
Under review as a conference paper at ICLR 2024

INFORMED WEIGHT INITIALIZATION OF GRAPH NEU-
RAL NETWORKS AND ITS EFFECT ON OVERSMOOTH-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we generalize the ideas of Kaiming initialization to Graph Neu-
ral Networks (GNNs) and propose a new initialization scheme that addresses the
problem of oversmoothing. GNNs are typically initialized using methods, that
have been designed for other types of Neural Networks, such as Xavier or Kaim-
ing initialization. Such methods ignore the underlying topology of the graph. We
propose a new initialization method, called G-Init, which takes into account (a) the
variance of signals flowing forward, (b) the gradients flowing backward through
the network, and (c) the effect of graph convolution, which tends to smooth node
representations and leads to the problem of oversmoothing. Oversmoothing is
an inherent problem of GNNs, which appears when their depth increases, mak-
ing node representations indistinguishable. We show that in deep GNNs, G-Init
reduces oversmoothing and enables deep architectures. We also verify the theo-
retical results experimentally.

1 INTRODUCTION

Weight initialization has been shown to play an important role in the training of neural networks
(He et al., 2015; Glorot & Bengio, 2010). Choosing in an informed manner the initial weight values
can significantly impact the training convergence and the final performance of the model. Informed
weight initialization methods aim to balance between avoiding convergence to suboptimal solutions
and preventing exploding or vanishing gradients. The most prominent techniques take into account
the network’s architecture and the activation functions, aiming to stabilize the variance of signals
flowing forward and gradients flowing backward through the model.
Despite their success in Feed Forward Networks (FFNs), the aforementioned weight initialization
methods are not directly applicable to GNNs. The underlying graph structure and the message
passing in GNNs affects the information flow between network neurons, which in turn impacts the
variance of the signals flowing forward and the gradients flowing backward. Additionally, when
the architecture gets deeper, the variance between node representations tends to decrease, due to
oversmoothing.
Meanwhile, the interest in deep Graph Neural Networks (GNNs) has been increasing (Chen et al.,
2020; Rong et al., 2020), but common GNN models, like the Graph Convolutional Network (GCN)
quickly lose their ability to create informative node representations as their depth increases (Li
et al., 2018). This is due to the neighborhood aggregation occurring in every layer of the model,
which is a type of Laplacian smoothing. Stacking multiple layers in GNNs leads to the over-
smoothing phenomenon (Oono & Suzuki, 2020; Cai & Wang, 2020), where node representations
are indistinguishable, which in turn harms model’s performance.
Several methods have been proposed to alleviate oversmoothing and enable deep GNNs (Zhou
et al., 2021; Zhao & Akoglu, 2020), but none of them considers the effect of weight initialization.
The aim of this paper is primarily to propose a weight initialization that is suitable for GNNs and
secondarily to investigate the effect of weight initialization to oversmoothing. In particular, we
generalize the analysis of He et al. (2015) to GNNs and present results about the variance of signals
and gradients flowing inside the network. Utilizing these theoretical results, we propose a novel
weight initialization method (G-Init), that stabilizes variance. Furthermore, we show the effect of
G-Init to the largest singular values of the weight matrices, which in turn reduces the oversmoothing

1

Under review as a conference paper at ICLR 2024

effect (Oono & Suzuki, 2020). Finally, experiments on 8 datasets verify our theoretical results.
Hence, the main contributions of this paper are as follows:

• Theoretical analysis of weight initialization for GNNs: We generalize the analysis of He et al.
(2015) to GNNs and derive the respective formulas about the variance of the forward signals and
the backward gradients within the model.

• A new weight initialization method (G-Init): We propose a new way to initialize GNN weight
matrices, which stabilizes the variance, and show its relationship to oversmoothing.

• Deep GNNs: We experiment with deep GNNs up to 64 layers across 8 datasets and show that
the proposed initialization reduces oversmoothing.

2 NOTATIONS AND PRELIMINARIES

2.1 NOTATIONS

We will focus on the common task of semi-supervised node classification on a graph. The graph
under investigation is G(V,E,X), with |V| = N nodes ui ∈ V, edges (ui, uj) ∈ E and X =
[x1, ..., xN]T ∈ RN×C the initial node features. The edges form an adjacency matrix A ∈ RN×N

where edge (ui, uj) is associated with element Ai,j . Ai,j can take arbitrary real values indicating
the weight (strength) of edge (ui, uj). Node degrees are represented through a diagonal matrix
D ∈ RN×N , where each element di represents the sum of edge weights connected to node i. During
training, only the labels of a subset Vl ∈ V are available. The task is to learn a node classifier, that
predicts the label of each node using the graph topology and the given feature vectors.
GCN originally proposed by Kipf & Welling (2017), utilizes a feed forward propagation as:

H(l+1) = σ(ÂH(l)W (l)) (1)

where H(l) = [h
(l)
1 , ..., h

(l)
N] are node representations (or hidden vectors or embeddings) of the l-

th layer, with h
(l)
i standing for the hidden representation of node i; Â = D̂−1/2(A + I)D̂−1/2

denotes the augmented symmetrically normalized adjacency matrix after self-loop addition, where
D̂ corresponds to the degree matrix; σ(·) is a nonlinear element-wise function, i.e. the activation
function, which is typically ReLU; and W (l) is the trainable weight matrix of the l-th layer.

2.2 UNDERSTANDING OVERSMOOTHING

Li et al. (2018) showed that graph convolution is a type of Laplacian smoothing. Utilizing that
smoothing process, the model creates similar node representations within each (graph) cluster, i.e.
densely connected group of nodes, which in turn improves the performance on semi-supervised tasks
on graphs. Increasing the depth of the model leads to repetition of the smoothing operation multiple
times and ultimately to oversmoothing of node representations, i.e. node representations become
similar and a fraction of the initial information is lost.
Oono & Suzuki (2020) have generalized the idea in Li et al. (2018) considering also, that the ReLU
activation function maps to a positive cone. They explain oversmoothing as a convergence to a
subspace, and provide an estimate of the speed of convergence to this subspace. That speed is
expressed as the distance of node representations from the oversmoothing subspace M (details can
be found in Oono & Suzuki (2020)).

Theorem 1 (Oono & Suzuki (2020)) Let sl =
Hl∏
h=1

slh where slh is the largest singular value of

weight matrix Wlh, s = supl∈N+sl· then dM (X(l)) = O((sλ)l), where l is the layer number and if
sλ < 1 the distance from oversmoothing subspace exponentially approaches zero. Where λ is the
smallest non-zero eigenvalue of I − Â.

Based on Theorem 1, deep GCNs are expected to suffer from oversmoothing. Since the topology is
predefined, to reduce oversmoothing the model would have to maintain a high value of the product
of the largest singular values of the weight matrices.

2

Under review as a conference paper at ICLR 2024

2.3 WEIGHT INITIALIZATION

Before training, all entries of the weight matrices are sampled from a probability distribution. Se-
lecting the appropriate distribution is of high importance. The most notable methods (i.e., Glorot &
Bengio (2010) and He et al. (2015)) focus on the stabilization of the variance across layers. They
aim to stabilize both the variance of the signals flowing forward and of the gradients which flow
backwards. The aforementioned methods either use uniform or zero-mean Gaussian distributions.
When Gaussian distributions are used, their variance plays crucial role and constitutes the essence
of the analysis conducted by Glorot & Bengio (2010); He et al. (2015). In particular, Glorot &
Bengio (2010) proposed to initialize the weights, using a zero-mean Gaussian with variance equal to
1/nl. Moving one step further He et al. (2015) proposed an initialization with a zero-mean Gaussian
with variance equal to 2/nl, taking into account the characteristics of the ReLU activation function.
Either the input or the output dimension of each layer can be used for nl, as either choice leads to
similar results theoretically and experimentally.
In this work, we connect the proposed initialization of the weights with the singular values of the
weight matrices and consequently with oversmoothing. For this, we will use the circular law con-
jecture, which was proven with strong convergence by Tao & Vu (2008).

Theorem 2 (Circular Law Conjecture) Let Nn be a random matrix of order n, whose entries are
i.i.d. samples of a zero-mean and bounded variance σ2

std random variable. Also let λ1, ..., λn be the
eigenvalues of 1

σstd
√
n
Nn. The circular law states that the distribution of λi converges to a uniform

distribution over the unit disk as n tends to infinity.

The circular law conjecture dictates the relationship between the standard deviation (σstd) of the
random variable and the radius of the disk. In fact, if we increase σstd there is a proportional
increment to that particular radius, which in turn increases the largest eigenvalue of Nn.

3 THEORETICAL ANALYSIS

Despite their success in CNNs and FFNs, existing weight initialization methods fail to capture the
effect of the graph topology, which is of high importance in GNNs. Therefore, we generalize the
method developed in He et al. (2015) to provide a new weight initialization (G-Init), which takes
into account the underlying graph topology.

3.1 FORWARD PROPAGATION

In order to simplify the notation, we will use the augmented normalized adjacency matrix (i.e.,
Â = D̂−1(A+I)) instead of the symmetrically normalized augmented adjacency matrix in Equation
1. This simplification yields the same analysis, except the use of the factor 1

di
instead of 1√

didj

, in

the formula of node representations. Hence, the representation of a node i in layer l becomes:

y
(i)
l =

1

di

∑
j∈N̂(i)

x
(j)T
l W (l) + bl (2)

where N(i) is the neighborhood of node i and N̂(i) is the augmented neighborhood, after self-loop
addition and bl is the bias. Here x(j)

l is an nl×1 vector that contains the representation of node j and

W (l) is an nl × nl matrix, where nl is the dimensionality of the layer l. Finally, x(j)
l = σ

(
y
(j)
l−1

)
,

according to Equation 1. Setting x
(i)′

l = 1
di

∑
j∈N̂(i)

x
(j)T
l aligns Equation 2 above with Equation 5 in

He et al. (2015).
We let the initial elements of W (l) be drawn independently from the same distribution. Aligned
with He et al. (2015), we assume that the elements of x(j)

l are also mutually independent and drawn
from the same distribution. Finally we assume that x(j)

l and W (l) are independent of each other.
Following a similar analysis as the one presented in He et al. (2015) we get:

V ar
[
y
(i)
l

]
= nlV ar

[
wlx

(i)′

l

]
(3)

3

Under review as a conference paper at ICLR 2024

where y
(i)
l , x

(i)′

l and wl represent the random variables of each element in the respective matrices
(Equation 3 above is directly aligned with Equation 6 in He et al. (2015)). We let wl have zero-mean,
leading the variance of the product to be:

V ar
[
y
(i)
l

]
= nlV ar[wl]E

[(
x
(i)′

l

)2]
(4)

The last equation differs from the corresponding Equation 7 in He et al. (2015), due to the special
form of x(i)′

l . In fact, x(i)′

l draws information from the neighborhood of each node and combines
it through an average operation. Generalizing the work of He et al. (2015) to graph data led to
equations, which need special transformations in order to further proceed the analysis. Considering
that x(i)

l = σ
(
y
(i)
l−1

)
, there is a need to split x(i)′

l into two components, one containing x
(i)
l and

the other containing the rest information of x
(i)′

l . In order to achieve that, we will employ the
Cauchy–Bunyakovsky–Schwarz inequality (CBS), because it allows to transform a squared sum of
elements into a sum of squares of these elements.

Lemma 1

E

[(
x
(i)′

l

)2]
= E

 1

d2i

 ∑
j∈N̂(i)

x
(j)T
l

2
 CBS

≤ 1

d2i
E

di ∑
j∈N̂(i)

(
x
(j)T
l

)2 =

=
1

di

(
E

[(
x
(i)
l

)2]
+ k

(i)
l

)
where k

(i)
l =

∑
j∈N(i)

(
x
(j)T
l

)2
, i.e. sum of neighbors representations excluding self representation.

Using Lemma 1, Equation 4 transforms to:

V ar
[
y
(i)
l

]
≤ nl

di
V ar[wl]

(
E

[(
x
(i)
l

)2]
+ k

(i)
l

)
(5)

If we let wl−1 have a symmetric distribution around zero and bl−1 = 0 then yl−1 has zero-mean and

symmetric distribution around zero. This leads to E

[(
x
(i)
l

)2]
= 1

2V ar[yl−1], when the activation

function is ReLU (same analysis as in He et al. (2015)). Applying that result to Inequality 5 yields:

V ar
[
y
(i)
l

]
≤ nl

di
V ar[wl]

(
1

2
V ar

[
y
(i)
l−1

]
+ k

(i)
l

)
(6)

Since we would like to control the variance at the final layer (L) of the model, we telescopically
replace the factor V ar

[
y
(i)
l−1

]
to Inequality 6 until we reach to V ar

[
y
(i)
1

]
, which is the variance of

the first layer of the model.

V ar
[
y
(i)
L

]
≤ nL

di
V ar[wL]

(
1

2
V ar

[
y
(i)
L−1

]
+ k

(i)
L

)
=⇒

V ar
[
y
(i)
L

]
≤ nL

di
V ar[wL]

(
1

2

(
nL−1

di
V ar[wL−1]

(
1

2
V ar

[
y
(i)
L−2

]
+ k

(i)
L−1

))
+ k

(i)
L

)
=⇒

V ar
[
y
(i)
L

]
≤ V ar

[
y
(i)
1

](L∏
l=2

nl

2di
V ar[wl]

)
+

L∑
l=2

 L∏
j=l+1

nj

2di
V ar[wj]

 nl

di
k
(i)
l V ar[wl] (7)

These products are the keys to the initialization design, similarly as in He et al. (2015). A proper
initialization method should avoid reducing or magnifying the magnitudes of input signals exponen-
tially. We aim to control the upper bound of the variance of the final layer of the model, which in

4

Under review as a conference paper at ICLR 2024

turn requires tuning of these products in order to take a proper scalar, i.e. 1. A sufficient condition
to achieve this, similar as in He et al. (2015), is the following:

nl

2di
V ar[wl] = 1, ∀l (8)

This leads to a zero-mean Gaussian distribution of the weights, with standard deviation (std) equal
to
√

2di/nl.
Our analysis boils down to He et al. (2015), if there is no underlying graph topology. Setting di = 1

(only self loops) i.e., isolated nodes, results in k
(i)
l = 0, due to the lack of neighbors and inequality

7 turns into an equality (i.e., Equation 9 in He et al. (2015)).

3.2 BACKWARD PROPAGATION

For back-propagation, the gradient for node i is computed by:

∆x
(i)
l = Wl∆y

(i)
l (9)

We follow the same notation as in He et al. (2015), where ∆x and ∆y denote gradients(
∂E
∂x and ∂E

∂y

)
and ∆y is a nl × 1 vector. To simplify the notation and considering the general

trend of GNNs to maintain a constant hidden dimension across layers, we proceed our analysis with
Wl being an nl × nl matrix. We also set ∆x

(i)′

l = 1
di

∑
j∈N̂(i)

(
∆x

(j)
l

)
, the average gradient reaching

node i based on the forward pass and the interaction with its neighbors (message passing). ∆x is a
nl × 1 vector representing the gradient.
If we assume that wl and ∆y

(i)
l are independent of each other, then ∆x

(i)
l has zero-mean for all l,

when wl is initialized by a symmetric distribution around zero. Following the above result we also
assume that ∆x

(i)′

l has zero-mean.
In back-propagation we have ∆y

(i)
l = f ′(y

(i)
l)∆x

(i)′

l+1, where f ′(·) is the derivative of f(·). In the

case of ReLU, f ′(·) is either one or zero, with equal probabilities. We also assume that f ′(y
(i)
l) and

∆x
(i)′

l+1 are independent. Consequently we have that E
[
∆y

(i)
l

]
= E

[
∆x

(i)′

l+1

]
/2 = 0 (because of

the two branches of the ReLU derivative and the independence between f ′(y
(i)
l) and ∆x

(i)′

l+1) and

also E

[(
∆y

(i)
l

)2]
= V ar

[
∆y

(i)
l

]
= 1

2V ar
[
∆x

(i)′

l+1

]
. Finally, we compute the variance of the

gradient in Equation 9 as follows:

V ar [∆xl] = nlV ar[wl]V ar
[
∆y

(i)
l

]
=

1

2
nlV ar[wl]V ar

[
∆x

(i)′

l+1

]
(10)

Following a similar approach as in the forward pass and in Lemma 1 we get:

Lemma 2

V ar
[
∆x

(i)′

l+1

]
= E

[(
∆x

(i)′

l+1

)2]
≤ 1

di

(
E

[(
∆x

(i)
l+1

)2
+ o

(i)
l+1

])
=

1

di

(
V ar

[
∆x

(i)
l+1

]
+ o

(i)
l+1

)
(11)

where o
(i)
l+1 =

∑
j∈N(i)

(
∆x

(j)
l+1

)2
, i.e. sum of gradients originating from the neighbors of the node,

excluding self-originating gradient.

Using Lemma 2 in Equation 10 we get:

V ar [∆xl] ≤
nl

2di
V ar[wl]

(
V ar

[
∆x

(i)
l+1

]
+ o

(i)
l+1

)
(12)

Equation 12 is similar to Equation 7, hence, we arrive at a similar conclusion regarding the initial-
ization of the network, namely, using weights drawn from a zero-mean Gaussian distribution, whose
standard deviation is

√
2di/nl.

5

Under review as a conference paper at ICLR 2024

Similar to He et al. (2015), it is sufficient to use either initialization alone, as they both avoid re-
ducing or increasing exponentially the magnitudes of both the input signals (flowing forward in the
network) and the gradients (flowing backward in the network). Hence, we name G-Init the initial-
ization with a zero-mean Gaussian, whose standard deviation is

√
2di/nl.

We note that, in the general case proposed in He et al. (2015), Wl might be substituted by a matrix
Ŵl, with n̂l × n̂l dimensions, which can be formed by Wl through reshaping. That modification
does not affect our analysis except of the appearance of the factor n̂l in the results instead of nl.
More details about the use of Ŵl can be found in He et al. (2015).

4 EXPERIMENTS

In this section we analyse experimentally the proposed initialization. In particular, we show the
effect of G-Init on the overall performance of the model and explore deeper architectures, in order
to highlight its effect on oversmoothing.

4.1 EXPERIMENTAL SETUP

Datasets: Aligned to most of the literature, we focus on some well-known benchmarks in the
GNN domain: Cora, CiteSeer, Pubmed and use the same data splits as in Kipf & Welling (2017),
where all the nodes except the ones used for training and validation are used for testing. We also
utilize the Arxiv dataset Hu et al. (2020) of the OGB suite. Finally, we experiment with Photo,
Computers, Physics and CS datasets following the splitting method presented in Shchur et al. (2018).

Methods: We experiment with the proposed architecture of GCN (Kipf & Welling, 2017) under
five different weight initialization methods. We compare our method (G-Init) against Xavier initial-
ization (Glorot & Bengio, 2010) and Kaiming initialization (He et al., 2015). We also explore two
variants of these methods, i.e. drawing samples from a uniform distribution with predefined limits
and drawing samples from a zero-mean Gaussian distribution of predefined standard deviation. We
use the notation of Uniform and Normal to denote these two variants.

Hyperparameters: For GCN we set the number of hidden units (of each layer) to 128 across all
datasets. The learning rate is 10−3 and we vary the depth between 2 and 64 layers.

Configuration: Each experiment is run 10 times and we report the average performance and stan-
dard deviations over these runs. We train all models for 200 epochs using Cross Entropy as a loss
function.

4.2 EXPERIMENTAL RESULTS

As we have previously mentioned setting di = 1 to G-Init ignores the structure of the graph.
On the contrary if we set a large value to di yields larger weight element values and unstable
training. Consequently, we need to find a proper value for di, which will balance the above
two arguments. The smallest possible degree for a node in a graph, with self loops included,
equals to 2 (having a single neighbor). We have empirically found, that values in range (1, 2]
achieve high performance. In our experiments we have set di = 2, excluding the Arxiv dataset
in which we found that di = 1.6 further improves the performance. In summary, we propose to
initialize the weights of a GCN with a zero-mean Gaussian whose standard deviation (std) is

√
4/nl.

Inequality 7 provides an upper bound to the variance of the signal flowing forward through the
network. Applying the proposed G-Init to every layer of the model makes that upper bound equal to

1 + 2
L∑

l=2

k
(i)
l , which in turn depends on k

(i)
l . Using G-Init in every layer of the network, results in

superior performance compared to Xavier and Kaiming initializations. However, we have obtained
even better results, when using G-Init only in the first 80% of the layers and use Xavier initialization
to the rest 20% of the layers, which might be attributed to the effect of the uncontrollable term k

(i)
l

in Inequality 7.
GCN and models utilizing graph convolution, inherently reduce the variance of node representations
(signal of information), due to the repeated use of the Laplacian operator. G-Init allows the model

6

Under review as a conference paper at ICLR 2024

to maintain a higher variance in the lower layers and avoid the collapse of node representation to a
subspace, where they would become indistinguishable.
As shown in Table 1 and Table 2 the merits of using G-Init are twofold. Firstly, compared to the
other initialization methods, it allows the underlying model to achieve better performance in almost
every combination of dataset and depth. In the minority of cases, where G-Init is not the best
performing one, it is closely the second best. The experimental results verify the effect of informed
weight initialization in GNNs and show how it boosts their performance compared to standard
initialization methods that were devised for CNNs and FFNs.
Additional, our extensive experimentation confirms the relationship between weight initialization
and oversmoothing. GCN seems to be prone to oversmoothing, when classical initialization
methods are used, even in moderate depths. On the contrary, G-Init reduces substantially that effect
and facilitates deeper architectures.
The oversmoothing reduction provided by G-Init might attributed to different initial singular values
of the weight matrices, compared to the classical initialization methods (i.e., Glorot & Bengio
(2010) and He et al. (2015)). These initial values are important in determining the extend of
oversmoothing, although we cannot give guarantees about the final values of the singular values of
the weight matrices, which result through training.
Again, we draw inspiration from the work of He et al. (2015), who include the activation functions
of the model in their analysis and propose a Gaussian with standard deviation equal to

√
2/
√
nl.

Based on Theorem 2 we conclude that, the method of He et al. (2015) (i.e., Kaiming initialization)
creates weight matrices, whose eigenvalues lay on a disk with radius equal to

√
2, while G-Init does

the same on a disk of greater radius (i.e.,
√
2di).

Another possible explanation for the robustness against oversmoothing is that G-Init creates weight
matrices, whose largest element is (with large probability) bigger than the largest element of a
weight matrix created by one of the classical weight initialization methods. Considering that
s1 ≥ |amax

i,j | (i.e., largest singular value of a matrix is greater than its largest element), we can
conclude that sG−Init

1 > sKaiming
1 .

Furthermore, Theorem 1 shows the relationship between the largest singular values of the weight
matrices and the oversmoothing effect. G-Init initializes the model with weight matrices having
larger maximum singular values than those produced by Kaiming initialization. Although this
observation does not give guarantees about the final largest singular values, it points out the effect
of G-Init over the initial singular values and possibly its relationship to oversmoothing reduction.

5 RELATED WORK

The most popular weight initialization methods are those presented in Glorot & Bengio (2010) and
He et al. (2015) and they are used for all types of model. Glorot & Bengio (2010) assumed that there
was no activation function in the network, in order to propose their initialization method, while He
et al. (2015) focused on CNNs with ReLU activation function.
More recently, some literature has appeared that focuses on GNNs. Jaiswal et al. (2022) proposed an
initialization based on an analysis of the gradient flow specifically for GCN, coupled with adaptive
rewiring. An alternative was proposed by Han et al. (2023), who utilized a trained MLP (trained
using only feature vectors, while ignoring graph structure), to initialise GNN weight matrices (GNN
weight matrices have the values of the trained MLP weight matrices). Furthermore, Li et al. (2023)
proposed a weight initialization based on the decomposition of the variance of each node over the
message propagation paths and further decomposition of the variance of each path. Hence, they fol-
low a different approach than G-Init and arrive to different conclusions. On the contrary, our method
aims to generalize the ideas of Kaiming initialization on graph data, while making almost no extra
assumptions, than the ones used in He et al. (2015).
Regarding the reduction of oversmoothing, which is an important advantage of G-Init, there is rich
recent literature. Xu et al. (2018) introduced the skip connection concept in GNNs, when they
proposed Jumping Knowledge Networks (JK-Networks). JK-Networks combine information from
lower layers of the model with the information reaching its upper-most layer. APPNP (Klicpera
et al., 2019) and GCNII (Chen et al., 2020) introduced residual connections in GNNs, and enabled
deep architectures. In a similar direction DropEdge (Rong et al., 2020) modified the network’s topol-
ogy, in order to reduce oversmoothing. Despite these methods, which reduce oversmoothing either
with architectural or with structural modification, G-Init reduces oversmoothing without changing

7

Under review as a conference paper at ICLR 2024

Table 1: Performance comparison of different weight initializations of GCN, in Cora, CiteSeer,
Pubmed, Arxiv. Average test node classification accuracy (%) for networks of different depth. With
bold is the best performing model for each depth and each dataset.

Accuracy (%)
Layers Method Cora CiteSeer Pubmed Arxiv

2

Xavier Normal 80.45 ± 0.6 66.68 ± 1.0 76.06 ± 0.2 58.97 ± 0.5
Xavier Uniform 80.62 ± 0.8 66.82 ± 0.7 76.00 ± 0.2 58.60 ± 0.8
Kaiming Normal 80.44 ± 0.5 66.67 ± 1.0 76.13 ± 0.3 59.60 ± 0.4
Kaiming Uniform 80.61 ± 0.8 66.83 ± 0.8 75.93 ± 0.2 59.58 ± 0.5

G-Init 80.65 ± 0.5 66.52 ± 0.8 76.37 ± 0.3 60.52 ± 0.5

4

Xavier Normal 79.80 ± 0.6 66.48 ± 1.2 76.52 ± 0.3 65.81 ± 0.3
Xavier Uniform 79.49 ± 0.6 65.93 ± 1.2 76.43 ± 0.6 66.10 ± 0.2
Kaiming Normal 80.17 ± 0.7 66.74 ± 0.9 76.77 ± 0.3 67.69 ± 0.2
Kaiming Uniform 80.13 ± 0.8 66.38 ± 0.9 76.74 ± 0.5 67.69 ± 0.2

G-Init 80.87 ± 0.6 67.12 ± 0.7 76.99 ± 0.7 68.17 ± 0.3

8

Xavier Normal 70.49 ± 4.3 55.66 ± 2.7 73.52 ± 2.8 61.44 ± 0.7
Xavier Uniform 72.63 ± 5.4 57.13 ± 6.6 72.72 ± 2.9 60.92 ± 0.7
Kaiming Normal 77.05 ± 2.6 62.20 ± 2.7 75.14 ± 2.2 66.97 ± 0.5
Kaiming Uniform 77.51 ± 3.0 62.79 ± 2.5 74.54 ± 2.3 66.93 ± 0.4

G-Init 77.77 ± 1.3 65.06 ± 2.2 75.45 ± 1.7 68.04 ± 0.3

16

Xavier Normal 42.74 ± 10.8 30.26 ± 9.0 63.58 ± 15.5 51.11 ± 2.2
Xavier Uniform 49.42 ± 7.7 29.71 ± 14.4 45.11 ± 16.0 52.50 ± 2.8
Kaiming Normal 69.72 ± 4.2 41.64 ± 12.1 76.02 ± 1.3 62.96 ± 1.1
Kaiming Uniform 72.60 ± 2.6 41.31 ± 14.0 75.17 ± 1.7 62.72 ± 0.6

G-Init 74.48 ± 2.1 56.76 ± 3.3 75.33 ± 1.9 64.83 ± 0.9

32

Xavier Normal 28.07 ± 6.1 19.73 ± 7.9 36.99 ± 12.9 44.31 ± 2.6
Xavier Uniform 27.24 ± 3.4 22.45 ± 8.5 44.24 ± 9.1 42.63 ± 2.6
Kaiming Normal 36.60 ± 11.6 21.68 ± 7.6 50.80 ± 9.0 48.84 ± 4.2
Kaiming Uniform 39.38 ± 11.6 22.07 ± 7.9 46.00 ± 10.2 48.86 ± 5.3

G-Init 71.66 ± 2.3 49.79 ± 3.9 75.58 ± 2.3 54.72 ± 2.6

64

Xavier Normal 13.01 ± 7.0 17.77 ± 2.0 31.74 ± 11.2 21.55 ± 6.3
Xavier Uniform 16.25 ± 8.1 18.51 ± 2.4 40.13 ± 3.1 21.27 ± 6.5
Kaiming Normal 26.61 ± 8.6 25.16 ± 5.4 40.52 ± 11.4 38.08 ± 6.0
Kaiming Uniform 23.57 ± 9.4 27.67 ± 5.0 38.99 ± 13.9 36.29 ± 4.4

G-Init 66.30 ± 5.6 46.90 ± 2.7 72.57 ± 6.0 42.12 ± 3.2

8

Under review as a conference paper at ICLR 2024

any of the properties of the network or the graph.
A part of the related work focuses on a better weight initialization of GNNs, while the other focuses
on reducing oversmoothing. Our analysis lays in the intersection of these lines of work, presenting
a new weight initialization method and showing its effect to oversmoothing reduction.

Table 2: Performance comparison of different weight initializations of GCN, in Photo, Computers,
Physics, CS. Average test node classification accuracy (%) for networks of different depth. With
bold is the best performing model for each depth and each dataset.

Accuracy (%)
Layers Method Photo Computers Physics CS

2

Xavier Normal 66.67 ± 2.8 62.70 ± 1.3 94.03 ± 0.1 91.62 ± 0.4
Xavier Uniform 68.74 ± 1.6 61.91 ± 1.2 94.02 ± 0.0 91.88 ± 0.2
Kaiming Normal 67.07 ± 2.9 62.78 ± 1.4 94.04 ± 0.1 91.64 ± 0.3
Kaiming Uniform 69.10 ± 1.6 61.98 ± 1.1 94.02 ± 0.0 91.89 ± 0.2

G-Init 74.37 ± 2.5 64.19 ± 1.2 94.00 ± 0.1 91.71 ± 0.3

4

Xavier Normal 88.24 ± 0.5 79.17 ± 0.8 93.26 ± 0.1 87.98 ± 0.5
Xavier Uniform 88.05 ± 0.9 78.35 ± 1.5 93.26 ± 0.1 87.93 ± 0.4
Kaiming Normal 89.03 ± 0.8 79.43 ± 0.7 93.27 ± 0.1 88.49 ± 0.4
Kaiming Uniform 88.48 ± 1.1 78.72 ± 1.1 93.28 ± 0.0 88.55 ± 0.3

G-Init 90.44 ± 0.3 79.83 ± 0.5 93.28 ± 0.1 89.18 ± 0.3

8

Xavier Normal 75.82 ± 11.7 61.45 ± 13.0 91.37 ± 0.5 76.60 ± 4.2
Xavier Uniform 71.48 ± 10.3 65.07 ± 4.8 91.07 ± 0.8 77.93 ± 2.3
Kaiming Normal 81.86 ± 2.1 70.47 ± 3.6 91.86 ± 0.2 81.35 ± 2.2
Kaiming Uniform 83.18 ± 2.5 68.05 ± 5.9 91.65 ± 0.7 82.40 ± 1.3

G-Init 84.54 ± 2.0 74.69 ± 2.2 92.00 ± 0.3 82.98 ± 1.6

16

Xavier Normal 36.37 ± 13.4 41.70 ± 3.1 83.36 ± 8.0 45.29 ± 12.5
Xavier Uniform 39.88 ± 18.4 35.10 ± 16.6 83.87 ± 12.7 49.42 ± 19.7
Kaiming Normal 62.66 ± 7.3 43.69 ± 15.7 89.19 ± 1.8 66.33 ± 5.0
Kaiming Uniform 60.79 ± 11.5 48.98 ± 10.0 87.30 ± 7.4 62.39 ± 6.1

G-Init 77.64 ± 6.1 65.67 ± 8.9 90.80 ± 0.2 68.64 ± 8.1

32

Xavier Normal 18.62 ± 10.7 28.81 ± 17.5 65.91 ± 7.0 20.30 ± 8.3
Xavier Uniform 19.50 ± 11.9 20.58 ± 18.3 64.74 ± 5.1 16.47 ± 8.8
Kaiming Normal 22.14 ± 11.0 39.69 ± 4.0 70.75 ± 10.0 32.65 ± 8.9
Kaiming Uniform 31.21 ± 8.6 24.39 ± 18.4 76.64 ± 7.7 28.04 ± 9.1

G-Init 54.98 ± 14.7 40.51 ± 2.2 86.15 ± 6.3 59.06 ± 9.5

64

Xavier Normal 13.86 ± 7.5 6.55 ± 4.7 15.51 ± 12.2 6.69 ± 6.2
Xavier Uniform 11.26 ± 4.4 14.33 ± 12.7 20.41 ± 15.6 6.89 ± 6.6
Kaiming Normal 8.93 ± 6.4 21.56 ± 17.4 50.51 ± 4.1 8.44 ± 6.1
Kaiming Uniform 9.77 ± 6.7 17.26 ± 17.4 50.38 ± 4.1 8.66 ± 5.8

G-Init 31.03 ± 11.7 38.54 ± 1.5 50.78 ± 0.1 57.21 ± 11.0

6 CONCLUSION

We have presented a weight initialisation method that generalizes that of He et al. (2015) to GNNs.
We have shown theoretically that the original method is not sufficient for the initialization of GNNs,
because it disregards the effect of the underlying graph topology. The new weight initialization
scheme is motivated by our theoretical analysis and avoids exponentially large or small values of
variance. The method has also been assessed experimentally across a large variety of benchmark
datasets. Through these experiments, we have established the relationship between weight initial-
ization and oversmoothing reduction, which allowed us to use deep networks, without modifying
either the model’s architecture or the graph topology. As a future work we would like to extend
G-Init to GNNs that utilize skip and/or residual connections, because such models appear to have
better performance than simpler architectures, such as GCN. Finally, we would like to investigate
whether G-Init should be adaptive to the depth and how depth or other graph properties affect the
choice of di.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. CoRR,
abs/2006.13318, 2020. URL https://arxiv.org/abs/2006.13318.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 2020. URL http://proceedings.mlr.press/v119/
chen20v.html.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and D. Mike Titterington (eds.), Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceedings, pp. 249–256. JMLR.org, 2010.
URL http://proceedings.mlr.press/v9/glorot10a.html.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple
GNN training acceleration with MLP initialization. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=P8YIphWNEGO.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015. URL http:
//arxiv.org/abs/1502.01852.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Ajay Jaiswal, Peihao Wang, Tianlong Chen, Justin F. Rousseau, Ying Ding, and Zhangyang
Wang. Old can be gold: Better gradient flow can make vanilla-gcns great again. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
31df5479712197232485d4c2387f6033-Abstract-Conference.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=H1gL-2A9Ym.

Jiahang Li, Yakun Song, Xiang Song, and David Wipf. On the initialization of graph neural
networks. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 19911–19931. PMLR, 2023. URL https://proceedings.mlr.press/
v202/li23y.html.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 3538–3545. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16098.

10

https://arxiv.org/abs/2006.13318
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/pdf?id=P8YIphWNEGO
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/31df5479712197232485d4c2387f6033-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/31df5479712197232485d4c2387f6033-Abstract-Conference.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=H1gL-2A9Ym
https://proceedings.mlr.press/v202/li23y.html
https://proceedings.mlr.press/v202/li23y.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098

Under review as a conference paper at ICLR 2024

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1ldO2EFPr.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=Hkx1qkrKPr.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.
org/abs/1811.05868.

Terence Tao and Van Vu. Random matrices: The circular law, 2008.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. Representation learning on graphs with jumping knowledge networks. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 5449–5458. PMLR, 2018. URL
http://proceedings.mlr.press/v80/xu18c.html.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=rkecl1rtwB.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 21834–21846, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/b6417f112bd27848533e54885b66c288-Abstract.html.

11

https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=Hkx1qkrKPr
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
http://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=rkecl1rtwB
https://proceedings.neurips.cc/paper/2021/hash/b6417f112bd27848533e54885b66c288-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b6417f112bd27848533e54885b66c288-Abstract.html

	Introduction
	Notations and Preliminaries
	Notations
	Understanding Oversmoothing
	Weight Initialization

	Theoretical Analysis
	Forward Propagation
	Backward Propagation

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

