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Figure 1: Our method is the first method capable of generating high-quality martial arts combat videos. It takes two reference
ID images and a conditioned pose sequence as input and generates a video that maintains consistency in both IDs and action.
The solo dance methods struggle with this new task. The right part showcases our results.

ABSTRACT
Amid the surge in generic text-to-video generation, the field of
personalized human video generation has witnessed notable ad-
vancements, primarily concentrated on single-person scenarios.
However, to our knowledge, the domain of two-person interac-
tions, particularly in the context of martial arts combat, remains
uncharted. We identify a significant gap: existing models for single-
person dancing generation prove insufficient for capturing the
subtleties and complexities of two engaged fighters, resulting in
challenges such as identity confusion, anomalous limbs, and action
mismatches. To address this, we introduce a pioneering new task,
Personalized Martial Arts Combat Video Generation. Our approach,
MagicFight, is specifically crafted to overcome these hurdles. Given
this pioneering task, we face a lack of appropriate datasets. Thus, we
generate a bespoke dataset using the game physics engine Unity,
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meticulously crafting a multitude of 3D characters, martial arts
moves, and scenes designed to represent the diversity of combat.
MagicFight refines and adapts existing models and strategies to
generate high-fidelity two-person combat videos that maintain in-
dividual identities and ensure seamless, coherent action sequences,
thereby laying the groundwork for future innovations in the realm
of interactive video content creation.

CCS CONCEPTS
• Computing methodologies → Image and video acquisition.

KEYWORDS
Video Generation, Multi-Modal Generation, Diffusion Model, AIGC

1 INTRODUCTION
Video generation has emerged as a prominent field in AI research in
recent years, with the creation of personalized videos representing
a subtask of significant commercial and artistic value. When the
specified subject is a human, this process, also known as character
animation generation, entails providing an image of the source
character, whereupon the model generates a realistic video fol-
lowing a sequence of poses specified by the user. This task boasts
many potential applications, including online retail, entertainment

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

videos, art creation, and virtual characters, among others. Numer-
ous studies have explored image animation and pose transfer by
GAN[6, 34, 37–39, 50, 53, 56], serving as foundational work.

In recent years, diffusion models[14] have demonstrated their
superiority in text-to-image [2, 19, 29, 33, 35, 36] and video gener-
ation [5, 9, 11, 13, 15, 16, 22, 31, 40, 43, 46]. Numerous researchers
have utilized the architecture of diffusion models to explore video
generation conditioned on given image [8, 11, 43, 55]. However,
when applied to human animation, for which they are not specifi-
cally designed, these methods often produce character appearances
that do not match the original image, leading to videos that lack
movement coherence. For fashion video generation, DreamPose[21]
introduces an adapter to fuse CLIP[32] image features into Stable
Diffusion [35] and finetunes on the input sample.

Recent works specializing in human dance video generation,
including DisCo [42], MagicAnimate [47], AnimateAnyone [18],
MagicDance [7], DreaMoving [10] and Champ [57] exhibit similar
approaches and network structures. DisCo [42] extracts character
and background features via ControlNet[52] while it shows serious
flaws in generating the ID. Othermethods [7, 10, 18, 47, 57] all aim to
solve the issue of ID appearance. Each employs its own appearance
encoder, utilizing a parameter-rich encoder like ControlNet for
multi-scale and detailed ID feature extraction from the original
image. They design an effective pose guide for controllability and a
temporal module for smooth interframe transitions. Furthermore,
the pivotal element is the training data they have amassed. By
leveraging large-scale, high-quality datasets, these methods can
animate arbitrary characters.

However, all the aforementioned methods fall short in human
fighting video generation involving multiple subjects. As these
methods are designed for single-person dancing, they accept a
single ID and a single-person pose sequence, and their training
datasets predominantly contain single-person dance videos such
as TikTok [20]. Besides, the absence of network design for multi-
person and the lack of multi-person dataset preclude these existing
works from effectively generating multi-person fighting videos.
Hence, we introduce a new task: personalized martial arts combat
video generation. There are three primary distinctions between our
new task and the existing ones: 1) Subject number: The existing
task focuses on solo dances, whereas ours involves two individuals.
2) Motion type: While fashion and dance videos emphasize slow
and individual movements, martial arts combat requires capturing
complex kung fu and varied poses. 3) Interaction dynamics: Un-
like solo dance with no interactive dynamics, martial arts combat
necessitates depicting the intricate interplay between two-person,
highlighting the authenticity of the generated video.

In this paper, we design a base method MagicFight for our pro-
posed new task named personalized martial arts combat video
generation. To establish this foundational method, we address exist-
ing issues in current techniques and investigate dataset production,
processing, and training strategies. Our main contributions include:

(1) For the first time, we delineate two-person fighting from
one-person dancing. We create a dataset of martial arts com-
bat videos named KungFu-Fiesta (KFF) and establish data
cleaning rules for dataset quality and diversity, laying a solid
foundation for this new task.

(2) We introduce a multi-modal personalized network to learn
conditioning on two reference IDs, pose, background, and
prompt, focusing on the dynamic complexities of combat.
With the personalized attention layer (ID-attn), we address
the clothing and body misattribution problem in our task.

(3) In the inference stage, we introduce body-shape adaptive
strategy to automatically adjust the preset posemap, aligning
the generated video more closely with the expected body
shape. For arbitrary long video generation, we use a clip
fusion technique to ensure continuity between clips.

(4) We conduct a comprehensive ablation study from both the
dataset and model training perspectives. We explore the
properties, size, and quality requirements for our dataset on
this task, and offer insights and guidance about the effect
of different training components on overall performance.
We creatively propose the Mixture Data Finetuning strat-
egy, which mixes self-made two-person fashion videos and
KFF dataset for training, in order to take full advantage of
different data domain.

2 RELATEDWORK
2.1 Conditional Video Generation
The field of video generation has advanced significantly, thanks to
diffusion models adapted from text-to-image (T2I) techniques. Re-
search efforts [9, 15, 16, 22, 26, 31, 40, 46, 49] introduce frame atten-
tion and embedding temporal layers within T2I models. Initiatives
like Video LDM [5] advocate for image pretraining before engaging
in video temporal training, and AnimateDiff [11] brings motion
modules to T2I models without the need for specialized adaptation.
Expanding into image-to-video transformation, VideoComposer
[43] stands out by integrating images as conditional inputs during
training. VideoCrafter [8] distinguishes itself by melding text and
visual features from CLIP into its cross-attention mechanism. The
Stable Video Diffusion (SVD) [4] signifies a quantum leap in enhanc-
ing video quality and dynamic representation. With W.A.L.T [12]
pioneering through its VAE Encoder in choosing optimal latent
representations, and the Sora [1] setting new standards for high-
definition, realistic video outputs, these advancements mark a deci-
sive turn towards refined, high-quality video generation.
2.2 Human Video Generation
Recent studies highlight the incorporation image-to-video diffusion
model into human video generation. PIDM[3] introduces texture
diffusion blocks to infuse desired texture patterns into the denoising
process for human pose migration. LFDM[28] synthesizes optical
flow sequences in latent space, distorting the input image based on
specified conditions. LEO[44] represents motion through a series
of flow maps, using a diffusion model to synthesize the motion se-
quence. DreamPose[21] utilizes a pre-trained stable diffusion model,
introducing an adapter to model the image embeddings extracted
by CLIP and VAE. DisCo[42], inspired by ControlNet, decouples
pose and background control. MagicAnimate, AniamteAnyone, and
Champ build primarily on the DisCo and advance the improvement
of appearance alignment and motion control mechanisms. How-
ever, these methods still struggle with issues like ID appearance
inconsistency and temporal instability. Moreover, no method yet
exists for generating martial arts combat videos or focusing on
two-person motion video.
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Figure 2: Our MagicFight has 4 conditions for combat video generation, two reference IDs, a text prompt, a background image,
and pose maps. The action of each frame is controlled by Pose Guider. The two IDs are personalized by our Personalized
Attention (ID-attn) layer which can generate the respective appearance to the desired place. The user can provide a simple
background image or use a pure white background and then generate a complex and reasonable background by our Background
Crafter. With the long video generation technique, we can make arbitrary long videos (typically 10 seconds in our test).

Table 1: Details of Our Martial Arts Combat Video Dataset
Scene Category Island Rainforest Palace City Mountains Snowfield
Number of Videos 42 38 45 41 39 45

Desert Seaside Bridge Open Field School Boxing Gym
Number of Videos 43 40 37 44 36 35

Action Category Boxing Kicking Wrestling Jeet Kune Do Somersault Weapon Combat
Number of Videos 40 42 43 39 38 44

Rapid Attack Blocking Dodging Judo Wing Chun Finishing Move
Number of Videos 37 45 36 42 41 34

Character Category Male Staff Female Staff Fat Person Thin Person Tall Person Short Person
Number of Videos 43 41 38 42 37 39

Beauty Soldier Student Elderly Athlete Martial Artist
Number of Videos 40 45 34 36 42 44

3 METHODS
First, we analyze the existing problems in Sec. 3.1. Then, we detail
our dataset creation process in Sec. 3.2, and our model architecture
in Sec. 3.3. We describe the training and inference in Sec. 3.4 and 3.5,
respectively.

3.1 Existing Problems and Motivation
We commence with an analysis of the challenges that existing mod-
els face in generating scenes with complex character interactions as
shown in Fig. 1. 1) During the generation with two-person interac-
tions, a common issue is misattribution of clothing and body parts,
particularly when characters are close. For instance, the woman’s
left leg in the short skirt might be incorrectly merged with the
man’s pants, with color inaccuracies also occurring. These issues
highlight the necessity for a customed two-person model to ad-
dress the misattribution problem. 2) Besides, missing body parts
also frequently occur, like duplicated legs or absent feet. This issue
stems from the inadequate data on leg lifting and kicking actions
in the human dance dataset and the absence of foot keypoints in
the pose maps, leading to the model’s poor perception of leg and
foot features, which is thirsty for a tailored martial arts dataset. 3)
Moreover, existing models often produce medium-sized characters,
overlooking the diversity in body shape. For instance, muscular
"Hulk" and bony people are frequently underrepresented. Hence,
we aim to solve the problem of mismatch between body type and

given pose, adapting to any body shape during inference. Our re-
search seeks to mitigate the aforementioned problems and lay the
groundwork for future endeavors.

3.2 KungFu-Fiesta Dataset Creation
This section details our first martial arts combat video dataset
named KungFu-Fiesta (short for KFF). We make 4 scenarios for
this dataset creation and finally chose the Unity scenario, details
about it are in our appendix. With Unity, an advanced game physics
engine, it can create highly realistic 3D character models and ac-
tion animation in a simulated world, and by rendering the scene
from an angle and exporting them to video, it is possible to create
a large number of highly realistic martial arts combat videos. For
the diversity and complexity of the dataset, we design hundreds
of character IDs with different identities, covering more than 100
kinds of paired fighting actions, and a variety of shooting angles in
20 different scenes. After careful design and production, we capture
more than 500 high-quality videos. Each video sample is about
10 seconds with 60 fps, ensuring the coherence of the action. In
KungFu-Fiesta, each sample contains a combat video, two reference
images of character IDs (for short reference IDs), and a pose map
sequence, providing researchers with more conditions. The details
of the dataset are shown in Table 1.

3.3 Multi-Modal Personalized Network
Our model is an extension of the Stable Diffusion (SD), so we inherit
its VAE [23], denoising UNet and CLIP encoder. Fig. 2 provides an
overview of our framework. The input to the network is multi-
frame noisy latent 𝑧𝑡 ∈ R𝐹×𝑐×ℎ×𝑤 (timestep 𝑡 ). In order to utilize
the general knowledge of human motion, our model is based on
the pretrained model of AnimateAnyone [18] which is for single-
person dancing video generation. The framework consists of three
key components: 1) ReferenceNet is responsible for encoding the
appearance of the two reference IDs; 2) Pose Guider is for control-
ling the two-person’s fight by pose map; 3) Temporal layer, the



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Our two-person fashion 
dataset

Finetuned on only 
fashion dataset

Mixture dataset 
finetuning

Finetuned on only KFF
dataset

Figure 3: Dataset ablation study.Wemix the KFF dataset with
our remade UBC fashion dataset (two videos spliced into a
two-person video) for training, which improves the clarity
and quality of the video. Training with the fashion dataset
alone could not generate some martial arts movements, such
as kicks, as the movements in this dataset are too simple.

attention layer between these frames is to ensure the continuity
of the character’s movement. AnimateAnyone proposes to use a
lightweight pose controller with only 4 simple convolutional layers
since the pose control of single-person is easy. However, our two-
person martial arts situation is more complex and the input pose
becomes two-person. We finally choose to use a large Pose Guider
like ControlNet.

Personalized Attention Layer. In our task, the given refer-
ence IDs provide detailed appearance information. However, the
ReferenceNet of AnimateAnyone is designed and trained for single-
person feature extraction. Thus, we feed 2 ID images into Refer-
enceNet alongside the batchsize dimension to extract their features
[𝑟1, 𝑟2], and then they are fed into the denoising U-Net. As shown in
Fig. 2, our personalized attention (ID-attn) layer replaces the origi-
nal self-attention layer of SD. Given the feature map 𝑥𝑙∈R𝐹×ℎ×𝑤×𝑐

in the 𝑙-th ID-attn layer and ID features 𝑟1, 𝑟2 ∈ Rℎ×𝑤×𝑐 , ID-attn is
performed as:

𝑂𝑙,𝑖 =MaskAttn(𝑄𝑙 , 𝐾𝑖 , 𝑀𝑖 )𝑉𝑖 ,
𝑂𝑙 =𝑀1𝑂𝑙,1 +𝑀2𝑂𝑙,2 + (1 −𝑀1 −𝑀2)Attn(𝑄𝑙 , 𝐾𝑙 )𝑉𝑙 ,

(1)

where𝑄𝑙 denotes theQuery from𝑥𝑙 , [𝐾𝑖 ,𝑉𝑖 ] represents the Key/Value
from 𝑖-th ID 𝑟𝑖 , and [𝐾𝑙 ,𝑉𝑙 ] denotes the Key/Value from 𝑥𝑙 itself.
Computing attention between the whole 𝑥𝑙 and 𝑟𝑖 may lead to
reference disruption. Thus, MaskAttn() means only to keep the
attention of the 𝑀𝑖 region and mask the other regions with no
attention.𝑀𝑖 denotes the target position of ID 𝑖 , computed by the
bounding box of the pose of ID 𝑖 . So the target part of𝑀𝑖 is from 𝑟𝑖
and the background part 1 −𝑀1 −𝑀2 is not affected by IDs.

Conditioned Background. For conditioned background (pure
white also OK), we concat the given background image latent with
𝑧𝑡 at channels and input to U-Net. The user can 1) provide a simple
background image for end-to-end background customisation, and
2) if the user does not want to provide a background image, the
conditioned background will be set to pure white, and then user can
provide text prompt in Background Crafter to generate the back-
ground. Our Background Crafter is based on SDXL-Inpainting [30].
Its conditions are the original foreground image, background mask
(it is easy to obtain a mask due to the white background), and text
prompt. We finetune it on our dataset and follow [25] to main-
tain inter-frame background consistency, which is detailed in our
appendix.

3.4 Multi-Stage and Mixture Dataset Finetuning
3.4.1 Mixture Dataset Finetuning. We propose to use a mixture of
KFF dataset with our recreated two-person fashion video dataset

Two reference IDs Body shape adapted pose Given conditional pose

Figure 4: The body size adaptive strategy during inference.

made based on the UBC dataset [51]. It is worth noting that the UBC
dataset originally contains videos of a single person walking down
a fashion runway, and by splicing two randomly selected videos
left and right together, we create a video dataset that simulates a
two-person fashion runway, which has the advantages of a pure
white and clean background, real people in the subjects, and high-
definition clothing textures, and the disadvantages that the two
subjects are randomly spliced together, and lack of multi-subject in-
teractions. Based on the benefits of the two-person fashion dataset,
we hypothesise that a strategy of training with a mixture of two-
person fight videos and two-person fashion videos would improve
the consistency and aesthetics of the appearance, thus demonstrat-
ing stronger generalisation capabilities when dealing with complex
character interaction scenarios.

3.4.2 Multi-Stage Finetuning. Since our MagicFight model is fine-
tuned on the pretrained Moore-AnimateAnyone [24]1, we propose
the 2 stages finetuning. The first stage during finetuning is a spatial
learning stage, using individual video frames from our KFF dataset
as image input. In denoising U-Net, all temporal layers are frozen
and become intra-frame attention, and the model takes the noisy
single frame as input, along with the reference IDs and the pose
map. ReferenceNet and Pose Guider are trained to learn the spatial
distribution of the two-person fighting. The pretrained weights
on the human dancing dataset are used to initialize our denoising
U-Net, ReferenceNet, and Pose Guider, which adopts a ControlNet-
like structure rather than the lightweight controllers in Animate
Anyone. The second stage is for temporal layer finetuning, whose
input is 20 frames of video clip from our KFF dataset, and network
parameters except temporal layers are frozen to learn the general
law of two-person fighting action.

3.5 Inference Strategy
3.5.1 Long Video Generation Technique. Previous diffusion-based
video generation typically focuses on short video clips. For gener-
ating an arbitrary long combat video, we introduce a clip fusion
technique to ensure continuity of details between clips. Specifically,
we retain the 𝑥𝑡 of the last 4 frames of each clip in sampling steps.
When inferring the next video clip, we use the saved 4 frames and
the following 20 frames as 𝑥𝑡 . During each sampling step, we super-
impose the 𝑥𝑡 of the last 4 frames onto those of the first 4 frames of
the currently generated clip to generate videos of arbitrary length
maintaining consistency.
3.5.2 Body-Shape Adaptive Strategy. In the video generation pro-
cess, considering the possible differences in body types (e.g., height,
body shape, etc.) between the given pose map and the reference
IDs, we face a challenge to ensure the body shape in the generated
video is consistent with those in the reference IDs. For example, if
the reference ID is a tall and chubby person, and the given pose

1Since AnimateAnyone has no released code, we use reproduction version.
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Table 2: Quantitative comparison of the KFF reconstruction
benchmark.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓
MagicAnimate 0.888 22.479 0.090 623.00
AnimateAnyone 0.873 21.398 0.087 572.22
Champ 0.877 22.018 0.066 523.01
Ours 0.893 23.756 0.058 454.62

is from a little girl, it may result in visual incongruity. Thus, we
introduce a body-shape adaptive strategy, which is shown in Fig. 4.
First, we predict the pose of the reference IDs, and compute the
center of mass of the character’s keypoints in the horizontal (x-axis)
and vertical (y-axis) directions. Similarly, we also compute those
of the given conditioned pose map. Subsequently, we compute the
body scale factors in the x/y-axis. With these scale factors, we scale
the coordinates of all the key points in the pose to ensure that
the generated video content meets the action requirements and is
faithful to the body shape of the reference IDs.

4 EXPERIMENT
4.1 Implementation
To validate MagicFight’s efficacy in generating martial arts combat
videos with diverse IDs, we make two benchmarks, KFF reconstruc-
tion benchmark and open-set combat generation benchmark, to
evaluate our model. We employ pretrained DWPose to estimate
pose maps, including body, hands, and foot. All finetuning exper-
iments are conducted on 8 NVIDIA A6000 GPUs, each with 48G
GPU memory. In the first finetuning stage, we sample individual
frames at a frame interval of 6, then adjust the frames to a resolution
of 704×512. Finetuning is performed for 20,000 steps, with a batch-
size of 2 per GPU. In the second finetuning stage, we finetune the
temporal layer for 10,000 steps with a video sequence of 20 frames,
frame interval of 6, and batchsize of 2. Both learning rates are set
to 2e-6. During inference, we employ the DDIM sampling for 25
denoising steps. We adopt our long video generation technique and
body-shape adaptive strategy for better generation. For comparison
with human dance generation methods, we test all methods on the
same benchmark, detailed in Sec. 4.2.

4.2 Qualitative and Quantitative Evaluation
Figs. 5 and 6 illustrate our method’s capability to produce control-
lable combat videos for various character types, such as real, car-
toon, robotic, and humanoid. Our method produces high-definition
videos with realistic character details. It ensures temporal consis-
tency with the reference IDs and maintains continuity between
frames, despite significant motion.

To illustrate our method’s superiority over other video genera-
tion methods, we assess them on two bespoke benchmarks: KFF
reconstruction benchmark and open-set combat generation bench-
mark. For quantitative evaluation of the reconstructed video qual-
ity, we utilize metrics such as SSIM[45], PSNR[17], FVD[41], and
LPIPS[54]. The evaluation of the open-set video generation bench-
mark incorporates user ratings, FVD[41], and NIQE metrics[27]. In
our experiments, we follow the computation of FVD as VideoGPT [48].

Given that SSIM and PSNR may not match human perception,
we employ LPIPS and NIQE as complementary evaluation metrics.

Table 3: Quantitative comparison of open-set combat genera-
tion benchmark.

Method FVD ↓ NIQE ↓ User Score ↑
MagicAnimate 937.34 5.23 2.05
AnimateAnyone 1178.57 4.68 3.77
Champ 1130.22 4.56 3.89
DreaMoving 1851.93 5.92 0.41
Ours 812.77 4.14 4.12

LPIPS quantifies perceptual similarity, offering a closer represen-
tation of the human eye’s subjective judgment. NIQE acts as a
reference-free image quality evaluation metric tailored to appraise
the visual aesthetic quality of images. A user study is conducted to
evaluate the subjective quality comprehensively. Forty users review
the results from all methods. Each sample consists of IDs image,
pose sequence, text prompt, and results from each method. Partic-
ipants rate the quality of each video on a scale from 1 to 5. The
evaluation primarily focuses on the IDs’ similarity, pose control
and visual appeal. We calculate the average scores for each method
and gauge potential popularity and practical value.
4.2.1 The KFF Reconstruction Benchmark. KFF reconstruction in-
volves generating a reconstructed video given two reference IDs
and the pose sequence. Our KFF reconstruction benchmark com-
prises 100 video clips, each with around 180 frames. The selection
criteria for this benchmark require the test video’s character and
action to match the training set’s domain, yet not exactly existing
in the training set. Quantitative comparisons are detailed in Table 2,
where our results significantly surpass those of other methods, par-
ticularly in the reconstruction metrics. Qualitative comparisons
are displayed in Fig. 5. We employ the web demo or the code of
the compared methods. These methods can’t provide conditional
backgrounds or generate new backgrounds, and DreaMoving is a
vertical screen resolution (so we keep it vertical). Refining human
details demands high precision, while our method maintains detail
consistency.
4.2.2 Open-Set Combat Generation Benchmark. The open-set com-
bat generation benchmark focuses on the open world of human
interactions video. We collect 20 IDs from the game community
and the Internet, comprising 40 test samples. We generate about
10 seconds of video for each sample. The selection criteria for this
benchmark allow characters, actions, and backgrounds to span any
data domain, with no restrictions on data source. Our approach
yields the best quantitative results, as shown in Table 3. DisCo, An-
imateAnyone, and MagicAnimate undergo extensive pre-training
on human image datasets, learning basic single-person patterns,
thus lacking multi-person interaction knowledge. In contrast, our
mixture dataset training on the KFF and two-person fashion dataset
yields superior results compared to these methods. Our method
demonstrates that without explicit segmentation, the model can
discern foreground-background relationships from multi-subject
movements. Furthermore, our model excels at maintaining visual
continuity in complex action sequences, demonstrating robustness
in handling varied character appearances.

4.3 Ablation Study
4.3.1 Dataset Attributes. To elucidate the differences in dataset
attributes and explore their impact on finetuning efficacy, we focus
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Figure 5: The results on two benchmarks. These solo dance models exhibit missing body parts and wrong actions, and they
cannot be conditioned on background or generate background by prompt. Our MagicFight significantly mitigates these issues.

on the data scale, number of character IDs, actions, backgrounds,
and the mixture with two-person fashion data.

Data Scale. Data scale is a key factor in evaluating the fine-
tuning effectiveness. Theoretically, a larger dataset is believed to
provide richer information for training, enhancing the model’s gen-
eralization to new scenarios. Table 4 indicates that as the data scale

increases, the model shows improvement in FVD and user scores
exhibiting superior visual quality.

Number of Character IDs. Among the attributes, the num-
ber of character IDs is a crucial factor under the assumption that
more IDs offer diverse learning opportunities for character traits,
thereby enhancing video diversity and realism. As depicted in Fig. 7,
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Figure 6: The MagicFight results in open-set combat generation with smooth movements and consistent IDs. Because of page
limits, we give more results in our appendix.

Two reference IDs Small-scale data Few IDs Few background Large-scale data
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Figure 7: Ablation Study. 1) ID appearance is ensured with sufficient IDs in the training data. 2) Adequate action in the training
set is helpful. 3) Currently, end-to-end way struggles to handle complex backgrounds.

the number of IDs significantly impacts the training effectiveness
more than other attributes. Insufficient character IDs can lead to
overfitting to specific characters. Quantitative results in Table 4
demonstrate our dataset’s superiority across attributes. These re-
sults validate our hypothesis highlighting prioritizing character
diversity in dataset construction.

Number of Action.We hypothesize more actions in our dataset
should help the dynamics and complexity of martial arts videos.
The result presented in Table 4 and Fig. 7 shows that an increase
in action types somewhat improves video quality metrics, though
not as significantly as with IDs, suggesting that ID diversity is

more crucial than action variety. Qualitative analysis reveals that
more actions yield videos with complex interactions like overkick.
Therefore, for open-set actions, the dataset should be constructed
to include as many diverse martial arts types as possible.

Mixture Dataset Finetuning.We explored the impact of using
the mixture video dataset. Specifically, we compare two training
strategies: 1) training on our KFF dataset alone, and 2) training
by mixing KFF with our remade two-person fashion video dataset
based on UBC [51]. It is worth noting that the UBC dataset only
contains single person walking in a fashion show. By combining
two videos side by side, we create a new dataset that simulates a



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Quantitative Comparison of Ablation Study

Setting Number of Videos Number of IDs Number of Actions Number of Backgrounds FVD ↓ User Score ↑
Small-scale 10 16 24 2 948.45 3.29
Medium-scale 50 60 80 4 880.68 3.98
Large-scale 160 180 120 4 812.77 4.25
Few IDs 40 8 80 2 1012.83 2.56
Many IDs 40 70 80 2 867.43 4.11
Few Actions 40 30 24 2 885.62 3.47
Many Actions 40 30 80 2 848.14 4.09
Single Background 100 50 70 2 816.46 4.23
Various Backgrounds 100 50 70 12 923.19 2.93
Freeze Denoising U-Net 160 180 120 4 908.64 3.22
Freeze ReferenceNet 160 180 120 4 838.14 3.91
Finetune Pose Guider Only 160 180 120 4 925.83 2.73
Finetune ReferenceNet Only 160 180 120 4 913.92 2.84
Finetune Denoising U-Net Only 160 180 120 4 823.91 4.01
Finetune Temporal Layer Only 160 180 120 4 846.70 3.57
Train the Entire Network 160 180 120 4 812.77 4.25
Incremental Data Finetuning 50+110 60+120 80+40 4 821.07 4.11
Full Data Finetuning 160 180 120 4 812.77 4.25
Only KFF Dataset 160 180 120 4 812.77 4.25
Mixture Dataset 600 500 400 10 756.43 4.78

two-person fashion walk with 3 benefits: 1) pure white and clean
background, 2) real people, and 3) high-definition clothing textures.
As shown in Fig. 3, the result shows that mixture dataset finetuning
significantly improves the clarity and texture aesthetics compared
to training with KFF alone. While KFF emphasizes intense fighting,
the two-person fashion videos demonstrate calm and clear portraits
and this diversity leads to a comprehensive and flexible understand-
ing of character appearance and movement. However, training with
only the fashion dataset could not render some martial arts actions,
such as kicking, as this dataset has only simple actions.

4.3.2 Finetuning Strategies. We maintain the same training set
for each experiment. For finetuning module ablation, we analyze
denoising U-Net, ReferenceNet, Pose Guider, and temporal layers.
Besides, we analyze the impact of incremental data finetuning.

Finetuning Module Ablation. Module-specific finetuning tar-
gets for the optimization of specific parameters while retaining the
most original generative capabilities. We hypothesize that finetun-
ing different modules has different effects. Table 4 and Fig. 7 present
results of differences in finetuningmodules, leading us to the follow-
ing preliminary conclusions: 1) Without finetuning the denoising
U-Net, denoising loss can only be reduced to around 0.4 but not
further to 0.2. 2) Untrained ReferenceNet or Pose Guider leads to
body distortions, missing parts, or inconsistent IDs. 3) Although the
first stage of finetuning may yield suboptimal results, performance
can be significantly improved in the second stage. 4) Finetuning
solely the temporal layers often causes artifacts, distorted body,
and background anomalies in certain samples.

IncrementalData Finetuning.We initially finetunewithmedium-
sized data and, after every 10,000 steps, gradually introduce new
data. The results reveal that its impact on enhancing diversity and
realism is negative. We hypothesize that gradually increasing the
data scale may lead to a suboptimal model weight.

5 LIMITATIONS AND FUTURE DIRECTIONS
This part discusses the limitations of our proposed methodology
and outlines directions for future research. Our approach has the

following limitations: Firstly, like many visual generative models,
ours struggles with perfect foot and hand generation. Secondly, our
reference IDs offer only a single-angle view, making the generation
of occluded parts during action problematic; for instance, if the
reference image lacks a frontal view, the generated facial quality
is poor. Thirdly, when the two people overlap for some complex
action like wrestling, pose control becomes chaotic.

Then we introduce our future work. First, when handling com-
plex dresses, like cartoon costumes or clothes with ribbons, our
method may exacerbate flash frame issues. We suggest manually
labeling the pose map. Secondly, background control remains a sig-
nificant challenge. The existing framework cannot generate back-
grounds that are dynamic (such as flowing water, fire, and rain),
have complex layouts, or have passers-by. We are working hard to
propose a new framework that can generate dynamic foreground
and background in the same model. Finally, our current approach
focuses on the case where the camera is stationary, and all of our
training videos are camera-still. In order to adapt to the situation
of dynamic shots in real martial arts movies (e.g., complex situa-
tions such as slow camera movement, rotation, or even switching
of shots, etc.), future work will focus on introducing modeling of
the camera position for the network and producing more video
datasets with camera movement, which will lead to a more realistic
and higher-degree-of-freedom generation of martial arts videos.

6 CONCLUSION
This paper introduces a foundational framework for generatingmar-
tial arts combat videos, transforming two characters into combat
video with pose sequences, ensuring appearance consistency and
temporal stability. We make the first combat video dataset named
KungFu-Fiesta (KFF), specifically designed for this task, created
using the Unity engine to ensure diversity and physical realism. We
finetune a multi-modal personalized network to acquire combat
knowledge, aiming to preserve the intricate appearance of IDs while
enabling efficient pose control and temporal continuity. The user
can specify a background image or easily customize the background
through the Background Crafter by text prompt.
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