Under review as a conference paper at ICLR 2025

KERNEL BANZHAF: A FAST AND ROBUST ESTIMATOR
FOR BANZHAF VALUES

Anonymous authors
Paper under double-blind review

ABSTRACT

Banzhaf values offer a simple and interpretable alternative to the widely-used
Shapley values. We introduce Kernel Banzhaf, a novel algorithm inspired by
KerneISHAP, that leverages an elegant connection between Banzhaf values and
linear regression. Through extensive experiments on feature attribution tasks, we
demonstrate that Kernel Banzhaf substantially outperforms other algorithms for
estimating Banzhaf values in both sample efficiency and robustness to noise. Fur-
thermore, we prove theoretical guarantees on the algorithm’s performance, estab-
lishing Kernel Banzhaf as a valuable tool for interpretable machine learning.

1 INTRODUCTION

The increasing complexity of Al models has intensified the challenges associated with model inter-
pretability. Modern machine learning models, such as deep neural networks and complex ensemble
methods, often operate as “opaque boxes.” This opacity makes it difficult for users to understand
and trust model predictions, especially in decision-making scenarios like healthcare, finance, and
legal applications, which require rigorous justifications. Thus, there is a pressing need for reliable
explainability tools to bridge the gap between complex model behaviors and human understanding.

Among the various methods employed within explainable AI, game-theoretic approaches have
gained prominence for quantifying the contribution of features in predictive modeling and enhanc-
ing model interpretability. While primarily associated with feature attribution (Lundberg & Lee,
2017 Karczmarz et al.| [2022)), these methods also contribute to broader machine learning tasks such
as feature selection (Covert et al., |2020) and data valuation (Ghorbani & Zou, [2019; [Wang & Jial
2023). Such applications extend the utility of explainable Al, fostering greater trust in Al systems
by providing insights beyond traditional explanations.

Shapley values, rooted in cooperative game theory, provide a principled way to attribute the contri-
bution of n individual players to the overall outcome of a game (Shapley, |1953). In the context of
feature attribution, each “player” is a feature and the “game” is defined by a set function that maps
a subset of features to the prediction score of an Al model on that subset. For a given feature, the
Shapley value quantifies the average marginal contribution of the feature on the model’s prediction,
computed as the weighted average over all possible combinations of features included in the model
(see e.g., Equation E]) (Lundberg & Leel 2017).

An alternative to Shapley values are Banzhaf values, which also compute each individual’s contribu-
tion to the system’s overall outcome (Banzhaf} [1965). While Shapley values are more widely used,
Banzhaf values are often considered more intuitive for Al applications since they treat each subset
of players as equally important, directly measuring the impact of each player across all possible
combinations (see e.g., Equation[2)). Additionally, Banzhaf values can be computed more efficiently
and tend to be more numerically robust (Karczmarz et al.,|[2022;|Wang & Jial, [2023).

For general set functions, the exact computation of Shapley and Banzhaf values is an NP-hard prob-
lem (Deng & Papadimitriou, |[1994)), so they are often approximated in practice. The problem of esti-
mating Shapley values, especially for model explanation, has been well-studied. A leading method
is KernelSHAP (Lundberg & Lee, [2017), a model-agnostic technique that leverages a connection
to linear regression, approximating Shapley values by solving a subsampled weighted least squares
problem (Charnes et al.l [1988; [Lundberg & Leel 2017). KernelSHAP has been further improved
with paired sampling (Covert & Lee, |2020) and leverage score sampling Musco & Witter| (2024).

In contrast to Shapley values, only a few algorithms have been proposed to compute Banzhaf values
for arbitrary set functions. For tree-structured set functions, such as decision tree based models,
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Figure 1: Comparison of exact and estimated Banzhaf values across datasets and estimators using
20n samples. Each subplot, labeled with its estimator, shows the normalized estimated versus exact
Banzhaf values across all features for a randomly selected explicand from each dataset. Points closer
to the diagonal line indicate more accurate estimates; the qualitative evaluation and the ¢5-norm error
indicate that Kernel Banzhaf is more accurate than the MC and MSR estimators.

exact Banzhaf values can be efficiently computed (Karczmarz et al.,2022). For general set functions
(e.g., opaque neural networks), Monte Carlo sampling can be used to estimate each Banzhaf value
separately (Bachrach et al.,|2010). The Maximum Sample Reuse (MSR) algorithm reuses samples
for the estimates of different Banzhaf values (Wang & Jia, |2023). However, MSR estimates are
correlated and have larger magnitude, and hence high variance as discussed in Section [4.1]

In this work, we apply ideas that have been proven effective for estimating Shapley values to Banzhaf
values (Lundberg & Lee, |2017; |Covert & Lee, [2020; [Musco & Witter, 2024). Our starting point
is a formulation of Banzhaf values in terms of a specific linear regression problem (Section [3.1).
While a connection to linear regression was known for ‘simple’ set functions (i.e., set functions with
binary outputs that satisfy a monotonicity property) in Hammer & Holzman| (1992), to the best of
our knowledge, we are the first to establish the connection for general set functions. We leverage
this connection to design a new algorithm for approximating Banzhaf values: we propose Kernel
Banzhaf, inspired by KernelSHAP, to solve a subsampled instance of the Banzhaf linear regression
problem (Section @ Similar to Leverage SHAP (Musco & Witter, 2024), we exploit leverage
score sampling to give approximation guarantees on the ¢5-norm error.

We show that with O(n log % + 5-) samples, Kernel Banzhaf produces estimated Banzhaf values q@

such that || — ¢]|2 < ev]|||3 with probability 1 — 6, where ¢ are the exact Banzhaf values[|In
contrast, Wang & Jia (2023) show that with O(% log % ) samples, MSR produces estimates such that

[MSR — |2 < e. However, their result assumes that the set function output is restricted to [0, 1],
excluding regression and generative Al tasks

Beyond theoretical guarantees, we extensively evaluate the empirical performance of Kernel
Banzhaf. Our experimental results show that Kernel Banzhaf produces estimates which are closer
to the true Banzhaf values than MC and MSR (Figure [I). In prior work, estimators for Banzhaf
values on large datasets were compared in terms of their convergence (Wang & Jial [2023). Although
convergence is an important property, it does not guarantee accuracy, particularly if the estimators
have not been proven to be unbiased. In our work, we evaluate the accuracy of Banzhaf estimators
for large datasets by using the algorithms of [Karczmarz et al.| (2022) to compare against exact val-
ues. Our findings, across eight datasets, suggest that Kernel Banzhaf is more robust and accurate
than prior estimators. Additionally, we compare Kernel Banzhaf with state-of-the-art KernelSHAP
algorithms and empirically demonstrate that in semivalue estimation, Kernel Banzhaf provides ro-
bustness across all scales and greater efficiency particularly when dealing with a large number of
features. We further substantiate this finding by examining the condition number of these regression-
based methods.

Contributions Our main contributions can be summarized as follows:

"We believe that the  parameter is necessary for linear regression-based algorithms (see Section .
Because the upper bound of their guarantee has no dependence on ||¢||3, their assumption on the range of
the set function effectively normalizes the set function to satisfy the guarantee.
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1. We propose Kernel Banzhaf, a regression-based approximation algorithm for estimating
Banzhaf values for general set functions.

2. We show that Kernel Banzhaf provably returns accurate solutions. Our analysis requires
non-trivial modifications to the standard leverage score sampling analysis. We argue that,
up to log factors and the dependence on e, our analysis is the best possible.

3. We run a detailed experimental evaluation using eight popular datasets to evaluate the per-
formance of algorithms for approximating Banzhaf values and Shapley values in feature
attribution tasks, varying the number of samples and the reliability of the set function to
simulate practical conditions. Unlike prior work, our experiments evaluate estimators rel-
ative to the true Banzhaf values, rather than relying just on convergence metrics. Our
findings demonstrate that Kernel Banzhaf significantly outperforms existing methods in
efficiency and robustness.

2 BACKGROUND

Let n be the number of players and v : 2[" — R be a set function. The Shapley value of player i
fori € [n] :=={1,...,n}is

¢§hap]ey _ l Z <n5|1> B [’U(S U {Z}) — U(S)] 1)

n
SCn]\{3}

while the Banzhaf value is

1 )

=T Y [(Su{i}) —v(s)] 2
SCn\{i}

Shapley values and Banzhaf values each uniquely satisfy four different properties. We defer the

description of these properties to Appendix [Hl By default, we shall use ¢ to denote ¢B""f ynless
explicitly stated otherwise and use ¢ € R™ to denote the vector [¢1, . . ., dn].

Banzhaf
¢ianza _

We can recover various tasks in machine learning by choosing different ways of defining the set
function. In this work, we will consider one of the most popular tasks in explainable Al: feature
attribution (also known as feature importance and feature influence). Let M be some model which
takes in input x € R". In the version we consider, the feature attribution seeks to explain the
predictions of the model on an explicand observation x°, which is the target data point for which we
want to understand the contributions of individual features. Given a subset of features S, define x5
as the observation where x7 = x¢ if feature ¢ € S and, otherwise, x5 is sampled from a distribution,
as discussed in Appendix [B} v(S) = E[M (x?)], where the expectation is over the sampling of the
features 7 ¢ S. We can adapt the algorithm to other machine learning tasks such as feature (or data)
selection by redefining v(.9) as the loss of a model trained using only the features (or observations)
within subset .S.

3 KERNEL BANZHAF

The starting point of our work is a formulation of Banzhaf values in terms of a specially structured
linear regression problem, and in Theorem we show that Banzhaf values are the exact solution
to this linear regression problem. Then we propose the Kernel Banzhaf algorithm for estimating
Banzhaf values.

3.1 LINEAR REGRESSION FORMULATION

Consider binary vectors z € {—1,1}". In a slight abuse of notation, we will use z as input to the
set function where the corresponding set is induced by z. We will also use z as an index for the
following matrices.

* Let A € R?"*" where the row corresponding to z is given by [A], =

* Let b € R?" where the entry corresponding to z is given by b, = v(z).
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The following observation about A will be helpful in our analysis.
Observation 3.1. ATA =221

Proof. The (i, j) entry in AT A is given by

[ATA]; Z 154 (3)

If i # j, there are 271 terms of _Z when z; # z; and 2= terms of +i when z; = z; hence
Equation is 0. If ¢ = 7, we have 2" terms of —&—i hence Equation is 272, Together, this gives
that ATA = 2721, O

With this observation, we will establish that Banzhaf values are the solution to the linear regression
problem defined on A and b. A similar result was known but only for the case where v is a simple
set function (the output is binary {0, 1} and the function satisfies a monotonicity property) (Hammer
& Holzman, [1992).

Theorem 3.2 (Linear Regression Equivalence). The Banzhaf values are the solution to the linear
regression problem induced by A and b, i.e.,

¢ = argmin ||[Ax — b||5. 4

The proof shows that the optimal linear regression solution is equal to the Banzhaf values.

Proof. By setting the gradient of the objective function to 0, we have that
argmin |[Ax — bl = (ATA)"!ATh. ®)

We will analyze the right hand side. By Observation we have ATA = 2"72I. Then

(ATA)" ! = = 1. Continuing, we have

b=

T —1ATH
(ATA) Ab—2n2

1 1 1
S Z izv(z) = 51 Z zv(z). (6)

Now consider entry ¢ given by

[(ATA)"'ATb];

inzzl 1 2. v(SU{i}) —u(S) @)
SCln]\{d}

which is exactly Equation[2] The statement follows. O

3.2 THE KERNEL BANZHAF ALGORITHM

Since A and b are exponentially large, constructing the linear regression problem to calculate the
Banzhaf values is computationally prohibitive. Instead, we construct a smaller linear regression

problem with m samples. Let the subsampled matrix be A € R™™ and the target vector be
b € R™. The estimate we produce is

é:argminHAX—BHQ. 8
Building on this framework, we introduce the Kernel Banzhaf algorithm, which utilizes paired sam-

pling and leverage score sampling to construct the small regression problem (Woodruff et al.,|2014;
Drineas & Mahoney, 2018). The leverage scores of A are given by

t,=[Al, (ATA) " [A]] = 2n1_2 (;;) (;z> = ©)

where the third equality follows by Observation [3.1] Since the leverage scores are the same for
all rows, uniform sampling is equivalent to sampling by leverage scores for A. As such, Kernel

Banzhaf selects A and b by sampling each row uniformly at random with replacement.
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Algorithm 1 Kernel Banzhaf
Input: Set function v : {0,1}" — R, n players, m samples s.t. n < m < 2™,

Output: Approximate Banzhaf values ¢ € R"

: Z % 077L><’VL

cfor i=0,...,|m/2] —1 do
z < random binary vector sampled uniformly
z < complement of z >ple,zj=1—zfor0e{0,...,n—1}
Zoi+ 2, Zojy1 7'

end for

}2 A [,U(Zl)a s 7’1}(Zm)}

A+—Z-11,., > Convert from {0,1} to {—1,
¢ « argmin, ||Ax — bl > Standard least squares

return ¢

R I A A Pl e

_
e

The pseudocode for Kernel Banzhaf appears in Algorithm T]

We now consider the time complexity of Algorithm I} The time to randomly sample with replace-
ment is O(n) per sample, along with the time to compute the complement and store both vectors.
Let T}, be the time complexity to evaluate the set function m times, possibly in parallel. This cost
is unavoidable for any algorithm that evaluates the set function m times. Finally, the least squares
regression problem requires O(mn?) time because the matrix A has m rows and n columns and the
vector b has m entries. In total, the time complexity of Algorithm is O(T,,, + mn?). For most set
functions, we expect the O(T,,,) term to dominate. For example, even a forward pass on a shallow
fully connected neural network with dimension at most n will take O(n?) time per sample.

The state-of-the-art methods for Shapley estimation, KernelSHAP (Lundberg & Lee, 2017} |Covert
& Lee} 2020) and Leverage SHAP (Musco & Witter, [2024), sample without replacement to enhance
performance when m ~ n. Our empirical results in Figure [I0] show no improvements with this
approach (until m = 2", in which case we can exactly compute Banzhaf values). Moreover, sam-
pling without replacement exhibits lower efficiency and scalability, and it does not ensure the use of
exactly m samples. Further details are provided in Appendix

3.3 APPROXIMATION GUARANTEES
Theorem 3.3. If m = O(nlog % + 3-), Algorithm|l|produces an estimate QZ) that satisfies

|AG — Al < (1+€)[|Ad — bl (10)
with probability 1 — 6.

Theorem|3.3]is a standard guarantee for leverage score sampling. However, establishing the theorem
for Kernel Banzhaf requires completely reproving it from scratch because of the incorporation of
paired sampling in Kernel Banzhaf. For the analysis of Leverage SHAP, [Musco & Witter (2024)
prove a similar theorem with paired leverage score sampling but using different techniques, since
the samples in their algorithm are taken without replacement.

The theorem can only be improved in the logarithmic factor and dependence on ¢ and €. To see why,
consider a linear set function where b is in the span of A. Then the right-hand side is 0 and we
must recover ¢ exactly. To do this, we need to observe at least n linearly independent rows hence
we need at least 2(n) samples.

While it gives a strong guarantee, the term in Theorem [3.3]is less interpretable. Fortunately, we can
use the special properties of A and b to prove the following corollary in terms of the £5-norm error.

Corollary 3.4. Define v = |A¢ — b||2/||A¢|2. Any ¢ that satisfies Equationalso satisfies
I — @3 < erll ol (11)

The proof is similar to guarantees for general linear regression problems and for the Leverage SHAP
setting (see e.g., Lemma 68 in Drineas & Mahoney| (2018) and Corollary 4.1 in Musco & Witter
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Figure 2: Plots comparing the ¢5-norm errors (i.e. ||¢ — ¢||2) for Kernel Banzhaf (and its ablated
version without paired sampling), MC, and MSR across increasing sample sizes in eight datasets.
Each point represents the median of 50 runs, with shaded areas indicating the 25th to 75th per-
centiles. The plots showcase the effectiveness of Kernel Banzhaf in various real-world datasets.

(2024)). However, because of the special structure of our problem, our result differs in that there is
no relaxation in the guarantee from Theorem [3.3]to Corollary [3.4 Hence the (near-)optimality of
Theorem [3.3]implies the (near-)optimality of Corollary [3.4]

Notice that Theorem 3.3]has no dependence on  while Corollary [3.4]does. This suggests that, when

b is outside the span of A, Kernel Banzhaf can recover a solution é that has near optimal objective
value but is far from the optimal solution ¢». The reason is that there can be many (equally bad)
solutions for the optimal vector that recover similar objective values but are far from each other. The
benefit of the dependence on +y is that we recover an even stronger guarantee when b is in the span
of A. In fact, we recover the optimal solution exactly since v = 0 in this case.

Proof of Corollary[3.4, We have
IAG — b3 = |Ad — Ad + Ad —b|3 = ||Ad — Ag|3 + || A¢ —blI3 (12)
where the second equality follows because A ¢ — b is orthogonal to any vector in the span of A. To

see why this orthogonality holds, consider that ¢ minimizes || A¢ — b||3, implying AT (A¢ —b) =
0. From the zero gradient condition,

(Ad—AP)T(Ap—b) = (¢ -~ ¢)"AT(Ap—b) = ($— ¢)T0 =0, (13)
which confirms that A¢ — b is orthogonal to A(ﬁ — Ao.

Then by assumption, we have |A¢p — Ag|2 < ¢|A¢ — b|]2. By Observation we have
|1Ad5 =0 ATAG =2""2|¢]3 (14)
and, similarly, | A (¢ — @) ||2 = 2"2||¢p — ¢ ||2. Then, with the definition of ~,

2" 2| — @3 = ||[A(P — })|3 < e|[Ap — b3 = e7[|Ap|3 = 2" 2er| 0|3 (15)

The statement then follows after dividing both sides by 272 O

Because of the structure of A, Theorem [3.3]and Corollary [3.4] are equivalent. Therefore, since we
believe that Theorem [3.3]is nearly optimal, we believe that v is a necessary term in the error bound
of Corollary [3.4]

Additionally, we emphasize that Kernel Banzhaf and its theoretical guarantees apply to Banzhaf
values defined on any set function.
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4 EXPERIMENTS

We conduct a detailed experimental evaluation and compare Kernel Banzhaf against state-of-the-art
estimators across eight popular datasets with varying size (having between 8 and 241 features) These
datasets have been used in prior research for semi-value-based model explanation (Lundberg & Lee)
2017 |Covert & Leel [2020; Lundberg et al.| 2020; |Karczmarz et al. |2022), and they are described
in detail in Appendix |C} To assess the accuracy of the estimators, we employ the ¢5-norm error as
our primary error metric for evaluation. While prior work used convergence ratio as a measure of
effectiveness (Wang & Jia, [2023; |Covert & Lee, [2020), convergence is insufficient to measure how
close the estimators are to exact Banzhaf values. We use XGBoost (Chen & Guestrin, [2016) for
our models in the main experiments, which makes it possible to apply the tree-based algorithm of
(Karczmarz et al., [2022) to compute exact Banzhaf values. Implementation details are given in Ap-
pendix [B] We also assess the effectiveness of our approach on neural network models using smaller
datasets for which Equation [2|can be used to calculate exact Banzhaf values. These experiments are
presented in Appendix [D]and their results are consistent with those for the tree models. In addition
to ¢2-norm, we use the objective value naturally suggested by the linear regression formulation to
measure the estimation error; the results in Appendix [E| corroborate the superior performance of
Kernel Banzhaf.

4.1 COMPARING BANZHAF ESTIMATORS

We compare Kernel Banzhaf with the following methods for estimating Banzhaf values:

MC The Monte Carlo (MC) algorithm estimates each Banzhaf value individually. Let S; be the
subsets sampled for player i € [n]. We have that ), |S;| = m. The MC estimate for player i is
given by

HE = — S (S Ui} - v(S)].

|5 o

The disadvantage of this algorithm is that each sample is used only for a single player.

MSR The Maximum Sample Reuse (MSR) algorithm estimates all Banzhaf values simultaneously
(Wang & Jia, [2023). Let S be the subsets sampled for all players i.e., |S| = m. Define S5; as the

sampled subsets that contain player 7 and Sy; as the sampled subsets that do not contain player 4.
The MSR estimate for player ¢ is given by

MSR 1 1
¢’LS |59z| Z U(S)_ |S;z| Z U(S)

SeSs; SES}L

While the MSR algorithm reuses samples, it can have high variance because the magnitude of the
set function v(S) is generally much larger than the marginal difference between nearby values v(.SU

{i}) —v(9).

Kernel Banzhaf (Excluding Pairs) This algorithm is identical to Kernel Banzhaf (Algorithm|[T)) but
without paired sampling.

As we subsample feature sets for estimating Banzhaf value, sample size is an important concern
in real-world settings. Our first experiment investigates the error of each estimator by number of
samples. As shown in Figure [2] Kernel Banzhaf outperforms the other algorithms for all datasets
over different sample sizes. As expected, the error for all estimators decreases as the sample size
increases. Interestingly, MSR performs worse than MC when applied to datasets with a large number
of features (e.g., the NHANES dataset and larger), particularly as the number of samples increases.
We believe this is because the MSR algorithm has high variance which is related to the generally
large magnitude of the set function. In prior work, the MSR algorithm was shown to converge faster
than the MC algorithm, but faster convergence does not always imply better accuracy.

The set functions in explainable Al tasks, being based on stochastically-trained models, often ex-
hibit variance. We investigated how the estimation errors vary with random noise added to the set
function, and as shown in Figure[3] Kernel Banzhaf and its variant without paired sampling are more
robust to this noise than the other algorithms, especially when the level of noise size is low. This
suggests that Kernel Banzhaf is particularly well-suited for real-world applications where the set
function is approximated.
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Figure 3: Plots of /5-norm error by noise levels across Banzhaf estimators. For each noise level o,
the estimator observes v(S) 4+ = where x ~ N (0, o). Kernel Banzhaf outperforms for lower noise
levels, eventually matching its ablated version and MSR for larger noise. MC is worse for all noise
settings, likely because its constituent estimates are v(SU{i}) +x —v(S) — 2/, essentially doubling
the noise variance.

4.2 COMPARING KERNEL AND SHAPLEY REGRESSIONS

Prior work found that Banzhaf values can be estimated more efficiently and robustly than Shapley
values (Karczmarz et al., [2022; Wang & Jia, [2023)). To this end, we compare Kernel Banzhaf with
state-of-the-art algorithms for estimating Shapley values: Optimized KernelSHAP, which employs
paired sampling and sampling without replacement techniques (Lundberg & Leel 2017; |Covert &
Leel [2020) and Leverage SHAP, which employs leverage score sampling in addition to the afore-
mentioned techniques (Musco & Witter, 2024)). To obtain ground-truth Shapley values, we use the
interventional setting of Tree SHAP (Lundberg et al., |2020). We employ the normalized ¢5-norm

squared error, defined as ||¢ — ¢||2/]|¢||2 for comparison to ensure fairness.

When we compare the estimation error by varying the number of samples (Figure[9] Appendix|[F), we
observe that for larger n, Kernel Banzhaf gives the best performance, followed by Leverage SHAP
then Optimized KernelSHAP. Note that the larger the number of features, the bigger the difference
in estimation error. When n is small as in the Diabetes dataset, KerneISHAP and Leverage SHAP
perform better because they sample without replacement.

We also investigate the impact of noise. To ensure parity between the Banzhaf and Shapley value
estimators, we normalize the noise based on the raw output of the set function. The results are
shown in Figure [d] The initial data points represent scenarios with no added noise, so our focus is
primarily on the trends of the lines. The horizontal line representing Kernel Banzhaf, which remains
unchanged as noise levels increase, underscores the robustness of Kernel Banzhaf compared to the
Shapley value estimators.

Since Kernel Banzhaf is similar in design to KernelSHAP and Leverage SHAP, at first sight, it is
surprising that Kernel Banzhaf performs better for large n. For both Kernel Banzhaf and Leverage

SHAP, a crucial component of the analysis is to build the subsampled matrix A so that
cATA<ATA<CATA (16)
where ¢ < C are two close scalars and =< denotes the Loewner order. Multiplying on the left and
right by (AT A)~ 2 yields
A=< (ATA) 2ATA(ATA) 2 < CL (17)

Let K = (ATA) " 2ATA(ATA)z. Therefore, we can measure how close the best C' and ¢ are by
computing the condition number of K; a lower condition number implies C is closer to ¢ and hence
the subsampling preserves the important properties of the regression problem. Figure [3] plots the
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Figure 4: Normalized f5-norm error (i.e. ||¢ — ¢||3/|/¢||3) by noise level for Banzhaf and Ker-
nelSHAP estimators. This plot displays the ¢5-norm error as a function of noise level across eight
datasets similar to Figure [3] Note that a more horizontal trend line is preferable. Kernel Banzhaf
consistently exhibits superior performance by maintaining lower error rates amid increasing noise,
compared to its competitors whose error rates rise. This demonstrates Kernel Banzhaf’s robustness
and efficiency, marked by its minimal loss of precision.

condition number of this matrix for all three regression-based methods; the plots suggest that Kernel
Banzhaf constructs a better subproblem at all scales, explaining its superior performance.

5 RELATED WORK

Game-Theoretic Explainable AI Semivalues like Shapley and Banzhaf values, derived from
game theory, are widely used for machine learning tasks. Feature attribution involves determin-
ing the impact of individual features on model predictions, with Shapley values notably used in
Lundberg & Lee|(2017). This method also facilitates feature selection by modifying set functions to
measure the feature’s impact on model performance via loss metrics (Covert et al.,|2020). Data val-
uation extends to treat individual data points as players, assessing their influence on model training
outcomes like accuracy or AUC (Ghorbani & Zou, 2019).

A parallel trend in utilizing Banzhaf values has been noted, with studies indicating their robustness
compared to Shapley values, particularly under conditions of low numerical precision (Karczmarz
et al.| 2022)). Furthermore, Wang & Jia| (2023) established the superiority of Banzhaf values among
semivalues regarding safety margin, the threshold of set function perturbations that the value order
can withstand without changing. These properties have led to extensive application of Banzhaf
values for feature attribution (Datta et al., 2015} Kulynych & Troncosol [2017; |Sliwinski et al.,2018;
Patel et al., 2021; [Karczmarz et al., [2022)) and, more recently, in data valuation, where Wang & Jia
(2023) and L1 & Yu|(2024) have shown their superior performance compared to Shapley values.

Shapley Estimators KernelSHAP, introduced by [Lundberg & Lee| (2017), employs game-
theoretic Shapley values in a linear regression framework to explain any machine learning model’s
predictions. The method’s efficiency and applicability are enhanced through paired sampling and
sampling without replacement, which balances the number of samples used to update each Shapley
value, as refined by [Covert & Lee| (2020); |Jethani et al.| (2021). In recent work, Musco & Witter,
(2024) proposed Leverage SHAP, a variant of KernelSHAP that uses leverage score sampling to
build the subsampled linear regression problem. Leverage scores are a statistical quantity that intu-
itively measure the importance of a data point (Woodruff et al.l 2014} Drineas & Mahoney, [2018]).
Leverage SHAP outperforms KernelSHAP and, because of the mathematical properties of leverage
scores, provably returns accurate approximations. Meanwhile, TreeSHAP, developed by [Lundberg
et al. (2020), specifically tailors the SHAP framework for tree-based models, ensuring faster, exact
computations by directly incorporating tree structures into Shapley value calculations.
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Figure 5: Plot of condition number of matrix K as defined in Equation |17 by sample size for
estimators based on linear regression in the context of Banzhaf and Shapley value estimations. This
plot demonstrates the numerical stability of the Kernel Banzhaf estimator by showing its lower
condition numbers across varying sample sizes, highlighting its superior robustness and reduced
sensitivity to numerical errors as shown in Figure[d] particularly when n is large.

Banzhaf Estimators |Merrill 11I| (1982) initially introduced approximating the Banzhaf power in-
dex through Monte Carlo sampling across subsets. Building on this, Bachrach et al.| (2010) applied
Hoeffding bounds to analyze the sample complexity required for these approximations. Further
advancing the method, Wang & Jia (2023) developed the Maximum Sample Reuse (MSR) Monte
Carlo estimator. This approach samples sets individually for each term in the marginal utility calcu-
lation, facilitating the reuse of samples across different computations of marginal utility. However,
due to this variation, the MSR estimates of Banzhaf values are correlated among different players
and exhibit large variance. Moreover, for structured set functions such as decision trees, where
predictions are aggregated from root to leaf, Banzhaf values can be computed with exact precision
(Karczmarz et al.| 2022). This computational efficiency is attributable to the ability to independently
isolate and assess the impact of each feature along the decision path. Despite its effectiveness within
this context, this method lacks generalizability to other models and machine learning tasks.

Banzhaf Values and Regression Hammer & Holzman|(1992) shows how least squares regression
can approximate the Banzhaf power index, which only requires a ‘simple’ set function v : 2V —
{0, 1}. Their regression formulation differs from what we propose in Theoremand may not yield
exact Banzhaf values even when no subsampling is done. |Alonso-Meijide et al.| (2015) proposed
modifications of Banzhaf values to enable them to satisfy the Efficiency property, via additive and
multiplicative normalization, and formulated a least squares regression to obtain them.

6 CONCLUSION

In this paper, we presented Kernel Banzhaf, an innovative estimator for Banzhaf values that lever-
ages linear regression to improve the efficiency and robustness of Banzhaf value estimation for ex-
plainable AI. Our empirical and theoretical analysis reveal that Kernel Banzhaf outperforms existing
methods for Banzhaf estimation. Additionally, our findings highlight its superior robustness com-
pared to Shapley estimators, establishing Kernel Banzhaf value as a viable and effective alternative
to other semivalue-based methods for feature explanation in machine learning models.

Future research can focus on extending Kernel Banzhaf to diverse set functions and examine its
potential for integration into real-time systems. This will help us to further understand the scalability
and applicability of our approach in diverse machine learning contexts. Additionally, a concrete
direction for future work is to develop adaptations of Kernel Banzhaf for weighted Banzhaf values
(Li & Yul [2024).
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A THEORETICAL GUARANTEES

Theorem 3.3. If m = O(nlog s + §-), Algorithm|l|produces an estimate q?) that satisfies

1A¢ — Ag|l2 < (1 +¢)|Ad b (10)
with probability 1 — 4.

Theorem [3.3]is a standard guarantee for leverage score sampling. However, because rows are sam-
pled in pairs, we need to substantially modify the standard analysis. In particular, both the spectral
guarantee that the sampling matrix preserves eigenvalues and the Frobenius guarantee that the sam-
pling matrix preserves Frobenius norm need to be reproved.

We will adopt the notation from Wu| (2018)); Musco & Witter| (2024). Let’s consider a leverage
score sampling method where rows are selected in blocks. Define © as a partition of blocks, each
containing 2 elements with identical leverage scores in our setting. We assign a sampling probability
p:” to each block ©;, calculated as the sum of leverage scores in that block divided by the total sum of

all leverage scores: p*i := % For simplicity of notation, suppose m is even. Let S € R™*?
I
represent our random sampling matrix, initially filled with zeros. The sampling process repeats m/2

times: Sample a block ©; with probability pf For each k € ©;, set the kth entry in an empty row
to

P

To analyze the solution obtained from this block-wise leverage score sampling, we will demonstrate
that the sampling matrix S preserves both the spectral norm and the Frobenius norm.

Lemma A.1 (Spectral Approximation). Let U € RP*™ be a matrix with orthonormal columns.
Consider the block random sampling matrix S described above with rows sampled according to the
leverage scores of U. When m = Q(nlog(n/8)/e?),

II-U'S'SU|s<e (18)
with probability 1 — 6.
Proof of LemmalA.1} We will use the following matrix Chernoff bound (see e.g., Fact 1 in[Woodruff;
et al. (2014)).

Fact A.2 (Matrix Chernoff). Let X1,...,X,, € R" "™ be independent samples of symmetric ran-
dom matrices with E[X;] = 0, | X ||2 < v for all j, and ||E;[X3]||l2 < o®. Then for any e > 0,

Pr —1 - X > <2ne 7m62 (19)
E i € Xp . 9
mj f J o2 7,5/3

For sample j € [m], let i(j) be the index of the block selected. Define

1
X;=1I-—— ) U;U, (20)
Pi(y) k€O, ()
We will compute E[X], ||X;]|2, and ||E[X§]H2 First,
] 1
EX,;]=I-> pf— ) UjU,=0 (21)
i=1 by keo;

where the last equality follows because © is a partition and U U = I. Next, note that

> Ul 0|2 3 U2
X512 < [T + S22 " _ 1 4=k 172
Zke@im Pk k€O, 0y,

=1+n (22)
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where the last equality follows because |[U||3 = ¢4 since UTU = I. Define Ug, € RI®:I*" as
the matrix with rows Uy, for k € ©;. Observe that ), .o U} Uy, = U§ Ue,. Finally, note that

(O] O] T
uU/u U U
X2 —I_QZ +Zk6@ k k Z + 9 ) (23)
I@\ 1
=-1+) —U} Ue, U, Us,. (24)
i=1 1

Observe that entry (k, k') of Ug,U{, € RI€:*I9:1is U, U],. So the absolute value of each entry

is [ULU/| < [|[Ugl]2]| U2 = 61/261/2 by Cauchy-Schwarz. Define /*** = maxyeo, ¢ and
it — mingeg, k. By the Gershgorln circle theorem, Ug, U =< 20*¥|©;|°1. Equivalently,

A < B, x"Ax < x"Bx for all x. Consider an arbitrary z. We have z' CT ACz < z' C'BCz
since Cz is some x. It follows that UgiU@iUgiU@i =< 2@“*"‘|@Z—\2Ug%U@i. Then

19:] 9ymax|g 1271
2£ . @i | max
1%10,]°Ug, Ue, < max2|@ |€m1n : *)
> keo, lk g

Since |©;| < 2 and the leverage scores in a block are all equal, ||E[X?]||2 < 4n.

Applying Factwith m = O(nlog(n/d)/e?) yields

Pr ZI——UT Uo.| >€¢] <. (26)
j=1 Pi5) 9

The lemma statement follows.

We will also show that the sampling matrix preserves the Frobenius norm.

Lemma A.3 (Frobenius Approximation). Consider the block random sampling matrix S described

above with rows sampled according to the leverage scores of U € RP*™. Let V. € RP*™ . As long
asm > ﬁ, then

[UTSTSV —UTV||, < ¢|Ul|r|V]r @7)
with probability 1 — 4.

Proof. By Proposition 2.2 in Wu|(2018), we have that

o]
1 1

E[|UTSTSV - UTV|2] < ~ > pT()IIU@i(j) 131Ve,, I3 (28)
j=114(

where Ug, € R"*I®il is a matrix with columns Uy, for k& € ©,. Because p; = ||U||3/||U||% by
the definition of leverage scores, we have
El

E[[UTSTSV -U'V|F] < — Z Ulrs— 72

k||2

7||U||FHV||F (29)

By Markov’s inequality,

E[[uTsTsv-UTV|}]
Pr(|UTSTSV -U'V|.>¢€|U|r|V]Fr) <

< <
E[OIEIVIE

5 <0

(30)

1
me
1
as long as m > Sz ]
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With Lemmas[A.T|and[A3]already proved for the special paired leverage score sampling, the follow-
ing analysis is standard. For example, see Appendix A inMusco & Witter| (2024)) which proves the
same guarantee but for sampling without replacement, requiring yet different proofs of the spectral
and Frobenius approximation lemmas. We include the following proof for completeness.

Proof of Theorem[3.3] Observe that
|A® —bl3 = |Ad — Ad+ Ad DIl = AP — Ad|3 + |Ad - DlI3 31

where the second equality follows because A ¢ — b is orthogonal to any vector in the span of A. So
to prove the theorem, it suffices to show that

|A} — Ad|} < e][Ap — b3 (32)

Let U € RP*™ be an orthonormal matrix that spans the columns of A. There is some y such that
Uy = A¢ and some y such that Uy = A¢. Observe that |A¢p — Al = |[Uy — Uyl =
||y — y||2 where the last equality follows because U U = L

By the reverse triangle inequality and the submultiplicavity of the spectral norm, we have
Iy = yll2 < [UTSTSUF ~ y)ll2 + [UTSTSU(y ~y) — (¥ ~¥)2 (33)
<UTSTSU(y —y)ll2 +|US"SU —I[ly — y]2. (34)

Because U has the same leverage scores as A and the number of rows sampled in S is within a
constant factor of 1, we can apply Lemma [A.1} With m = O(nlog %), we have |[UTSTSU —

I||: < % with probability 1 — /2. So, with probability 1 — 4/2,

15 —yll2 <2(UTSTSUF —y)|2. (35)

Then
|[UTSTSU(y —y)|lo =||[U'ST (SUy — Sb + Sb — SUy)||, (36)
=|UTs'S(Uy —b)||, 37)

where the second equality follows because SUy — Sb is orthogonal to any vector in the span of
SU. By similar reasoning, notice that U (Uy — b) = 0. Then, as long as m = O(£), we have

[UTSTS (Uy - b, < 2/ Ul |y - bl (38)

with probability 1 — 6/2 by Lemma Since U has orthonormal columns, |[U||% < n. Then,
combining inequalities yields

A — Ag[3=|ly — y|2 <2|U'STSU[F —y)| < ¢[[Uy — b2 = ¢[|[Ap - b[3 (39
with probability 1 — 6. O
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B IMPLEMENTATION DETAILS

Feature perturbation and exact Banzhaf value calculation There are generally two approaches
to handling removed features in feature perturbation for general set functions, as discussed in (Chen
et al.{(2020) and [Kumar et al.|(2020). Given an explicand x and a subset of features S, define x~ as

the observation where xf = x7 if feature ¢ € S and, otherwise, x5 is sampled from a distribution.

The first method involves sampling from the conditional distribution of the removed features, where
replacement values for the absent features are sampled according to x° ~ p(x°|x®). This approach,
while precise, is computationally expensive. Alternatively, the marginal distribution can be used
where the observed features x* are ignored, and replacement values are sampled according to x° ~
p(x®). Due to its lower computational complexity, we adopt the latter approach.

For implementation, distinct feature perturbation methods are applied depending on the set function,
i.e. model type. For tree-based models, as we need to use the tree-based algorithm for calculating the
ground truth Banzhaf values to measure errors, we utilize a method aligned with Algorithm 1 from
Karczmarz et al.[(2022), which computes predictions using partial features. Specifically, during tree
traversal, if feature ¢ € S, we proceed according to the threshold to select the child node; if i ¢ S,
we traverse both children and compute a weighted average of the predictions, effectively nullifying
the influence of features not in S without any feature value replacement.

For neural network models, instead of using fixed baseline values for the removed features, we
compute the average of the model’s predictions using replacement values randomly sampled from
50 baseline points, different from the explicand. The explicand x¢ is repeated 50 times, with the
non-selected features replaced by values from these baseline points, and the average of M (z°) is
taken to estimate the impact of marginalizing out the non-selected features. To calculate ground
truth Banzhaf values, we evaluate all 2" subsets of features in this way.

Sample size for Monte Carlo Given a sample size of n, the MSR and Kernel Banzhaf estimators
effectively use n samples to estimate Banzhaf values for all features concurrently. In contrast, the
Monte Carlo method estimates each feature independently and requires a fair allocation of the total
m samples. To achieve this, we implement a loop where for each iteration ¢ = 1,...,m, we use
7 mod n + 1 samples when ¢ is divisible by n, and ¢ mod n samples otherwise. This approach
ensures that the Monte Carlo method also utilizes exactly m samples, maintaining consistency in
sample usage across different estimators.

C DATASETS AND MODELS

The Diabetes dataset (Bache & Lichman, 2013)), sourced from the National Institute of Diabetes
and Digestive and Kidney Diseases, comprises 8 features. Its primary objective is to predict, based
on diagnostic measurements, whether a patient has diabetes, thus it’s categorized as a classification
task. The Census Income dataset (Bache & Lichman, [2013};|Covert & Lee), 2020), also known as the
Adult dataset, involves predicting whether an individual’s income exceeds $50K/yr based on cen-
sus data, using 14 features. The Portuguese Bank Marketing dataset (Moro et al., [2014)) is another
classification task with 16 features aimed at predicting client subscription to a term deposit. The
German Credit dataset (Bache & Lichman, [2013), known as Statlog, involves classifying individu-
als as having good or bad credit risks based on 20 attributes. The NHANES dataset, with 79 features
derived from the National Health and Nutrition Examination Survey (NHANES) I Epidemiologic
Followup Study, models the risk of death over a 20-year follow-up period, as discussed in (Lundberg
et al., 2020; Karczmarz et al., 2022). For the Breast Cancer (BRCA) subtype classification dataset,
100 out of 17,814 genes were selected to minimize overfitting in a relatively small dataset of 510
patients, following guidelines from (Covert & Lee, [2020). The Communities and Crime Unnor-
malized dataset (Bache & Lichman, |2013)) aims to predict the total number of violent crimes per
100,000 population, comprising a predictive regression task with 101 features. The Tezpur Univer-
sity Android Malware Dataset (TUANDROMD) (Bache & Lichman, |2013) includes 241 attributes,
with the primary classification target distinguishing between malware and goodware.

These datasets vary in size and column types and are predominantly utilized in previous studies
for semi-value-based model explanation (Lundberg & Lee, 2017} [Covert & Lee, [2020; [Lundberg
et al.,|2020; Karczmarz et al., 2022). We primarily focus on tabular datasets because they are more
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Figure 6: ¢5-norm error by sample size for Banzhaf estimators in explaining neural network models.
This figure compares the /2-norm errors of Kernel Banzhaf (including an ablated version without
paired sampling), MC, and MSR across increasing sample sizes on four small datasets. The results
highlight the robust performance and generalizability of Kernel Banzhaf across various model types.

thoroughly studied in this field and allow for easier acquisition of ground truth, especially in large
datasets, using tree-based algorithms. Additionally, tabular datasets are prevalent in scenarios in-
volving smaller datasets with fewer features.

For the experiments involving tree set functions, we trained an XGBoost regressor model (Chen &
Guestrin, 2016)) with 100 trees and a maximum depth of 4. For the non-tree model experiments,
we utilized a two-layer neural network equipped with a dropout layer with a rate of 0.5 to mitigate
overfitting. This network was trained using a batch size of 32 and a learning rate of 0.0001, across
100 epochs. We chose this relatively simple model architecture because our primary focus is on
explaining model behavior rather than maximizing its predictive accuracy.

D NEURAL NETWORK-BASED MODEL EXPLANATIONS

In this section, we evaluate Banzhaf estimators for explaining neural network models, where the
output of the set function is the neural network’s raw prediction. Calculating ground truth Banzhaf
values for datasets with more than 50 features presents challenges, primarily because the tree-based
algorithm for Banzhaf value calculation, as proposed in |Karczmarz et al.| (2022), is limited to tree
models. Consequently, our experiments are confined to four smaller datasets. As illustrated in Fig-
ure [6] Kernel Banzhaf estimators, both with and without paired sampling, consistently outperform
Monte Carlo (MC) and Maximum Sample Reuse (MSR) estimators in non-tree set functions. These
experiments further underscore the generalizability of our algorithm across different model types.

E COMPLEMENTARY BANZHAF ESTIMATOR EXPERIMENTS

Relative Objective Error To further demonstrate the superior performance of Kernel Banzhaf,
we evaluated the Banzhaf estimators against exact Banzhaf values using relative objective error.
Building on the framework where Banzhaf values solve a linear regression problem (as established in
Theorem 3.2), we aim to minimize the objective function || Ax — b)|,. Here, ¢ represents the vector
of exact Banzhaf values for each feature, and q@ represents the estimations from different estimators.
We evaluate the differences between ||A¢ — b2 and |A¢ — b, because although the optimal
linear regression solution corresponds to the Banzhaf values, the optimal objective error ||A¢ — bl|2
is not necessarily zero. Thus, we assess the relative objective error. The comparative analysis,
shown in Figure [7] reveals that the plots of this error with increasing sample size and noise level
are analogous to those using />-norm error, where Kernel Banzhaf consistently surpasses all other
estimators in both efficacy and robustness. These experiments underscore the effectiveness of our
Kernel Banzhaf algorithm in accurately estimating Banzhaf values and solving the corresponding
linear regression challenge.

Time Complexity We further evaluated the computational efficiency of the MC, MSR, and Kernel
Banzhaf estimators by measuring the exact time required to estimate Banzhaf values, as depicted in
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Figure 7: Relative objective error based on ||Ax — b||> plotted against sample size (top row) and
noise level (bottom row) for comparing Banzhaf estimators across four small datasets. Kernel
Banzhaf consistently outperforms other estimators, demonstrating enhanced accuracy and robust-
ness as sample sizes and noise levels vary. This performance highlights its efficacy in solving the
linear regression problem where the solutions represent Banzhaf values.
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Figure 8: Computational time required for Banzhaf value estimation across varying sample sizes
for eight datasets. Notably, Kernel Banzhaf (both with and without paired sampling) and MSR
demonstrate comparable computational efficiencies, while MC consistently requires approximately
twice the computation time, particularly evident when sample size is small.

Figure[§] All experiments were conducted on a Lenovo SD650 with 128 GB of RAM, using only one
thread for computation. Our analysis reveals that both MSR and Kernel Banzhaf (with and without
paired sampling) exhibit comparable computational times across all datasets and sample sizes. In
contrast, the MC method consistently requires approximately twice the time of the other estimators.
This discrepancy arises primarily because the most time-consuming operation involves computing
the set function output v(S) for a given sample S of players. Kernel Banzhaf and MSR efficiently
leverage a single calculation of v(.S) per sample for all players. In contrast, MC needs to compute
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for Kernel Banzhaf, Leverage SHAP, and Optimized KernelSHAP across eight datasets. The plots
aim to evaluate the efficiency and accuracy of Kernel Banzhaf (the best Banzhaf estimator) against
advanced KernelSHAP methods under varying sample sizes. It demonstrates that Kernel Banzhaf
outperforms KernelSHAP algorithms for larger feature sets.

both v(S U i) and v(S) to determine the marginal contribution for each feature 4 individually, thus
doubling the computation time compared to the other estimators.

F COMPLEMENTARY KERNEL BANZHAF VS. KERNELSHAP EXPERIMENTS

In this section, we assess the performance of Kernel Banzhaf against state-of-the-art KernelSHAP
algorithms by varying sample sizes. Kernel Banzhaf, as shown in Figure [0} demonstrates superior
performance on larger datasets (bottom row). For smaller datasets, the three algorithms appear com-
parable at first glance, since KernelSHAP are using sampling without replacement to increase the
diversity of the samples; however, the smaller shaded areas for Kernel Banzhaf, representing the
25% and 75% percentiles, indicate significantly greater stability compared to KernelSHAP algo-
rithms, which highlight Kernel Banzhaf’s enhanced stability.

G KERNEL BANZHAF WITH SAMPLING WITHOUT REPLACEMENT

Contrary to the approach in|Musco & Witter|(2024)), which employs sampling without replacement
to enhance KernelSHAP, our empirical results, as illustrated in Figure [I0] indicate that this method
does not yield improvements. We observe a significant reduction in error when the sample size m
exceeds 2", where n is the number of features, in the first three small datasets. This reduction can be
attributed to the fact that the algorithm has exhaustively sampled all possible subsets once m > 2™.
However, it is impractical to set m beyond the total number of subset combinations 2™ in typical
scenarios, as doing so would allow a complete enumeration of subsets, thereby directly computing
the ground truth Banzhaf values.

In standard cases where m < 2™, our sampling with replacement approach not only matches the
performance of sampling without replacement but also surpasses it in terms of efficiency and scal-
ability. This is evident as sampling using the binary representation of random integers used in
sampling without replacement becomes infeasible for large n. Additionally, sampling with replace-
ment ensures the collection of exactly m distinct samples, in contrast to the approximate number m/’
obtained without replacement. Given these advantages, we continue to utilize the sampling without
replacement setting in our proposed algorithm, offering a comprehensive analysis that diverges from
the findings presented in Musco & Witter| (2024).
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Figure 10: Comparison of £2-norm error between Kernel Banzhaf and Kernel Banzhaf with sampling

without replacement (SWOR) across eight datasets. When sample size m < 27, the performance of

the two algorithms is quite similar, as illustrated by the overlapping lines. Note that the sharp error

reduction in the first three small datasets occurs when sample size m exceeds 2", due to the SWOR

algorithm exhaustively sampling all possible subsets at m > 27.

Theoretically, our sampling with replacement approach is better in terms of efficiency and its use of
exact m samples.

H PROPERTIES OF SHAPLEY VALUES AND BANZHAF VALUES

Shapley values satisfy four desirable properties: Null Player ensures that a player who does not
contribute to any coalition, meaning their inclusion in any subset of players does not affect the
overall outcome, is assigned a value of zero. Symmetry requires that two players who contribute
equally to all possible coalitions receive the same value. Linearity requires that the Shapley value
of a player in a combined game (formed by adding two games together) is equal to the sum of that
player’s Shapley values in the two individual games. Efficiency requires that the total value assigned
to all players must sum to the value generated by the full set of players. (Shapleyl [1953).

Instead of the Efficiency property, the Banzhaf index satisfies 2-Efficiency, which requires that the
sum of the values of any two players equals the value of these two players when considered jointly
in a reduced game setting (Banzhaf] |1965; |Lehrer, |1988). The necessity of the efficiency property
has been debated in the context of machine learning. [Sundararajan et al.| (2017) suggest that the
Efficiency property is only essential in contexts where semi-values, such as those in voting games,
are interpreted numerically; Kwon & Zou|(2022) argues that the utility function in machine learning
applications often does not correspond directly to monetary value, so aligning the sum of data values
with total utility is unnecessary. In applications where the primary goal involves ranking features
according to their importance or evaluating data, the exact numerical contribution of each feature is
less critical. Both Banzhaf and Shapley values, despite their theoretical disparities, often yield the
same ordering of players as shown in|Karczmarz et al.| (2022}, which suffices for these applications.
Therefore, given their efficiency and robustness properties, Banzhaf values serve as particularly
effective tools in machine learning tasks (Wang & Jial 2023).
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Figure 11: Comparison of feature ranking recovery Using Cayley Distance (top panel) and Spear-
man Correlation Coefficients (bottom panel). This figure illustrates the performance of different
estimators in recovering overall feature rankings across multiple datasets. Lower Cayley distances
and higher Spearman correlations indicate more accurate feature ranking recovery. Our results in-
dicate that while the Kernel Banzhaf algorithm and the MC method perform comparably in datasets
with a smaller number of features, the MC method excels as feature size increases due to its preci-
sion in assigning zero values to non-contributory features. However, the practicality of this metric
is limited.

I EVALUATION OF BANZHAF ESTIMATORS IN FEATURE RANKING
RECOVERY

Aside from evaluating the quantitative errors between estimated Banzhaf values and exact Banzhaf
values, another critical metric that reveals the meaningfulness of the estimated results is how well
the estimator recovers feature ranking. Feature ranking is important to feature comparison and
selection, which are useful for enhancing the performance of machine learning models. Accurate
feature ranking helps in identifying the most influential features, thereby facilitating more efficient
and effective feature engineering and dimensionality reduction strategies.

In order to evaluate this property, we incorporate two well-known metrics: Cayley distance and
Spearman rank correlation. The Cayley distance refers to the minimum number of transpositions
required to transform one permutation into another. This metric provides a concrete measure of the
difference between two rankings, capturing the minimal edit sequence needed, which is particularly
useful in understanding the stability and reliability of feature ranking methods, and it’s also adopted
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Figure 12: Comparison of top 20% feature ranking recovery Using Cayley Distance (top panel) and
Spearman Correlation Coefficients (bottom panel). This figure illustrates the performance of four
estimators in accurately recovering the rankings of the top 20% most influential features, or the top 7
features when n < 20), across multiple datasets. The plots show that our Kernel Banzhaf algorithm
consistently matches or outperforms the MC method, confirming its effectiveness in the estimation
of the most significant features. This metric is crucial in real-world applications as it prioritizes top
features, which is particularly valuable in large datasets where distinguishing among lower-ranked
features can be challenging.

in|Karczmarz et al.|(2022). Spearman’s rank correlation, p, on the other hand, measures the strength
and direction of association between two ranked variables. Formally, it is defined as the Pearson
correlation coefficient between the rank values of the variables, mathematically expressed as:

6> d?
n(n? —1)

p=1-

where d; represents the difference between the ranks of corresponding variables x; and y;, and n is
the number of observations. This metric offers insights into how well the ranking produced by the
estimator preserves the monotonic relationship compared to the exact ranking, providing a measure
of ranking fidelity.

Moreover, we not only consider the overall ranking but also evaluate the recovery of rankings for
the top 20% of features. In scenarios with a large feature space, the most significant features often
have a more pronounced impact on model predictions. In these cases, the overall ranking may be
cluttered with a large number of features that show only minor differences in their Banzhaf values,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

making it difficult to distinguish among lower-ranked features effectively. Focusing on the top 20%
of features, therefore, targets those variables most likely to affect predictive accuracy and model
stability, offering a more pragmatic evaluation of ranking recovery.

In our evaluation, we identify the top 20% of features ranked by exact Banzhaf values. For any
feature missing from the top 20% as derived from the estimated Banzhaf values, we add it to the end
of the permutation. This adjustment ensures that the evaluation penalizes discrepancies at the top of
the distribution, which are most critical for decision-making and model interpretation.

Our results for overall feature ranking recovery are illustrated in Figure [TT] When the feature size
is small, our Kernel Banzhaf algorithm performs comparably to the MC method. However, as
the feature size increases, the MC method shows superior performance. We hypothesize that this
effectiveness stems from the MC method’s precision in estimating zero Banzhaf values for non-
contributory features, a key advantage when evaluating features individually in large datasets where
many features have negligible Banzhaf values. It is important to note, however, that the MC method
requires twice the number of samples and predictions compared to other methods, as it calculates the
marginal contribution of each feature individually. This increased demand can make it less efficient,
particularly with a large number of features.

Our findings for the top 20% feature ranking recovery are presented in Figure[T2] This metric, fo-
cusing only on the ranks of the most significant features, is more practical. For datasets with feature
size < 20, we take the top 7 features instead. Our Kernel Banzhaf algorithm consistently outper-
forms or matches the MC method across all datasets, demonstrating its effectiveness in identifying
and ranking important features. The comparatively poorer performance of the MC method in the
top 20% feature ranking supports our earlier hypothesis, as this metric involves a smaller subset of
features and fewer evaluations of zero contribution instances.

By using these metrics, we provide a comprehensive analysis of how well Banzhaf estimators can
not only approximate raw values but also preserve and recover the most critical aspects of feature
importance in machine learning models.

J ADDITIONAL EXPERIMENTS ON ADVERSARIAL PERTURBATIONS

To further demonstrate the robustness of our proposed estimator, instead of independently perturbing
all queries to the set function, we only perturb sets S that contain a chosen item 7. In the first
experiment setting, we select 7 uniformly at random. Then, instead of observing v(.S) on the query
to subset S, the algorithms observe v(S) +z where z 0if i ¢ S and, if i € S, we have z ~ N(0, 0%)
as before. The results are as shown in Figure[]

Beyond this, in a follow-up experiment, we introduce a more adversarial noise setting. Each al-
gorithm is run once on set function v (no perturbation in the query access). Then we compute the
relative error of each estimated value ¢; relative to the baseline ¢;. We select the item ¢ with the
largest relative error. Then, we evaluate each algorithm as before, but now the queries are perturbed
if the set S contains the adversarially chosen 4. The results can be found in Figure[I3]
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Figure 13: Plots of /5-norm error by adversarial noise levels across Banzhaf estimators. For each
noise level o, the estimator observes v(.S) + « where z ~ N (0, o) when sets .S contains a randomly
chosen feature ¢ (top panel), or feature ¢ with the largest relative error in the normal setting (bottom
panel). Similar to previous experiments, Kernel Banzhaf outperforms for lower noise levels, even-
tually matching its ablated version and MSR for larger noise.
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