
Under review as a conference paper at ICLR 2024

THE UNREASONABLE EFFECTIVENESS OF PRETRAIN-
ING IN GRAPH OOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks have shown significant progress in various tasks, yet their
ability to generalize in out-of-distribution (OOD) scenarios remains an open
question. In this study, we conduct a comprehensive benchmarking of the ef-
ficacy of graph pre-trained models in the context of OOD challenges, named as
PODGenGraph. We conduct extensive experiments across diverse datasets, span-
ning general and molecular graph domains and encompassing different graph sizes.
Our benchmark is framed around distinct distribution shifts, including both concept
and covariate shifts, whilst also varying the degree of shift. Our findings are strik-
ing: even basic pre-trained models exhibit performance that is not only comparable
to, but often surpasses, specifically designed to handle distribution shift. We further
investigate the results, examining the influence of the key factors (e.g., sample size,
learning rates, in-distribution performance etc) of pre-trained models for OOD
generalization. In general, our work shows that pre-training could be a flexible and
simple approach to OOD generalization in graph learning. Leveraging pre-trained
models together for graph OOD generalization in real-world applications stands as
a promising avenue for future research.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a popular innovation, primarily due to their
unparalleled proficiency in processing graph-structured data (Kipf & Welling, 2017; Wu et al., 2020).
However, their performance is markedly diminished when dealing with Out-of-Distribution (OOD)
tasks in which training and test data follow different distributions (Li et al., 2022a). The OOD
challenges in graph learning have prompted the development of myriad solutions (Yu et al., 2023;
Wu et al., 2022a; Feng et al., 2020; Li et al., 2022b; Fan et al., 2022). These methodologies, however,
often cater to specific OOD scenarios, such as distinctive data shifts or semantics, making them less
versatile due to the dynamic nature of real-world applications.

Given the adaptability and generalizability of pre-trained models in other domains such as im-
ages (Kim et al., 2022; Naganuma & Hataya, 2023; Yu et al., 2021; Gulrajani & Lopez-Paz, 2020),
there is a potential that graph pre-trained methodologies could significantly enhance the performance
of GNNs in addressing graph OOD challenges (Xia et al., 2022). Motivated by this potential, we
seek to investigate whether graph pre-trained models can serve as robust and efficient solutions for
graph OOD generalization.

In this paper, we systematically investigate the importance of pre-trained models for graph OOD
generalization. We consider a variety of graph pre-trained models and diverse distribution shifts.
Specifically, we evaluate methodologies such as context prediction (Hu* et al., 2020), mask pre-
training learning (Hu* et al., 2020; Xia et al., 2023) along with contrastive learning (Sun et al.,
2020). We evaluated their efficacy across various graph datasets, including molecular and general
simulated graphs, while adjusting the types of distribution shifts (e.g., covariate shift and concept
shift), as well as different distribution shift degrees. Our aim is to empirically verify whether these
pre-trained models can achieve better performance in comparison to the state-of-the-art methods
specifically designed for OOD problems. Additionally, we explore the implications of the key factors
of pre-trained models in OOD contexts, such as sample size, fine-tuning learning rate, in-distribution
(ID) learning performances. Fig. 1 summarizes the key components of PODGenGraph benchmark.
Our key findings, based on various evaluation protocols and analysis, include:
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Data Source

Synthetic Data (Motif) 
"House" …

…

2D images
…

SMILES of molecules 
C1CCCC2C1CCCC2

C0CCCCC0C0CCCCC

Graphs

Type of shift 
• Concept shift

• Covariate shift


Shift source 
• Scaffold

• Assay

• Size

• Basis

• Color

Distribution Shift

Pre-training 
• Context Prediction (Hu et al. 2020)

• Masking


- Attribute mask (Hu et al. 2020)

- Mole-BERT (Xia et al. 2023)


• Contrastive Learning 

- InfoGraph (Sun et al. 2020)


OOD methods 
• Disentangled/Causal Learning


- CIGA (Chen et al. 2022)

- Mole-OOD (Yang et al. 2022)


• Augmented Learning

• LiSA (Yu et al. 2023)

Evaluated Methodologies

• OOD generalisation performance

• Various distribution shift degree

• Effect of fine-tuning learning rate & sample size

• Relation to ID performance

Evaluation and Analysis

GIN  (Xu et al. 2018)
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Figure 1: Summary of PODGenGraph benchmark.

• In most molecular graph OOD generalization experiments, pre-training methods achieve com-
parable, mostly superior to specialized OOD methods like invariant/causal learning and graph
augmentation (achieving highest or second-highest performances among all 19 datasets). Moreover,
pre-trained methods consistently exhibit superiority across a set of degrees of distribution shift,
highlighting a simplistic and practical solution for graph OOD, especially in the molecular domain.

• We observe that even with a smaller fine-tuning sample size, such as only 10%-20% of the
original fine-tuning sample size, pre-trained models can still achieve comparable results in OOD
generalization to those with the full sample size, demonstrating the sample efficiency.

• In general graphs, particularly under concept shift, pre-training methods do not exhibit significant
superiority, suggesting that pre-trained models for graph OOD are not universally better, leaving
room for future improvements. A possible approach is to combine pre-trained models with other
solutions like augmentation and invariant learning to devise more universal algorithms to resolve
graph OOD issues.

• Contrary to (Miller et al., 2021), we find that in-distribution learning performance is not always an
indicator for OOD generalization, specifically in the context of pre-trained models for graph OOD.
This finding might lead to more comprehensive algorithms or theoretical analysis exploring the
correlation between OOD and ID learning performance in the future.

• Similarly, different from previous works (Yu et al., 2021; Li et al., 2019), we discover that smaller
learning rates during the fine-tuning phase do not invariably lead to better generalization in OOD
scenarios for most pre-trained graph models, with the exception being the mask pre-training method
Molecule-BERT that introduces prior information.

Contributions: 1. We execute an extensive evaluation of various graph pre-training strategies such
as masked pre-training, contrastive learning, graph auto-encoders, and context prediction, against
multiple types of distribution shifts including covariate and concept shifts.

2. We explore the impacts of different key factors in pre-training, such as sample size, fine-tuning
learning rates, and in-distribution learning performances, alongside varying degrees of distribution
shift, to disclose their implications on the effectiveness of pre-trained models in OOD generalization.
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3. Our key findings of the PODGenGraph benchmark could potentially offer valuable insights for
future works regarding the selection of pre-trained models and the development of more advanced
methodologies for graph OOD.

2 RELATED WORKS

Graph Pre-training. Graph pre-training with external datasets has been explored in numerous
studies but there is no specific study on evaluating them under OOD generalization context. Slightly
different from self-supervised methods for OOD generalization, pre-training methods usually leverage
the external datasets to learn the good initlization or representation which could benefit the down-
streaming tasks. Here we summarize the current state-of-the-art approaches in two categories:
supervised and self-supervised pre-training methods. (1). Supervised Pre-training. While supervised
labels often require significant time and resources, they can still aid pre-training, particularly in
biochemical contexts. Hu* et al. (2020) utilized these to predict a plethora of molecular properties
and protein functions. They also considered structural similarities between graphs as a form of
supervision. MOCL (Sun et al., 2021) further explored this by measuring the structural similarity
between molecules via the Tanimoto coefficient. Other methods like GROVER (Rong et al., 2020)
and MGSSL (Zhang et al., 2021) were introduced to predict the motifs in molecular graphs. (2).Self-
supervised Pre-training. Graph AutoEncoders (Kipf & Welling, 2016) aim to reconstruct parts
of graphs that aid in understanding the data representation. Graph Autoregressive Models, such as
GPT-GNN (Hu et al., 2020) and MGSSL (Zhang et al., 2021) use the autoregressive framework
for graph reconstruction. Masked components modeling, including the mask pre-training strategy
in (Hu* et al., 2020) and Mole-BERT (Xia et al., 2023), utilizes masking components from graphs
and then predicting them. InfoGraph (Sun et al., 2020) and DGI (Veličković et al., 2018) employ
mutual information maximization between various graph representations. GraphCL (You et al., 2020)
introduces a contrastive learning framework emphasizing robust, transferable representation learning
with graph augmentations for enhanced generalizability. In our work, we choose the self-supervised
pre-training methods for evaluation due to the practical considerations. We expand upon their OOD
generalization results and analysis by conducting a thorough exploration of graph pre-trained models.
Our study goes beyond the confines of MoleculeNet datasets with covariate shifts, exploring diverse
data sources including DrugOOD (Ji et al., 2023), MoleculeNet (Wu et al., 2018), OGBG (Hu et al.,
2020), and others. Furthermore, we investigate distribution shifts with varying degrees of intensity,
incorporating various meta-analyses such as the examination of fine-tuning sample size and learning
rates to provide a more inclusive analysis. In supervised learning, labels are typically hard to acquire,
or the acquisition is highly costly (Wang et al., 2023). In molecular graphs or certain biological
graphs, obtaining annotations is challenging. Given our aim is to provide the evlatuion and benchmark
for pre-trained models for OOD generalization which could be used for practical real-world problem,
we select to evaluate the self-supervised pre-training methods.

Graph OOD. The Out-of-Distribution (OOD) generalization problem, well-recognized in machine
learning paradigms, gains unique complexities for graph data. Graphs, inherently non-Euclidean, can
manifest a broad spectrum of topological structures and dynamics that challenge traditional methods.
Three research lines have been conducted to tackle the graph OOD challenge: (1). Disentangled,
Invariant, and Causal Learning. Disentangled graph representation learning seeks to factorize real-
world graphs into distinct latent components. Such models aim to capture underlying, informative
factors in the graph data, which has been shown to benefit OOD generalization. The pioneering
work of DisenGCN (Ma et al., 2019) introduces a novel convolutional layer, DisenConv, which
uses a neighborhood routing mechanism to analyze and infer latent factors. IPGDN (Liu et al.,
2020) enhances this by adding an independence regularization to minimize dependencies among
representations. FactorGCN (Yang et al., 2020) focuses on graph-level representation, using a
factorization mechanism to produce hierarchical disentanglements. Recently, Mole-OOD (Yang
et al., 2022), DisC (Fan et al., 2022) and CIGA (Chen et al., 2022b) specifically disentangle causal
from non-causal information, offering a robust approach to handle biases and distribution shifts
in graphs. These advances spotlight the potential of disentangled representations in achieving
superior OOD performance on graph data. (2). Graph Augmentation. The structure and topology
of graphs play a critical role in predicting their properties. Some methods leverage structure-
wise augmentations to generate diverse training topologies. GAug (Zhao et al., 2021) enhances
generalization using a differentiable edge predictor, MH-Aug (Park et al., 2021) uses Markov
chain Monte Carlo sampling for controlled augmentation. Additionally, feature-wise augmentations
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have emerged, where node features are manipulated. GRAND (Feng et al., 2020) randomly drops
and propagates node features to reduce sensitivity to specific neighborhoods, while FLAG (Kong
et al., 2022) augments node features using gradient-based adversarial perturbations, maintaining
the underlying graph structures. LiSA (Yu et al., 2023) further solves the problem of inconsistent
predictive relationships among augmented environments by invariant subgraph training. These
methods verify the significance of graph data augmentation in achieving enhanced out-of-distribution
generalization. (3). Self-supervised Learning. Graph self-supervised learning has also shown
promise for OOD generalization. For instance, PATTERN (Yehudai et al., 2021) seeks to achieve
the generalization from small to large graphs. GraphCL (You et al., 2020) and RGCL (Li et al.,
2022d) use contrastive learning, with the latter emphasizing rationale-aware augmentations. Test-time
training methods like GAPGC (Chen et al., 2022a) and GT3 (Wang et al., 2022) further innovate by
introducing contrastive loss variants and hierarchical self-supervised frameworks, respectively for
OOD generalization. Our work is close to this research line, and is the first to discover the universal
benefits of self-supervised pre-training to graph OOD, in terms of various graph OOD scenarios.
We choose the state-of-the-art methods from the first two research lines for comparison, including
CIGA (Chen et al., 2022b), Mole-OOD (Yang et al., 2022), and LiSA (Yu et al., 2023).

3 PRELIMINARIES

3.1 GRAPH OOD SCENARIOS

We consider both the general feature distribution shifts (e.g., molecules under different assays) and
structure distribution shifts (e.g., different molecular size). Given a training datasetDtrain consisting of
N graphs {G1,G2, ...GN} each associated with a target label or property {y1, y2, ...yN}, the graph
OOD problem arises when:

P (G,y∣Dtest) ≠ P (G,y∣Dtrain) (1)

In this paper, we consider two types of OOD: covariate shift and concept shift.

Covariate Shift. Covariate shift refers to a scenario where the distribution of the input data (graphs
in our context) changes between training and test stages, while the conditional distribution of the
target given the input remains consistent. Mathematically, if G represents our input graphs and Y
represents our labels:

Ptrain(G) ≠ Ptest(G), Ptrain(Y ∣G) = Ptest(Y ∣G) (2)

For graph-structured data, covariate shift could imply that while the method of labeling nodes or
edges remains consistent, the types of graphs in the test set might differ from those in the training set.

Concept Shift. Concept or label shift arises when the distribution of the labels changes between
training and testing, even if the input distribution remains the same. Formally:

Ptrain(Y ) ≠ Ptest(Y ), Ptrain(G∣Y ) = Ptest(G∣Y ) (3)

In the context of graph data, this means that while the types of graphs remain consistent across
training and test datasets, the manner or criteria by which they are labeled has evolved or changed.

3.2 GRAPH PRE-TRAINING METHODOLOGIES

In this section, we briefly discuss the pre-training methods we choose for this study. The detailed
training and fine-tuning settings will be discussed in Section 4.2. For molecular datasets, we choose
three pre-training methods: ContextPred (Hu* et al., 2020), Attribute masking (Hu* et al., 2020), and
Mole-BERT (Xia et al., 2023).

• ContextPred: The goal of ContextPred is to pre-train a GNN in such a way that it establishes
proximity between embeddings of nodes that occur within analogous structural contexts. It employs
subgraphs to predict the surrounding graph structures of these nodes. In this work, we employ the
K-hop neighborhood as the subgraph in the original work and choose K = 5. We also follow the
context definition in the work (i.e., adjacent graph structure), and choose the hop values r1 = 4 and
r2 = 7.
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• Attribute masking& Mole-BERT & GraphMAE : All three works use the masked component
modeling methods for the self-supervised learning. Specifically, they involve the masking of certain
components within molecules, including atoms, bonds, and fragments, followed by training the
model to predict these masked components based on the remaining contextual information. We
follow the setups in the original papers: Mask pre-training in (Hu* et al., 2020) inputs atom and
chemical bond attributes are randomly masked, and GNNs are pre-trained to predict these masked
attributes and Mole-BERT (Xia et al., 2023) uses a context-aware tokenizer that encodes atoms
with chemically meaningful values for masking. GraphMAE (Hou et al., 2022) represents a
significant advancement in the field of graph autoencoders (GAEs). It diverges from traditional
GAEs by prioritizing feature reconstruction over graph structure reconstruction and employs a
novel masking strategy combined with scaled cosine error, enhancing training robustness and error
metric accuracy.

• GraphCL (You et al., 2020) introduces an contrastive learning framework focusing on robust and
transferable representation learning. It also utilizes the graph augmentations to enhance data priors,
to improve the generalizability and robustness.

For general graph datasets as well as the molecular datasets without node information, we use
one contrastive self-supervised pre-training, InfoGraph (Sun et al., 2020). It extracts expressive
representations for graphs or nodes by maximizing mutual information between graph-level and
substructure-level representations at varying granularities.

4 BENCHMARK METHODOLOGY

4.1 BENCHMARK SETUP

Datasets. We evaluate pre-trained models upon multiple dataset sources, including
three datasets from DrugOOD (Ji et al., 2023) (DrugOOD-lbap-core-ic50-assay,
DrugOOD-lbap-core-ic50-scaffold, and DrugOOD-lbap-core-ic50-size), ten
datasets from MoleculeNet (Wu et al., 2018) (BBBP, Tox21, ToxCast, SIDER, ClinTox, MUV,
HIV, BACE, OGBG-MolHIV, OGBG-MolPCBA), four datasets from the TU collection (Morris et al.,
2020) (NCI1, NCI109, PROTEINS, DD), and three datasets from the general graph collection (Gui
et al., 2022) (Motif (Wu et al., 2022b) and CMNIST (Arjovsky et al., 2019)). Table 1 lists the statistics
and key factors of the molecular datasets we employed (Detailed version in Appendix Table A1). The
detailed statistics of simulated graphs (Motif and CMNIST) is given in Appendix Table A2. We also
give the detailed introduction to all datasets in Appendix B.2.

Various Graph Domains. We select datasets covering a wide array of graph structures. This includes
molecular graphs used in biophysics and physiology research, encompassing both those with and
without node information. Additionally, we include synthetic and real-world graphs that represent
images and hierarchical trees.

Source of Distribution Shift and OOD. We use diverse datasets covering various causes of dis-
tribution shift, featuring variations in graph characteristics (like scaffold, size, basis, and color) for
both molecular and general graphs, as well as environmental factors (such as assay) for molecular
graphs. In the DrugOOD dataset (Ji et al., 2023), the distribution shift originates from disparities in
Bemis-Murcko scaffold size (DrugOOD-Scaffold), assay ID (DrugOOD-Assay), and molecular atom
size (DrugOOD-Size). In contrast, all datasets within the MoleculeNet (Wu et al., 2018) follow a
shift based on the Bemis-Murcko scaffold. For the TU collection (Morris et al., 2020), we utilize data
splits generated by (Yehudai et al., 2021) based on molecular atom size. Following (Gui et al., 2022),
Motif (Wu et al., 2022b) is tailored to address structural and size shifts, whereas CMNIST (Arjovsky
et al., 2019) is partitioned based on different digit colors. We consider both covariate and concept
shifts under different domains for most of the datasets.

4.2 BASELINES, IMPLEMENTATION, AND EVALUATION

Baseline Algorithms. We integrate empirical risk minimization (ERM) (Vapnik, 1999) and the
state-of-the-arts with disentangled, invaraint and causal learning, and data-augmentation method-
ologies. All methods have been reproduced based on their original implementation (details listed
in Appendix C.1). We choose two disentangled OOD algorithms, CIGA (Chen et al., 2022b) and
MoleOOD (Yang et al., 2022), both based on the invariant and causal learning. CIGA (Chen et al.,

5



Under review as a conference paper at ICLR 2024

Table 1: Molecular dataset statistics. Gray shaded rows indicate datasets without node labels. AP,
MCC, and ACC represent the average precision, Matthews correlation coefficient, and accuracy,
respectively.

Datasets Domain Shift #. Graphs Avg.
#. Node

Avg.
#. Edge

#. Classes
/Task #. Task Metrics

Scaffold 59,608 30.0 64.9 2
Assay 72,239 32.3 70.2 2DrugOOD
Size 70,672 30.7 66.9 2

1

BBBP 2,039 24.1 51.9 2 1
Tox21 7,831 18.6 38.6 2 12

ToxCast 8,575 18.8 38.5 2 617
SIDER 1,427 33.6 70.7 2 27
ClinTox 1,478 26.2 55.8 2 2
MUV 93,087 24.2 52.6 2 17
HIV 41,127 25.5 54.9 2 1

BACE

Scaffold

Covariate

1,513 34.1 73.7 2 1
CovariateScaffold Concept
Covariate

OGBG-
MolHIV Size Concept

41,127 25.5 27.5 2 1

ROC-
AUC

CovariateScaffold Concept
Covariate

OGBG-
MolPCBA Size Concept

437,929 26.0 28.1 2 128 AP

NCI1 2,569 27.2 58.8 2 1
NCI109 2,500 27.2 58.8 2 1

PROTEINS 679 35.8 131.2 2 1
DD

Size Covariate

710 244.5 1226.8 2 1

MCC

Motif
Basis Covariate 24,000 16.6 44.7

3 1 ACCConcept 24,600 17.0 48.6

Size Covariate 24,000 28.5 76.0
Concept 24,600 51.7 141.4

CMNIST Color Covariate 56,000 75.0 1393.0
10 1 ACCConcept 57,400 75.0 1393.0

2022b) categorizes interactions between causal and non-causal components into fully informative
invariant features (FIIF) and partially informative invariant features (PIIF). MoleOOD (Yang et al.,
2022) identifies molecule environments without manual specification and uses them along with sub-
structures for predictions. Furthermore, we adopt one augmentation-based OOD algorithm, LiSA (Yu
et al., 2023). It utilizes variational subgraph generators to identify locally predictive patterns and
generates multiple label-invariant subgraphs, enhancing diversity for data augmentation process. We
also consider cases GIN-OOD and GIN-ID, where GIN is trained without specified operations for
OOD. GIN-OOD is tested on OOD testing sets, whereas GIN-ID is tested on in-distribution sets.

Pre-training Datasets. In accordance with previous works by Hu* et al. (2020), we use 2 million
molecules sampled from the ZINC-15 database (Sterling & Irwin, 2015), to learn node representations
for downstream molecular datasets. Considering the lack of shared node information across general
graph dataset and TU dataset, we initially exclude the label information for self-supervised learning.
Once we have learned the representation of each graph, we proceed to fine-tune the classifier (e.g.,
SVM, logistic regression, or random forest) using a dataset that includes label information.

GNN Architectures. We adopt 5-layer graph isomorphism networks (GINs) (Xu et al., 2018) with
300-dimensional hidden units as the backbone model for all pre-training methods in all datasets. The
average pooling is used as the READOUT function.

Pre-training and Fine-tuning. In the pre-training phase, the models undergo 100 training epochs
with a batch size of 256 and a learning rate set to 0.001. During the subsequent fine-tuning phase,
we conduct training for 100 epochs with a batch size of 32, except for DrugOOD with a batch size
of 128, and we report the test score with the best cross-validation performance. In both phases, the
models are trained using Stochastic Gradient Descent (SGD) with the Adam optimizer.

4.2.1 EVALUATION METRICS

We utilize the original evaluation metrics associated with each dataset. Specifically, in the context of
molecular datasets, we report ROC-AUC for DrugOOD and MoleculeNet following Ji et al. (2023);
Wu et al. (2018), average precision (AP) for OGBG-MolPCBA following Hu et al. (2020), and the
Matthews correlation coefficient for TU datasets following Bevilacqua et al. (2021). Furthermore, for
all general graph datasets, we use classification accuracy as our primary evaluation metric.
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Table 2: Performance evaluation on different OOD datasets. Different evaluation metrics are employed
for different datasets. DrugOOD, MoleculeNem, OGBG-MolHIV: Testing AOC-RUC; OGBG-
MolPCBA: Testing Average Precision (AP); TU datasets: Testing Matthews correlation coefficient
(MCC); Motif and CMNIST: Testing Accuracy. ”cov” and ”cpt” denote covariate and concept
shift, respectively. Brown shaded columns indicate pre-training strategies. The first and second
best-performing numbers (except the ID training) are in bold and bold, respectively.

Methods GIN-OOD GIN-ID CIGA-V1 CIGA-V2 MOLEOOD LISA CONTEXTPRED ATTRMASK MOLE-BERT GRAPHCL GRAPHMAE INFOGRAPH

D
ru

gO
O

D

SCAFFOLD (cov) 67.31±0.50 84.36±0.15 69.27±0.81 69.68±0.21 68.01±0.39 65.71±0.25 70.01±0.13 70.68±0.31 70.04
±0.25 68.74±0.12 69.37±0.15 -

ASSAY (cov) 71.20±0.29 87.07±0.62 72.36±0.60 73.28±0.35 71.18±0.63 70.66±0.63 72.80
±0.55 71.56±0.43 71.19±0.09 69.59±0.10 70.40±0.12 -

SIZE (cov) 66.67±0.26 87.69±0.77 67.08±0.82 68.02±0.51 66.61±0.36 65.78±0.46 68.42±0.10 68.22
±0.15 67.92±0.19 67.70±0.28 67.97±0.31 -

AVG. 68.39 86.37 69.57 70.32 68.60 67.38 70.41 70.15 69.60 68.68 69.25 -

M
ol

ec
ul

eN
et

BBBP (cov) 65.78±4.90 93.13±0.58 65.50±1.62 68.69±1.37 69.71±1.56 65.26±2.01 69.32±1.03 64.95±3.40 71.88±1.12 68.02±1.03 71.19
±1.11 -

TOX21 (cov) 73.95±0.28 82.60±0.20 73.87±0.54 72.25±1.46 73.65±0.85 66.32±0.76 74.47±0.36 76.22
±0.41 77.99±0.33 76.18±0.50 76.20±0.41 -

TOXCAST (cov) 62.13±0.71 70.93±0.28 62.81±0.55 58.53±1.85 62.90±0.96 59.56±0.57 63.43
±0.40 63.36±0.50 64.18±0.31 63.31±0.43 63.40±0.41 -

SIDER (cov) 57.38±1.65 62.57±0.81 57.40±4.40 54.90±2.13 62.01
±0.58 57.28±0.66 60.45±0.60 60.15±0.57 62.74±0.89 60.46±0.98 60.18±1.02 -

CLINTOX (cov) 57.29±5.91 84.91±2.10 55.00±1.60 66.37±3.22 89.93±3.90 65.00±2.60 57.40±3.16 70.47±3.43 78.88
±2.24 77.53±3.65 76.49±2.95 -

MUV (cov) 70.40±1.80 79.49±1.44 68.10±1.30 70.99±1.34 67.79±2.46 67.91±1.13 77.36±1.11 74.93±2.07 78.62±1.51 77.50±0.61 77.51
±1.87 -

HIV (cov) 75.06±2.06 80.86±1.11 75.79±1.09 73.19±4.22 78.29±0.51 62.57±1.30 77.56±0.95 76.41±0.70 78.10
±0.65 76.81±0.61 77.12±0.54 -

BACE (cov) 70.78±5.29 86.73±1.72 73.60±4.30 78.56±2.34 81.10±1.97 69.97±3.06 79.41±1.96 79.88
±0.61 80.88±1.45 77.96±2.00 79.65±1.40 -

AVG. 66.70 80.55 67.75 68.16 73.36 64.92 68.38 71.37 74.62 72.22 72.72 -

O
G

B
G

-P
C

B
A

SIZE (cov) 12.85±0.34 28.10±0.69 10.51±0.17 9.65±0.12 - 6.52±0.20 13.30±0.37 13.50±0.38 16.19±0.24 13.55±0.31 14.17
±0.32 -

SIZE (cpt) 12.76±0.62 28.10±0.69 9.22±0.09 8.31±0.12 - 5.05±0.32 11.39±0.21 11.87±0.24 15.71±0.26 12.94
±0.27 11.82±0.17 -

SCAFFOLD (cov) 13.03±0.43 30.80±0.54 10.24±1.98 10.62±1.04 - 8.67±0.24 22.14±0.43 21.89
±0.27 17.33±0.12 14.91±0.13 15.14±0.15 -

SCAFFOLD (cpt) 17.27±0.63 30.80±0.54 8.33±0.06 8.71±0.12 - 8.55±0.63 15.71±0.38 16.14±0.49 21.29±0.53 18.85
±0.14 17.35±0.11 -

AVG. (cpt) 13.98 29.45 9.58 9.32 - 7.20 15.63 15.85 17.63 15.06 14.62 -

O
G

B
G

-H
IV

SIZE (cov) 60.06±1.63 79.49±0.55 61.81±1.68 59.55±2.56 - 59.65±1.44 60.47±0.88 62.29±0.91 66.95±0.93 65.86±1.00 66.03
±0.21 -

SIZE (cpt) 70.20±1.12 79.49±0.55 72.80±1.35 73.62
±1.33 - 72.36±4.75 70.41±0.38 70.59±0.58 75.94±0.91 72.64±0.27 70.85±0.17 -

SCAFFOLD (cov) 65.41±1.70 80.86±1.11 69.40±2.39 69.40±1.97 - 68.92±0.92 70.69±1.12 70.29±1.57 71.78±0.96 71.12
±1.21 70.61±1.09 -

SCAFFOLD (cpt) 62.36±2.20 80.86±1.11 70.79±1.55 71.65±1.33 - 69.46±0.83 68.77±0.90 71.50±0.55 76.13±0.39 73.64
±0.34 72.57±0.77 -

AVG. 64.51 80.18 68.70 68.56 - 67.60 67.59 68.67 72.70 70.82 70.02 -

T
U

NCI1 (cov) 0.21±0.06 0.45±0.03 0.22±0.07 0.27
±0.07 - 0.24±0.01 - - - - - 0.39±0.01

NCI109 (cov) 0.16±0.05 0.44±0.02 0.23±0.09 0.22±0.05 - 0.26±0.02 - - - - - 0.38±0.01
PROTEINS (cov) 0.23±0.05 0.46±0.03 0.40±0.06 0.31±0.12 - 0.43

±0.05 - - - - - 0.53±0.07
DD (cov) 0.25±0.09 0.40±0.04 0.29±0.08 0.26±0.08 - 0.37±0.07 - - - - - 0.35

±0.04

AVG. 0.21 0.44 0.29 0.27 - 0.33 - - - - - 0.41

M
ot

if

BASIS (cov) 62.01±3.92 92.15±0.04 66.43±11.31 67.15±8.19 - 82.55
±7.18 - - - - - 86.85±2.43

BASIS (cpt) 72.12±1.89 92.15±0.04 72.50±4.02 77.48±2.54 - 87.89±1.61 - - - - - 79.36
±1.12

SIZE (cov) 52.94±2.93 92.16±0.07 49.14±8.34 54.42
±3.11 - 62.90±8.30 - - - - - 53.43±8.09

SIZE (cpt) 58.23±1.73 92.16±0.07 58.63±6.66 70.65±4.81 - 70.36
±2.61 - - - - - 64.79±1.68

AVG. 61.33 92.16 61.68 67.43 - 75.93 - - - - - 71.11

C
M

N
IS

T COLOR (cov) 26.28±5.95 77.80±0.20 32.22
±2.67 32.11±2.53 - 33.21±13.43 - - - - - 24.39±2.09

COLOR (cpt) 29.53±0.50 77.80±0.20 34.80±3.33 39.39±3.30 - 36.56
±0.40 - - - - - 19.19±2.17

AVG. 27.91 77.80 33.51 35.75 - 34.89 - - - - - 21.79

We employ 10 random seeds for all methods to get the mean and standard deviation (std) results
for each studied baseline. To better evaluate the performance gap among methods, we also consider
additional statistical metrics including median and interquartile mean (IQM). Additionally, we also
calculate the optimality gap, quantified by the the performance gap between each method and the
in-distribution learning one, which ideally serves as the empirical upper-bound result for each task.

4.3 RESULTS ANALYSIS

General Results. Table 2 gives the results on all evaluated datasets and OOD scenarios. Additionally,
Fig. A2-A3 gives the further statistical metrics including median, IQM, mean, and optimality gap
across datasets in Drug-OOD and MoleculeNet, respectively. The extensive results reveal that pre-
trained methods predominantly outperform methods explicitly designed for Graph OOD tasks across a
majority of datasets. Specifically, within molecule-related graph datasets, pre-trained methods achieve
the highest or second-highest values all of the 19 test sets, demonstrating the substantial advantages of
these methods in such contexts. Among all pre-trained strategies, Mole-BERT consistantly performs
the best or the second best on most of molecular datasets. This is because that Mole-BERT utilizes a
context-aware tokenizer for encoding atoms, which might be more effective in capturing the nuanced
chemical properties essential for molecular datasets compared with ContextPred that focuses on
predicting the surrounding graph structures of nodes within similar contexts.

In terms of general simulated graphs, pre-trained model-InfoGraph demonstrates performance on
the Motif dataset that is comparable to other methodologies (second-highest in average), further
underscoring the potential efficacy of pre-trained models in addressing OOD challenges effectively.
However, results on CMNIST datasets show that InfoGraph underperforms compared to baseline
models, even inferior to GIN-OOD in both concept and covariate shifts. This suggests the pre-trained
model’s effectiveness on this case isn’t superior to other OOD methods, possibly due to the semantic
simplicity of the graphs impacting pre-trained representations initializations.
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4.4 IMPORTANCE OF KEY FACTORS IN PRE-TRAINED MODELS FOR GENERALIZATION 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Figure 2: Analysis on Key Factors in Pre-training. (a). Effects of Shift Degree. Generalization
capabilities of all considered methods under varying degrees of distribution shift. A higher degree
indicates a larger distribution shift; (b). Effects of Sample Size. OOD generalization versus number
of samples used in fine-tuning stage; (c). Effects of Fine-tuning LR. OOD Generalization versus
fine-tuning learning rates for models ContextPred, AttrMask, and Mole-BERT on the Drug-OOD
dataset. (d). Relation to ID Performance. OOD versus ID performances (measured by ROC-AUC)
of three pre-trained models on Drug-OOD and MoleculeNet datasets.

Effect of the Distribution Shift Degrees. We investigate the relationship between the performance
drop and shift degrees. To quantify shift degrees, we adopt the following approach: First, we train
a vanilla GNN model on the training domain without considering distribution shift. Subsequently,
we evaluate the performance drop on the testing domain with distribution shifts. Specifically, we
calculate the relative performance drop in AUC-ROC for multiple seeds and use the average value to
represent the shift degree. The formula for calculating shift degree (∆S) is given by:

∆S = 1

n

n

∑
i=1

(AUC-ROCtrain − AUC-ROCtest, i

AUC-ROCtrain
) (4)

where AUC-ROCtrain is the AUC-ROC score achieved by the GNN model on the training domain
without distribution shift, AUC-ROCtest, i is the AUC-ROC score achieved by the GNN model on
the testing domain with distribution shift for the ith seed, and n is the total number of seeds used.
The shift magnitude, ∆S, represents the average relative performance drop across different seeds.
Fig. 2(a) illustrates the relationship between performance degradation and the degree of distribution
shift on the Drug-OOD dataset, where there is the distribution shift on size. Here n = 10. It is evident
that a negative correlation exists between performance and shift degrees across all examined methods.
Notably, pre-trained models maintain superior performance relative to other methods at all degrees of
shift, underscoring their robustness against varying degrees of distribution shifts.

Effect of the Fine-tuning Sample Size. We also study the importance of fine-tuning sample size.
We test the OOD generlization with {5%, 10%, 20%, 40%, 50%, 65%, 80%} of the size we used in
original settings on Drug-OOD and MoleculeNet datasets. Results on Drug-OOD datasets are given
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in Fig. 2(b), showing that more samples during fine-tuning lead to better generalization. However,
even with only a few samples, pre-trained models still achieve good generalization performance. For
instance, with only 20% of the original sample size, the pre-trained models can achieve comparable
performances compared with baselines (baseline results are in Table 2).

Effect of the Fine-tuning Learning Rates. Based on the theoretical and empirical conclusions drawn
from prior work in Euclidean space data (Li et al., 2019; Yu et al., 2021), we explore whether the
choice of learning rate during the fine-tuning phase has a consistent impact on OOD generalization.
To analyze this relationship, we experimented with a set of learning rates for all pre-trained models,
specifically: {0.02,0.01,0.005,0.002,0.001,0.0005,0.0002,0.0001}. The number of epochs are
100 for all cases. Our empirical investigation shows that models fine-tuned with smaller learning
rates achieve better generalization capabilities. Fig. 2(c) gives the OOD generalization performance
versus the selection of learning rate for Context prediction, attribute masking and Mole-BERT on
Drug-OOD dataset. The results indicate that, only for Mole-BERT, a smaller fine-tune learning rate
leads to better generalization performance. While for Attraibute masking and context prediction,
there is no correlation between generalization performance and fine-tuning learning rates, which
contrary to the findings in image data (Yu et al., 2021).

Relation to the In-distribution Performance. In considering the relevance of pre-trained models
to downstream tasks, a question arises: Is the inherent model capability (shown as the ID learning
performances), reflected by the model’s performance on its pre-training dataset, crucial for OOD
generalization in downstream tasks? To analyze this association, we evaluated the relationship
between the generalization performances with OOD and in-distribution (ID) learning on Drug-OOD
and MoleculeNet datasets. Specifically, ID performances are the down-streaming generalizaiton
results of the pre-trained models (pre-trained on ZINC-15 dataset) on Drug-OOD and MoleculeNet
datasets without ditsirbution shift. Fig. 2(d) gives the evaluation, indicating that there is no clear
correlation between OOD and ID performances. This finding shows that “accuracy on the line”
phenomenon (Miller et al., 2021) does not always hold for the graph pre-trained models under OOD
generlization problem.

5 CONCLUSIONS

Our work is placed within a context where prior methods have designed relatively complicated
algorithms tailored for Graph OOD. It is crucial to clarify that our research does not challenge or
discredit these existing methods; instead, we offer the perspective by evaluating and benchmarking
the performance of pre-trained models on Graph OOD problems.

The Potential of Pre-trained Models for Graph OOD: We discovered that various pre-trained
models, with minimal fine-tuning, could match and often surpass, the performance of methods
specially for graph OOD, such as invariant/causal learning and data augmentation. This is especially
evident in tasks involving molecular graphs, regardless of the type of distribution shift (concept or
covariate), where the pre-trained models achieved superior OOD generalization compared to baseline
methods in most cases. Significantly, our results demonstrate that pre-trained models are consistently
well-performing among all distribution shift degrees, showing the advantages in OOD scenarios.

In-depth Empirical Study on Pre-trained Models for Graph OOD: Our empirical investigation
seeks to provide a deeper understanding of the role of the pre-trained models and various design
choices for fine-tuning play in ensuring optimal OOD generalization. Specifically, we explored
the correlation between fine-tuning learning rate and OOD generalization, the relationship between
pre-trained models in OOD and ID scenarios, and the impact of sample size, providing empirical
insights that can guide future research in OOD and pre-training.

In future work, we aim to explore a broader range of pre-training methods and OOD scenarios, build-
ing upon the current evaluation of representative approaches. The development of model selection
strategies, particularly in the context of pre-trained models and OOD generalization, is identified as
a promising avenue. Additionally, the potential enhancement of OOD generalization performance
through the combination of pre-trained models with invariant learning or data augmentation tech-
niques is suggested. The exploration of theoretical connections between graph pre-training and
OOD, drawing inspiration from self-supervised learning and pre-train models, is also highlighted
as a direction for further investigation. The detailed discussion on furture directions is given in
Appendix A.
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A DETAILED DISCUSSION ON FUTURE WORK

A.1 EXPLORATION OF MORE PRE-TRAINING METHODS AND OOD SCENARIOS

Our current work predominantly evaluates representative pre-training and OOD methods/scenarios.
However, the field abounds with numerous other methodologies, as summarized in several surveys (Li
et al., 2022c; Xia et al., 2022). Due to computational constraints, we could not explore each one
exhaustively, leaving a potential avenue for future research.

A.2 DEVELOPMENT OF MODEL SELECTION APPROACHES

Our empirical evaluations, especially those concerning learning rate experiments, lead us to believe
that developing pre-trained model selection strategies (e.g., (You et al., 2022)) for OOD generalization
is a promising direction for future research.
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A.3 COMBINATION OF METHODS FOR ENHANCED PERFORMANCE

Future studies could potentially combine pre-trained models with invariant learning or data augmen-
tation techniques to attain improved OOD generalization performance.

A.4 POTENTIAL THEORETICAL UNDERSTANDING

Based on our current evaluations, there exists an opportunity to explore theoretical connections
between graph pre-training and OOD, providing a richer, more in-depth understanding of the empirical
performance. One potential direction is exploring some theoretical findings in self-supervised learning
and pre-train models (Lee et al., 2021).

B DETAILS ON DATASETS

B.1 DATASET STATISTICS

Table 1 summarizes the important key factors and statistics of the molecular datasets. Table A1 and
A2 give the full dataset and graph statistics of molecular and general graph datasets used in the paper,
respectively.

Table A1: Split statistics of general graph datasets.

Datasets Domain Shift #. Graphs
(training/validation/testing)

Avg. #. Node
(training/validation/testing)

Avg. #. Edge
(training/validation/testing) #. Classes Metrics

Motif
Basis Covariate 18,000/3,000/3,000 17.1/15.8/14.9 48.9/33.0/31.5

3 AccuracyConcept 12,600/6,000/6,000 16.9/17.0/17/0 48.5/48.9/48.7
Size Covariate 18,000/3,000/3,000 16.9/39.2/87.2 43.6/107.0/239.6

Concept 12,600/6,000/6,000 51.8/51.5/51.6 141.8/140.2/141.5
CMNIST Color Covariate 42,000/7,000/7,000 75.0/75.0/75.0 1392.8/1393.7/1392.6 10 AccuracyConcept 29,400/14,000/14,000 75.0/75.0/75.0 1392.8/1393.5/1392.9

Table A2: Split statistics of molecular datasets.

Datasets Domain Shift #. Graphs
(training/validation/testing)

Avg. #. Node
(training/validation/testing)

Avg. #. Edge
(training/validation/testing) #. Classes / Task #. Task Metrics

DrugOOD
Scaffold

Covariate

21,519/19,041/19,048 39.4/26.8/22.5 85.8/58.4/47.7 2
1

ROC-AUC

Assay 34,179/19,028/19,032 34.5/30.7/29.7 75.2/66.8/64.7 2
Size 36,597/17,660/16,415 38.0/25.6/20.0 82.8/56.0/43.3 2

BBBP

Scaffold

1,631/204/204 22.5/33.4/27.5 48.4/72.3/59.8 2 1
Tox21 6,264/783/784 16.5/26.8/26.6 33.7/58.1/57.8 2 12

ToxCast 6,860/858/858 16.7/26.2/28.2 33.5/56.2/60.8 2 617
SIDER 1,141/143/143 30.0/43.2/53.3 62.8/91.8/112.7 2 27
ClinTox 1,181/148/148 25.5/32.6/24.6 54.2/71.0/53.4 2 2
MUV 74,469/9,309/9,309 24.0/25.3/25.3 51.8/55.6/55.5 2 17
HIV 32,901/4,113/4,113 25.3/27.8/25.3 54.1/61.1/55.6 2 1

BACE 1,210/151/152 33.6/37.2/34.8 72.6/81.3/75.1 2 1

OGBG-
MolHIV

Scaffold Covariate 24,682/4,113/4,108 26.2/24.9/19.8 56.7/54.5/40.6
2 1Concept 15,274/9,382/9,927 24.6/26.5/26.6 53.1/56.9/57.1

Size Covariate 26,169/2,773/3,961 27.8/15.5/12.1 60.1/32.8/24.9
Concept 14,483/9,676/10,762 31.3/20.0/19.4 67.7/42.8/41.5

OGBG-
MolPCBA

Scaffold Covariate 262,764/44,019/43,562 26.9/23.7/20.9 58.2/51.6/44.6
2 128 APConcept 159,158/90,740/119,821 25.5/26.4/26.7 55.2/57.0/57.7

Size Covariate 269,990/48,430/31,925 27.9/19.1/15.0 60.5/40.9/31.5
Concept 150,121/108,267/115,205 27.6/24.5/24.4 59.8/53.0/52.6

NCI1

Size Covariate

1,942/215/412 20.8/20.7/61.1 44.6/44.6/132.9 2 1

MCCNCI109 1,872/207/421 20.4/20.3/61.1 43.8/43.6/133.1 2 1
PROTEINS 511/56/112 15.4/15.7/138.9 57.4/58.5/504.6 2 1

DD 533/59/118 143.2/156.1/746.4 707.1/746.4/3814.7 2 1

B.2 DETAILS ON DATASET INTRODUCTION

DrugOOD (Ji et al., 2023). This benchmark supports AI-driven drug discovery with realistic
molecular graph datasets. It automates OOD dataset curation using ChEMBL (Mendez et al., 2019)
and offers diverse dataset splitting criteria, including scaffold, assay type and size, for tailored domain
alignment. The task focus on drug target binding affinity prediction.

MoleculeNet (Wu et al., 2018). MoleculeNet stands as a comprehensive benchmark for molecular
machine learning. It curates diverse public datasets, sets up evaluation standards, and offers open-
source tools for different molecular learning methods, all accessible via the DeepChem open source
library (Ramsundar et al., 2019).
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The benchmark comprises multiple binary graph classification datasets, each designed to evaluate
model performance across different facets of molecular interaction. Specifically, BBBP (Martins
et al., 2012) evaluates the crucial measure of blood-brain barrier penetration, vital for understanding
membrane permeability. Tox21 (Abdelaziz et al., 2016) offers toxicity data encompassing 12
biological targets, including nuclear receptors and stress response pathways. Toxcast (Richard et al.,
2016) provides toxicology measurements based on over 600 in vitro high-throughput screenings,
serving as a rich resource for understanding toxicity. SIDER (Kuhn et al., 2016) features a database
detailing marketed drugs and adverse drug reactions, categorized into 27 system organ classes,
offering insights into drug safety. ClinTox (Novick et al., 2013) (AAC) consists of qualitative data
classifying drugs approved by the FDA and those that have failed clinical trials due to toxicity
concerns. MUV (Gardiner et al., 2011) represents a subset of PubChem BioAssay (Kim et al., 2023),
refined through nearest neighbor analysis, and tailored for validating virtual screening techniques. The
HIV dataset originates from the Drug Therapeutics Program (DTP) AIDS Antiviral Screen (Riesen &
Bunke, 2008), a comprehensive screening effort that evaluated the effectiveness of more than 40,000
compounds in inhibiting HIV replication. BACE (Subramanian et al., 2016) is a dataset that provides
qualitative binding results for a collection of inhibitors targeting human β-secretase 1.

OGBG (Hu et al., 2020). OGBG is a specific subset within Open Graph Benchmark (OGB),
containing representative datasets like OGBG-Molhiv, OGBG-Molpcba, and OGBG-PPA. OGBG-
Molhiv and OGBG-Molpcba challenge graph property prediction with distribution shifts, specifically
focusing on predicting molecular properties. They use a scaffold splitting approach, separating
structurally distinct molecules into different subsets for a realistic evaluation of graph generalization.
The dataset split follows GOOD benchmark (Gui et al., 2022). Specifically, for covariate shift with
a distribution source of size, we arranged the molecules in descending order based on the number
of nodes and split them into a ratio of 8 ∶ 1 ∶ 1 for the training set, validation set, and testing set,
respectively. Similarly, the entire dataset was ordered based on the Bemis-Murcko scaffold string
of SMILES, maintaining the same ratio. For concept shift, exemplified by size, we categorized
molecules into different groups based on different numbers of molecular nodes. Following this
categorization, we selected samples from each group with different labels, forming the training set,
validation set, and testing set, respectively, with a ratio of 3 ∶ 1 ∶ 1. This grouping approach aligns
with the scaffold-wise distribution, where molecules are categorized based on the Bemis-Murcko
scaffold string of SMILES.

TU Datasets. (Morris et al., 2020) It is a collection of benchmark datasets for graph classification
and regression. Among these datasets, NCI1, NCI109, PROTEINS, and DD stand out as important
and representative graph classification datasets, each offering unique characteristics and complexities.
NCI1 and NCI109 datasets are prominent in chemoinformatics. NCI1 is a binary graph classification
dataset that focuses on anticancer compound classification. It comprises molecular graphs, with
nodes representing atoms and edges indicating chemical bonds. NCI109 extends the challenge by
expanding the number of classes and compounds. PROTEINS is a dataset focused on protein graphs,
where each node represents a specific protein, and the edges signify various biologically relevant
connections or associations between these proteins. The task is to predict the presence or absence of
specific protein functions. DD is a real-world graph classification dataset, comprising 1,178 protein
network structures, each of which features 82 distinct node labels. The task is to classify each graph
into one of two classes: an enzyme or a non-enzyme.

Motif. Motif is a synthetic dataset (Wu et al., 2022b). It has been created to address structural shifts
in graph data. In this dataset, each graph is composed of a base and a motif. The bases are categorized
into three distinct types: Tree (S = 0), Ladder (S = 1), and Wheel (S = 2). On the other hand, the
motifs include Cycle (C = 0), House (C = 1), and Crane (C = 2), introducing various structural
complexities into the dataset. The ground truth label Y for each graph is exclusively dictated by the
motif (C). The primary objective in this dataset is to accurately classify the graphs into one of three
classes: Cycle, House, or Crane.

CMNIST. CMNIST is a special dataset with graphs showcasing handwritten digits. These graphs are
created from the MNIST dataset (Arjovsky et al., 2019) but preprocessed with superpixel (Monti
et al., 2017). The goal is to classify each graph into one of the ten-digit categories, from 0 to 9.
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C DETAILS ON EVALUATED METHODOLOGIES

Fig. A1 gives the evaluation pipeline on pre-trained GNNs for graph OOD secenarios with a showing
case on molecular graphs.

Molecular Graph in 
Downstream Dataset

ZINC-15

Pre-training Dataset

MLPPOOL

MLP Masked 

node 


prediction Context Prediction

…
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⋮
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…

Transfer
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Figure A1: PodGenGraph pipeline for molecular graph pre-training and fine-tuning for downstream
datasets.

C.1 HYPERPARAMETER DETAILS FOR BASELINE METHODS

CIGA. We used default hyperparameters as specified in the original paper for DrugOOD, TU datasets,
Motif, and CMNIST. Specifically, in DrugOOD, the causal substructure size is set to 80% of each
graph size for DrugOOD-Scaffold and DrugOOD-Assay, while it’s 10% for DrugOOD-Size. The
dropout rate is 0.5 for DrugOOD-Scaffold and DrugOOD-Assay, and 0.1 for DrugOOD-Size. For
DrugOOD-Assay with CIGA-v1 and CIGA-v2, the coefficient for contrastive loss is set to 8 and 1,
respectively. For DrugOOD-Scaffold with CIGA-v1 and CIGA-v2, it’s 32 and 16, respectively. For
DrugOOD-Size with CIGA-v1 and CIGA-v2, it’s 16 and 2, respectively.

For TU datasets, we use a causal substructure size of 60% for NCI1, 70% for NCI109, and 30% for
DD and PROTEINS. The coefficient for contrastive loss is 0.5 for NCI1 with CIGA-v1 and 1 for
NCI1 with CIGA-v2. It’s 2 for both NCI109 and DD with all CIGA versions. For PROTEINS, the
coefficient for contrastive loss is 0.5 with both CIGA-v1 and CIGA-v2.

In Motif, the causal substructure ratio is 25%, and in CMNIST, it’s 80%. For Motif, the coefficient of
contrastive loss is chosen from {0.5, 1, 4, 8, 16, 32}, and for CMNIST, it’s 32 with CIGA-v1 and 16
with CIGA-v2.

For datasets in MoleculeNet and scaffold distribution shift in OGBG datasets, we use hyperpa-
rameters similar to those in DrugOOD-Scaffold. For size distribution shift in OGBG datasets, the
hyperparameters are aligned with those in DrugOOD-Size.

MoleOOD. We employed default hyperparameters as provided in the code release. Specifically, we
selected the prior distribution from uniform, Gaussian distribution for all datasets. In DrugOOD, we
utilized 20 domains for the domain prior across three datasets. For MoleculeNet and OGBG datasets,
we varied the number of domains among {10, 15, 20}.

LiSA. We utilized the default hyperparameters provided in the code release. The inner loop was set
to 20 for all datasets. We employed 3 subgraph generators and a coefficient loss regularization term
of 0.1 across all datasets.
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D FULL RESULTS

D.1 RESULTS ON DIFFERENT DATASETS.

Appendix Table A3-A9 give the full results on the OOD performances of all evaluated methods
sperated by datasets.

Table A3: Testing ROC-AUC on Drug-OOD datasets (Ji et al., 2023) with covariate shift. Blue
shaded rows indicate pre-training strategies. The first and second best-performing methods (except
the ID training) are in bold and bold, respectively.

DrugOOD-Scaffold DrugOOD-Assay DrugOOD-Size Avg

CIGA-v1 69.27±0.81 72.36±0.60 67.08±0.82 69.57
CIGA-v2 69.68±0.21 73.28±0.35 68.02±0.51 70.32
MoleOOD 68.01±0.39 71.18±0.63 66.61±0.36 68.60

LiSA 65.71±0.25 67.66±0.63 65.78±0.46 66.38
ContextPred 70.01±0.13 72.80

±0.55 68.42±0.10 70.41
AttrMask 70.68±0.31 71.56±0.43 68.22

±0.15 70.15
Mole-BERT 70.04

±0.25 71.19±0.09 67.92±0.19 69.60
GIN-OOD 67.31±0.50 71.20±0.29 66.67±0.26 68.39

GIN-ID 84.36±0.15 87.07±0.62 87.69±0.77 86.37

Table A4: Testing ROC-AUC on MoleculeNet datasets (Wu et al., 2018) with covariate shift. Blue
shaded rows indicate pre-training strategies.

BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg

CIGA-v1 65.50±1.62 73.87±0.54 62.81±0.55 57.40±4.40 55.00±1.60 68.10±1.30 75.79±1.09 73.60±4.30 67.75
CIGA-v2 68.69±1.37 72.25±1.46 58.53±1.85 54.90±2.13 66.37±3.22 70.99±1.34 73.19±4.22 78.56±2.34 68.16

MoleOOD 69.71
±1.56 73.65±0.85 62.90±0.96 62.01

±0.58 89.93±3.90 67.79±2.46 78.29±0.51 81.10±1.97 73.36
LiSA 65.26±2.01 66.32±0.76 59.56±0.57 57.28±0.66 65.00±2.60 67.91±1.13 62.57±1.30 69.97±3.06 64.92

ContextPred 69.32±1.03 74.47±0.36 63.43
±0.40 60.45±0.60 57.40±3.16 77.36

±1.11 77.56±0.95 79.41±1.96 68.38
AttrMask 64.95±3.40 76.22

±0.41 63.36±0.50 60.15±0.57 70.47±3.43 74.93±2.07 76.41±0.70 79.88
±0.61 71.37

Mole-BERT 71.88±1.12 76.90±0.33 64.18±0.31 62.74±0.89 78.88
±2.24 78.62±1.51 78.10

±0.65 80.88±1.45 74.62
GIN-OOD 65.78±4.90 73.95±0.28 62.13±0.71 57.38±1.65 57.29±5.91 70.40±1.80 75.06±2.06 70.78±5.29 66.70

GIN-ID 93.13±0.58 82.60±0.20 70.93±0.28 62.57±0.81 84.91±2.10 79.49±1.44 80.86±1.11 86.73±1.72 80.55

Table A5: Performance evaluation on OGBG datasets (Hu et al., 2020) with covariate shift. OGBG-
MolPCBA is evaluated by AP, while OGBG-MolHIV is evaluated by ROC-AUC. Blue shaded rows
indicate pre-training strategies. The first and second best-performing methods (except the ID training)
are in bold and bold, respectively.

OGBG-MolPCBA OGBG-MolHIV
Size Scafflod Size Scafflod

CIGA-v1 10.51±0.17 10.24±1.98 61.81±1.68 69.40±2.39
CIGA-v2 9.65±0.12 10.62±1.04 59.55±2.56 69.40±1.97

LiSA 6.52±0.20 8.67±0.24 59.65±1.44 68.92±0.92
ContextPred 13.30±0.37 22.14±0.43 60.47±0.88 70.69±1.12

AttrMask 13.50
±0.38 21.89

±0.27 62.29
±0.91 70.29

±1.57
Mole-BERT 16.19±0.24 17.33±0.12 66.95±0.93 69.63±0.96
GIN-OOD 12.85±0.34 13.03±0.43 60.06±1.63 65.41±1.70

GIN-ID 28.10±0.69 30.80±0.54 79.49±0.55 80.86±1.11
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Table A6: Testing Matthews correlation coefficient on TU datasets with covariate shift. Blue shaded
rows indicate pre-training strategies. The first and second best-performing numbers (except the ID
training) are in bold and bold, respectively.

NCI1 NCI109 PROTEINS DD

CIGA-v1 0.22±0.07 0.23±0.09 0.40±0.06 0.29±0.08
CIGA-v2 0.27

±0.07 0.22±0.05 0.31±0.12 0.26
±0.08

LiSA 0.24±0.01 0.26±0.02 0.43
±0.05 0.37±0.07

InfoGraph 0.39±0.01 0.38±0.01 0.53±0.07 0.35
±0.04

GIN-OOD 0.21±0.06 0.16±0.05 0.23±0.05 0.25±0.09
GIN-ID 0.45±0.03 0.44±0.02 0.46±0.03 0.40±0.04

Table A7: Testing accuracy on general graph datasets with covariate shift. Blue shaded rows indicate
pre-training strategies. The first and second best-performing numbers (except the ID training) are in
bold and bold, respectively.

Motif CMNISTBasis Size

CIGA-v1 66.43±11.31 49.14±8.34 32.22
±2.67

CIGA-v2 67.15±8.19 54.42
±3.11 32.11±2.53

LiSA 82.55
±7.18 62.90±8.30 33.21±13.43

InfoGraph 86.85±2.43 53.43±8.09 24.39±2.09
GIN-OOD 62.01±3.92 52.94±2.93 26.28±5.95

GIN-ID 92.15±0.04 92.16±0.07 77.80±0.20

D.2 DIFFERENT STATISTICAL METRICS

Appendix Fig. A2-A3 show the additional statistical evaluation on the performances of all approaches
on Drug-OOD and Molecule-Net datasets. The metrics include median, IQM, mean, and the
optimality gap. Results also reveal that the pre-trained models achieve well-performance results
compared with baseline approaches.

66.0 67.5 69.0 70.5
CIGA-v1
CIGA-v2

GIN-OOD
ContextPred

Mask Pre-training
LiSA

Mole-BERT
MoleOOD

Median

66.0 67.5 69.0 70.5

IQM

67.5 69.0 70.5

Mean

16.5 18.0 19.5

Optimality Gap

ROC-AUC

Figure A2: Aggregate performance on DrugOOD averaged across three datasets:
DrugOOD-lbap-core-ic50-assay, DrugOOD-lbap-core-ic50-scaffold, and
DrugOOD-lbap-core-ic50-size. Better results are indicated by higher mean, median, and
IQM scores, along with a lower optimality gap.
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Table A8: Performance evaluation on OGBG datasets (Hu et al., 2020) with concept shift. OGBG-
MolPCBA is evaluated by AP, while OGBG-MolHIV is evaluated by ROC-AUC. Blue shaded rows
indicate pre-training strategies. The first and second best-performing numbers (except the ID training)
are in bold and bold, respectively.

OGBG-MolPCBA OGBG-HIV
Size Scafflod Size Scafflod

CIGA-v1 9.22±0.09 8.33±0.06 72.80±1.35 70.79±1.55
CIGA-v2 8.31±0.12 8.71±0.12 73.62

±1.33 71.65
±1.33

LiSA 5.05 ± 0.32 8.55±0.63 72.36±4.75 69.46±0.83
ContextPred 11.39±0.21 15.71±0.38 70.41±0.38 68.77±0.90

AttrMask 11.87
±0.24 16.14

±0.49 70.59±0.58 71.50±0.55
Mole-BERT 15.71±0.26 21.29±0.53 75.94±0.91 76.13±0.39
GIN-OOD 12.76±0.62 17.27±0.63 70.20±1.12 62.36±2.20

GIN-ID 28.10±0.69 30.80±0.54 79.49±0.55 80.86±1.11

Table A9: Testing accuracy on general graph datasets with concept shift. Blue shaded rows indicate
pre-training strategies. The first and second best-performing numbers (except the ID training) are in
bold and bold, respectively.

Motif CMNISTbasis size

CIGA-v1 72.50±4.02 58.63±6.66 34.80±3.33
CIGA-v2 77.48±2.54 70.65±4.81 39.39±3.30

LiSA 87.89±1.61 70.36
±2.61 36.56

±0.40
InfoGraph 79.36

±1.12 64.79±1.68 19.19±2.17
GIN-OOD 72.12±1.89 58.23±1.73 29.53±0.50

GIN-ID 92.15±0.04 92.16±0.07 77.80±0.20

68 72 76
CIGA-v1
CIGA-v2

GIN-OOD
ContextPred

Mask Pre-training
LiSA

Mole-BERT
MoleOOD

Median

68 72 76

IQM

66 69 72

Mean

6 9 12 15

Optimality Gap

ROC-AUC

Figure A3: Aggregate performance on MoleculeNet averaged across eight datasets: BBBP, Tox21,
ToxCast, SIDER, ClinTox, MUV, HIV, BACE. Better results are indicated by higher mean, median,
and IQM scores, along with a lower optimality gap.

20



Under review as a conference paper at ICLR 2024

D.3 DIFFERENT BACKBONES

Appendix Fig. A4-A7 show the performance on molecular prediction with different GNN architectures
(GIN and GAT).

Figure A4: Comparison of ROC-AUC performance (%) on the DrugOOD dataset using the GIN and
GAT backbones, respectively.

Figure A5: Comparison of ROC-AUC performance (%) on the MoleculeNet dataset using the GIN
and GAT backbones, respectively.
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Figure A6: Comparison of AP on the OGBG-PCBA dataset using the GIN and GAT backbones,
respectively.

Figure A7: Comparison of ROC-AUC performance (%) on the OGBG-HIV dataset using the GIN
and GAT backbones, respectively.

E REPRODUCIBILTY STATEMENT

E.1 DETAILS

The experiments are implemented on an 8 Intel Xeon Gold 5220R and 4 NVidia A100 GPUs. We use
the publicly accessible code libraries of all evaluated methods. The detailed implementation can be
found through this anonymous link: https://sites.google.com/view/podgengraph/.

22

https://sites.google.com/view/podgengraph/


Under review as a conference paper at ICLR 2024

E.2 USED LIBRARIES AND LICENSES

In our implementation, we have used the following libraries which are covered by the corresponding
licenses:

• Tensorflow (Apache License 2.0)
• Pytorch (BSD 3-Clause ”New” or ”Revised” License)
• Numpy (BSD 3-Clause ”New” or ”Revised” License)
• RDKit (BSD 3-Clause ”New” or ”Revised” License)
• scikit-image (BSD 3-Clause ”New” or ”Revised” License)
• wilds (MIT License)
• Codebase of CIGA: link, (MIT license)
• Mole-OOD: link, (MIT license )
• Codebase of LiSA: link
• Codebase of Mask pretraining and context prediction: link, (MIT Liecense)
• Codebase of InfoGraph: link
• Codebase of Molecule-BERT: link
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https://github.com/LFhase/CIGA
https://github.com/yangnianzu0515/MoleOOD
https://github.com/Samyu0304/LiSA#code-for-mind-the-label-shift-of-augmentation-based-graph-ood-generalization-lisa-in-cvpr-2023
https://github.com/snap-stanford/pretrain-gnns
https://github.com/sunfanyunn/InfoGraph#infograph-unsupervised-and-semi-supervised-graph-level-representation-learning-via-mutual-information-maximization
https://github.com/zhang-xuan1314/Molecular-graph-BERT
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