 [N ].

3. Set xi
0:t  (x

ai
t�1

0:t�1, x
i
t) for i 2 [N ] and ˆ̀

t(✓) ˆ̀
t�1(✓) + log

⇣
1
N

PN
i=1 g✓(yt|x

i
t)
⌘

.

cal distribution with N categories, where the probability of the k taking the ith category is ↵i. At
any time t, this algorithm produces particle approximations

p̂✓(x0:t|y0:t) =
NX

i=1

wi
t�xi

0:t
(x0:t), ˆ̀

t(✓) =
TX

t=0

log

 
1

N

NX

i=1

g✓
�
yt|x

i
t

�
!
, (4)

of p✓(x0:t|y0:t) and `t(✓) = log p✓(y0:t), where �↵ is the Dirac delta distribution centred at ↵. Step 2
resamples, discarding particles with small weights while replicating those with large weights before
evolving according to the transition density. This focuses computational effort on the “promising”
regions of the state space. Unfortunately, resampling involves sampling N discrete random variables
at each time step and as such produces estimates of the log likelihood that are not differentiable w.r.t.
✓ as illustrated in [6, Figure 1].

While the resulting estimates are consistent as N ! 1 for any fixed time t [28], this does not
guarantee good practical performance. Fortunately, under regularity conditions the approximation
error for the estimate p̂✓(xt|y0:t) and more generally p̂✓(xt�L+1:t|y0:t) for a fixed lag L � 1 as well
as log p✓(y0:t)/t does not increase with t for fixed N . However, this is not the case for the joint
smoothing approximation because successive resampling means that p̂✓(x0:L|y0:t) is eventually ap-
proximated by a single unique particle for large enough t, a phenomenon known as path degeneracy;
see e.g. [12, Section 4.3].

4 Score Estimation using Particle Methods
To estimate the parameters ✓ of a given SSM (1) along with a dataset of observations y0:T , we want
to maximise via gradient ascent the marginal log likelihood in (3). However, the gradient of the
marginal log likelihood, i.e., the score function, is intractable. As explained in Section 2, automatic
differentiation through the filter is difficult due to the non-differentiable resampling step.

4.1 Score Function Using Fisher’s Identity
We leverage here instead Fisher’s identity [8] for the score to completely side-step the non-
differentiability problem. This identity shows that

r✓`T (✓) =

Z
r✓ log p✓(x0:T , y0:T ) p✓(x0:T |y0:T )dx0:T , (5)

i.e., the score is the expectation of r✓ log p✓(x0:T , y0:T ) under the joint smoothing distribution
p✓(x0:T |y0:T ). Plugging in (1), the score function can be simplified to

r✓`T (✓) =
TX

t=0

Z
r✓ log g✓(yt|xt) p✓(xt|y0:T )dxt

+
TX

t=1

Z
r✓ log f✓(xt|xt�1) p✓(xt�1:t|y0:T )dxt�1:t. (6)
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4.2 Particle Score Approximation

The identity (6) shows that we can simply estimate the score by plugging particle approximations
of the marginal smoothing distributions p(xt�1:t|y0:T ) into (6). This identity makes differentiating
through time superfluous and thereby renders the use of differentiable approximations of resampling
unnecessary. However, as discussed in Section 3.2, naive particle approximations of the smoothing
distribution’s marginals, p✓(xt|y0:T ) and p✓(xt�1:t|y0:T ), suffer from path degeneracy. To bypass
this problem, [8, 17] propose an O(N2) method inspired by dynamic programming. We propose
here a simpler and computationally cheaper method that relies on the following fixed-lag approxi-
mation of the fixed-interval smoothing distribution, which states that for L � 1 large enough,

p✓(xt�1:t|y0:T ) ⇡ p✓
�
xt�1:t|y0:min{t+L,T}

�
. (7)

This approximation simply assumes that observations after time t + L do not bring further infor-
mation about the states xt�1, xt. This is satisfied for most models and the resulting approximation
error decreases geometrically fast with L [19]. The benefit of this approximation is that the particle
approximation of p✓

�
xt�1:t|y0:min{t+L,T}

�
does not suffer from path degeneracy and is a simple

byproduct of the bootstrap particle filtering of Algorithm 1; e.g., for t + L < T we consider the
particle approximation p̂✓(x0:t+L|y0:t+L) =

PN
i=1 w

i
t+L�xi

0:t+L
(xi

0:t+L) obtained at time t+L and
use its corresponding marginals in xt�1, xt and xt to integrate respectively r✓ log f✓(xt|xt�1) and
r✓ log g✓(yt|xt). For t+L � T , we just consider the marginals in xt�1, xt and xt of p̂✓(x0:T |y0:T ).
So finally, we consider the estimate,

[r✓`T (✓) =
TX

t=0

Z
r✓ log g✓(yt|xt) p̂✓(xt|y0:min{t+L,T})dxt

+
TX

t=1

Z
r✓ log f✓(xt|xt�1) p̂✓(xt�1:t|y0:min{t+L,T})dxt�1:t. (8)

4.3 Score Estimation with Deterministic, Differentiable, Injective Motion Models

We have described a generic method to approximate the score using particle filtering techniques.
For many applications, however, the transition density function, f✓(xt|xt�1), is the composition of a
policy, ⇡✓(at|xt�1), which characterises the action distribution conditioned on the state, and a poten-
tially complex but deterministic, differentiable, and injective motion model, ⌧ : Rnx ⇥ Rna ! Rnx

where na < nx, which characterises kinematic constraints such that xt = ⌧(xt�1, at) = ⌧̄xt�1(at).
Under such a composition, the transition density function on the induced manifold Mxt�1 =
{⌧̄xt�1(at) : at 2 Rna} is thus obtained by marginalising out the latent action variable, i.e.,

f✓(xt|xt�1) = I(xt 2Mxt�1)

Z
�(xt � ⌧̄xt�1(at)) ⇡✓(at|xt�1)dat. (9)

It is easy to sample from this density but it is intractable analytically if the motion model is only
available through a complex simulator or if it is not invertible. This precludes the use of sophis-
ticated proposal distributions within the particle filter. Additionally, even if it were known, one
cannot use the O(N2) smoothing type algorithms developed in [8, 16] as the density is concen-
trated on a low-dimensional manifold [29]. This setting is common in mobile robotics, in which
controllers factor into policies that select actions and motion models that determine the next state.
Indeed, this is precisely the case in our application (see Section 5). Learning the corresponding
SSM reduces to learning the parameters ✓ of the policy, ⇡✓(at|xt�1), and the observation model,
g✓(yt|xt). Thankfully, even if the explicit form of the motion model is unknown, we can still com-
pute r log f✓(xt|xt�1) as required by the score estimate (8).
Lemma 4.1. For any x 2 Rnx , let ⌧x : Rna ! Rnx where na < nx be a smooth and injective
mapping. Then, for any fixed xt�1 and xt 2 Mxt�1 , the gradient of the transition log density,
i.e., r✓ log f✓(xt|xt�1), reduces to the gradient of the policy log density, i.e., r✓ log ⇡✓ (at|xt�1),
where at is the unique action that takes xt�1 to xt.

Proof. For xt�1 and xt 2 Mxt�1 , we denote by J [⌧̄xt�1 ](⌧̄
�1
xt�1

(xt)) 2 Rnx⇥na the rectangular
Jacobian matrix and write at = ⌧̄�1

xt�1
(xt), i.e., this is the unique action such ⌧̄xt�1(at) = xt. By a
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(a) Observations from the real data. (b) Observations from the synthetic data.

Figure 1: Observations from real and synthetic data. The AV (orange) observes a set of 2D points (blue)
forming a polygon around the road users. The true bounding boxes of each road user (green) were manually
labelled in the real data, and pre-determined while constructing the synthetic data.

standard result from differential geometry [30, 31], the transition density (9) satisfies

f✓(xt|xt�1) = ⇡✓ (at|xt�1)
���det J [⌧̄xt�1 ]

T(at)J [⌧̄xt�1 ](at)
���
�1/2

I(xt 2Mxt�1). (10)

It follows directly thatr✓ log f✓(xt|xt�1) = r✓ log ⇡✓ (at|xt�1). ⌅

Indeed for the marginals p̂✓
�
xt�1:t|y0:min{t+L,T}

�
, we can store the actions corresponding to tran-

sitions xt�1 ! xt during filtering, and it follows that for the class of SSMs described above, the
score estimate reduces to:

[r✓`T (✓) =
TX

t=0

Z
r✓ log g✓(yt|xt) p̂✓(xt|y0:min{t+L,T})dxt

+
TX

t=1

Z
r✓ log ⇡✓(at|xt�1) p̂✓(xt�1:t|y0:min{t+L,T})dxt�1:t, (11)

where we use Lemma 4.1 to replace the gradient of the transition log density with the gradient of
the policy log density in (8), and where at is the action sampled to go from xt�1 to xt.

5 Experiments

Problem Setting. Our experiments focus on the problem of state estimation of observed road users
(in particular other vehicles) from the viewpoint of an AV, which involves the estimation of 2D
poses from an observed sequence of 2D convex polygons in a “bird’s eye view” (BEV) constructed
from LiDAR point clouds at each time step. For these experiments, we assume that the size of the
observed objects, the pose of the AV, and the association of observations with their corresponding
objects are known a priori. Some observations (and their corresponding states) are shown in Figure
1a. Here, the observation model must learn to describe the likelihood of 2D points around the pe-
riphery of the observed road user (see [25] for a review on such models), while the transition model
must learn to describe driving behaviour. We use a feed-forward neural network to parameterise our
observation model, where we provide it with range, bearing, and relative bearing from the viewpoint
of the corresponding AV as features (Appendix A), and factor our transition model into a determin-
istic and differentiable motion model based on Ackermann dynamics [32] (Appendix B.1), and a
policy parameterised by another feed-forward neural network (Appendix B.2).

Baselines, Datasets, and Metrics. We compare the quality of the models learned using PF-SEFI
(our method), DPF-SGR [17], PFNET [5], and differentiating through a vanilla PF (ignoring the
bias introduced by resampling). We evaluate our method (and the baselines) on real data collected
from an AV in an urban environment, equipped with LiDARs, cameras, and radar sensors. All
sensors were used to associate LiDAR points to their corresponding objects, and the observations
shown in Figure 1a were obtained via a convex hull computation of the associated LiDAR points.
In addition to using real data, we generate two synthetic datasets (with 25 and 50 step trajectories),
using a hand-crafted policy, and an observation model trained using supervised learning on manually
labelled trajectories (see Appendix A and B for more details). Example observations are shown in
Figure 1b. Unlike with real data, where the true models are unknown, synthetic datasets allow us
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(a) MLL of test synthetic data with
25 step trajectories.

(b) MLL of test synthetic data with
50 step trajectories.

(c) MLL of test real data with 60
step trajectories.

Figure 2: Marginal Log Likelihood (MLL) on synthetic and real test data for models trained using PF-SEFI
(us), DPF-SGR, PFNET, and PF, plotted against the corresponding training steps. For synthetic data we also
show the MLL of the true models.

to compare the learned models against a known ground truth. We measure the quality of learned
models using the following metrics:

• Marginal Log Likelihood (MLL): The marginal log likelihood `T (✓) given by filtering obser-
vations y0:T using the learned models.

• Average Displacement Error (ADE) and Average Yaw Error (AYE): The average error in the
positions and yaws respectively of the smoothed state estimates E✓(x0:T |y0:T ) against the true
poses, x̄0:T . For the synthetic data, the true poses are sampled while generating the data; for
the real data, the true poses are obtained by humans manually labelling object trajectories from
videos. These measure the quality of the learned models for the purposes of state estimation.

• Average Observation True Log Likelihood (AOTLL): The average log likelihood of ob-
servations conditioned on the true states under the learned observation model, i.e.,

1
T+1

PT
t=0 log g✓(yt|x̄t). This measures the quality of the learned observation model.

• Average Policy True Log Likelihood (APTLL): The average log likelihood of true actions,
ā1:T , (only available for experiments with synthetic data since it is not possible to man-
ually label latent actions) conditioned on the true states under the learned policy, i.e.,
1
T

PT
t=1 log ⇡✓(āt|x̄t�1). This measures the quality of the learned policy.

Results. Figure 2 shows the progress of the learned models by tracking MLL of held out test data
for each of the three datasets (synthetic data with 25 steps, synthetic data with 50 steps, and real data
with 60 steps), and for each of the four methods (PF-SEFI, DPF-SGR, PFNET, and PF). Table 1 sum-
marise the performance of the learned models at convergence. We pick the best hyper-parameters,
smoothing lag L for PF-SEFI, and trade-off parameter ↵ for PFNET, in each of the experiments.
Appendix C includes analysis of the training sensitivity of each of the hyper-parameters (see Fig-
ures 5, 6, and 7). We find that PF-SEFI improves with increasing L up to a point, past which it is
insensitive to the choice of L (see Figure 6, Appendix C).

In our experiments with synthetic data with 25 steps (Figure 2a and Experiment A in Table 1), we
observe a clear gap in performance of PF-SEFI and DPF-SGR relative to PFNET and PF. The im-
provements over PF are likely due to the bias in PF’s score estimates due to the non-differentiable
resampling step, while the improvements over PFNET are likely due to adverse effects of not re-
sampling with the correct distribution at each time step. While PF-SEFI and DPF-SGR perform
similarly on this dataset, the difference is stark in the case of synthetic data with 50 steps (Figure 2b
and Experiment B in Table 1). PF-SEFI is invariant to the length of the trajectories used, converging
stably; however, all other methods, struggle to learn useful models. We postulate that since each of
the baselines, in one way or another, differentiate through all time steps of the filter, the variance in
their score estimates is too high for good learning through gradient ascent.1

1The authors of DPF-SGR [17] recommend the use of stop gradients not only for particle weights after
resampling, i.e., ṽit = v̄a

i

t /?v̄a
i

t [17, Algorithm 1], but also, in the case of bootstrap particle filters, while com-
puting the likelihood ratio vit = ṽit�1p✓(x

i
t, yt|xai

t�1)/?q✓(x
i
t|xai

t�1) before resampling, and while sampling
from xi

t ⇠ q✓(·|xai

t�1) [17, Section 4.1]. While these additional stop gradients significantly reduce variance, our
experiments with them yielded extremely poor overall performance (even with synthetic data with 25 steps).
The results we report here thus make use of stop-gradients only for particle weights after resampling.
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Table 1: Metrics computed on held out test data comparing PF-SEFI (us) against baselines. We ran experiments
using 3 different datasets - (A) synthetic data with 25 steps, (B) synthetic data with 50 steps, and (C) real data
with 60 steps. For experiments (A) and (B), we also compare against the performance of the true models.
For experiment (C), we compare against the supervised observation model trained using manually labelled
trajectories. For MLL, AOTLL, and APTLL, higher values imply better models, while for ADE and AYE,
lower values imply better models.

Exp. Method MLL AOTLL APTLL ADE (m) AYE (rad)

A

TRUE -3.161 ± 0.003 -2.128 2.674 0.090 ± 0.001 0.014 ± 0.000
PF-SEFI (us) -3.147 ± 0.004 -2.285 ± 0.028 2.661 ± 0.014 0.186 ± 0.021 0.016 ± 0.000
DPF-SGR -3.159 ± 0.004 -2.265 ± 0.010 2.594 ± 0.027 0.165 ± 0.008 0.014 ± 0.000
PFNET -3.225 ± 0.004 -2.487 ± 0.026 2.621 ± 0.013 0.264 ± 0.019 0.017 ± 0.000
PF -3.229 ± 0.006 -2.484 ± 0.026 2.576 ± 0.021 0.245 ± 0.021 0.017 ± 0.000

B

TRUE -3.145 ± 0.002 -2.165 2.693 0.088 ± 0.001 0.012 ± 0.000
PF-SEFI (us) -3.141 ± 0.005 -2.283 ± 0.015 2.505 ± 0.042 0.165 ± 0.013 0.014 ± 0.000
DPF-SGR -3.966 ± 0.050 -2.636 ± 0.031 0.811 ± 0.130 2.828 ± 0.415 0.142 ± 0.016
PFNET -4.169 ± 0.046 -2.901 ± 0.039 0.539 ± 0.077 2.809 ± 0.176 0.148 ± 0.008
PF -4.118 ± 0.038 -2.841 ± 0.025 0.681 ± 0.122 2.502 ± 0.042 0.137 ± 0.007

C

SUPERVISED N/A -2.224 ± 0.006 N/A N/A N/A
PF-SEFI (us) -2.447 ± 0.029 -1.973 ± 0.029 N/A 0.275 ± 0.011 0.034 ± 0.006
DPF-SGR -3.297 ± 0.287 -2.236 ± 0.218 N/A 0.643 ± 0.177 0.081 ± 0.477
PFNET -4.019 ± 0.098 -2.752 ± 0.079 N/A 0.746 ± 0.091 1.015 ± 0.159
PF -3.848 ± 0.045 -2.639 ± 0.140 N/A 0.701 ± 0.109 1.082 ± 0.364

The results of our experiments with real data with 60 steps (Figure 2c and Experiment C in Table
1) are consistent with Experiment B (i.e., with experiments on synthetic data with 50 steps) and
show that PF-SEFI is able to learn useful models. The learned observation model using PF-SEFI
performs even better than the model that was trained offline through supervision with manually
labelled data (see AOTLL in Table 1 for Experiment C). We also find that sampling from the learned
model produces observations that are qualitatively similar to the real data (Appendix D). While the
supervised model is trained only on the subset of the observations that are labeled (labelling only a
subset is common in practical applications due to the cost of labelling), PF-SEFI, by contrast, can
leverage all observations in a self-supervised fashion. Moreover, we speculate that the labels contain
noise and that the labelling distribution is biased towards observations that are easy to label. Both
limitations hinder supervised learning.

6 Discussion, Limitations, and Future Work
In this work, we proposed an efficient particle-based method for estimating the score function to
learn a wide class of SSMs in a self-supervised way. Compared to previous particle methods that
estimate the score, PF-SEFI is more computationally efficient, allowing us to scale to learning mod-
els with many parameters. Unlike alternative methods, PF-SEFI is applicable to SSMs where the
transition distribution is concentrated on a low-dimensional manifold, allowing us to apply it to a
real-world AV object tracking problem. We showed empirically that our method learns better models
and is more stable in training than methods that use automatic differentiation to estimate the score,
and that we can learn an observation model that outperforms one trained using supervised learning.

While this solution is ideal for our problem, it does have a number of limitations. Most notably, it
is restricted to maximising the marginal log-likelihood of the data, while differentiating through the
filter allows for arbitrary differentiable loss functions. Furthermore, our method is not suitable for
estimating the parameters of a proposal distribution. Beyond these algorithmic limitations, in our
application, the models that we used were not very expressive. For the observation model, we did
not model important phenomena that affect partial observability such as occlusions and we restricted
our states and observations to 2D. For the policy, we used a simplified policy with only basic features
that are insufficient for controlling an agent in simulation. Furthermore, the policy and the motion
model are both specific to vehicles, and currently exclude other road users such as pedestrians.

In future work, we aim to scale up our problem setting, by making both models more expressive,
and to estimate more state dimensions, such as full 3D poses and sizes of objects. We also believe
that learning policies as components of an SSM to explicitly account for observation noise is, in
practice, critical for learning good driving behaviour from demonstrations. Such policies could be
used as models for predicting the behaviour of other road-users, or to control agents in simulation,
and the method we proposed in this work offers an ideal starting point to explore this.
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