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Abstract

Equilibrium propagation (EP) is an alternative to backpropagation (BP) that allows
the training of deep neural networks with local learning rules. It thus provides
a compelling framework for training neuromorphic systems and understanding
learning in neurobiology. However, EP requires infinitesimal teaching signals,
thereby limiting its applicability in noisy physical systems. Moreover, the algorithm
requires separate temporal phases and has not been applied to large-scale problems.
Here we address these issues by extending EP to holomorphic networks. We
show analytically that this extension naturally leads to exact gradients even for
finite-amplitude teaching signals. Importantly, the gradient can be computed as
the first Fourier coefficient from finite neuronal activity oscillations in continuous
time without requiring separate phases. Further, we demonstrate in numerical
simulations that our approach permits robust estimation of gradients in the presence
of noise and that deeper models benefit from the finite teaching signals. Finally,
we establish the first benchmark for EP on the ImageNet 32× 32 dataset and show
that it matches the performance of an equivalent network trained with BP. Our
work provides analytical insights that enable scaling EP to large-scale problems
and establishes a formal framework for how oscillations could support learning in
biological and neuromorphic systems.

1 Introduction

The backpropagation (BP) of error algorithm [1] underpins the ability of state-of-the-art deep neural
networks to learn useful representations from structured data such as speech, vision, and text [2].
BP stands out as the most successful algorithm to solve the credit assignment problem in artificial
neural networks [3, 4], which can be defined by the following question: How should a synaptic
connection be modified in order to improve the global performance of the network to perform a task,
as measured by some objective function? This is a difficult question since individual synapse may
have a complicated influence on downstream processing. BP solves credit assignment through the
chain rule of differentiation [1]. Although BP is efficiently implemented in software, it is difficult to
conceive how BP could plausibly be implemented in biological systems. The problematic aspects are
BP’s use of symmetric connections and the need for two separate phases: A nonlinear forward pass
that propagates neuronal activity and a linear backward pass that carries signed gradient signals [3].
These two types of processing are also inconvenient for training physical neural networks, since both
should be handled by the same circuit, and explicitly propagating errors does not harness the device
mismatches typical of neuromorphic hardware [5, 6]. Despite its implausibility, representations
learned with BP match representations of in-vivo data [7] better than networks trained with purely
biologically-motivated learning rules such as STDP [8, 9]. This discrepancy raises the question as to
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whether and how neural dynamics could implement gradient-based credit assignment, and whether it
could be as effective as BP to learn useful representations [3].

Equilibrium propagation (EP) [10] is an alternative algorithm for performing credit assignment in
dynamical systems that converge to a fixed point, such as energy-based models [11]. EP also proceeds
in two phases: In the first phase the dynamical system is presented with static input data until the
units settle into an equilibrium or fixed point. We refer to this state as the free equilibrium. In a
second phase, a teaching signal slightly nudges designated output units towards a target value until
the dynamics settle into a second equilibrium that is called the nudged equilibrium. EP estimates loss
gradients by comparing the neuronal activity between the two equilibria. EP is appealing because the
resulting learning rule is spatially local when the energy function consists of two-body interactions,
as for instance in continuous Hopfield networks [11]. Furthermore EP provably approximates the
true gradient in the limit of vanishing nudging [10]. More generally, the implicit differentiation
carried out by EP makes it suitable for meta learning [12], where explicitly backpropagating errors
through an inner optimization loop becomes prohibitive due to the high memory requirement of
storing intermediate time steps for regular automatic differentiation.

Nevertheless, classic EP [10, 13, 14] has several limitations. First, EP estimates only approach the
actual loss gradient in the limit of a vanishing nudging or teaching signal. This requirement makes
it impractical for noisy neuromorphic systems where noise can confound small amplitude teaching
signals and also unrealistic as a model for learning in the brain where feedback strongly modulates
processing. Moreover, the mechanisms by which biological circuits could satisfy the requirement for
separate phases remains elusive. Finally, while EP can train deep networks on CIFAR-10 [14], it has
remained an open question whether it can be scaled up to larger and more complex tasks [4].

In this article, we show that by extending EP with holomorphic network dynamics it naturally
estimates exact gradients for finite teaching signals. Mathematically, the exact gradients are encoded
as a Fourier coefficient of adiabatic neural oscillations. This finding suggest a natural way of
estimating the gradients online through suitable synaptic filtering operations which dispenses with the
need for separate phases, in a similar spirit to Baldi and Pineda [15] for contrastive Hebbian learning
[16]. Our main contributions are the following:

• We develop the theory of holomorphic EP (hEP) and prove that this allows computing exact
gradients locally at synapses from finite teaching signal amplitudes of adiabatic oscillations.

• We numerically quantify the accuracy of our estimate and show that it outperforms classic
EP, especially in the presence of substrate noise and in deep neural networks.

• We demonstrate learning with an always-on oscillating teaching signal, thereby alleviating
the need for separated phases.

• Finally, we show that hEP achieves the same performance as BP in deep convolutional
neural networks (CNNs) trained on CIFAR-10/100 [17], and ImageNet 32× 32 [18].

2 Background and previous work

Equilibrium propagation (EP). EP [10] allows training convergent dynamical systems to optimize
a loss function. We denote neuronal unit activity by the vector s, and the learnable parameters such
as weights and biases by θ (Fig. 1a). The system’s dynamics are given as the gradient of a scalar
energy function E(θ, s):

ds

dt
= −∂E

∂s
(θ, s). (1)

As a consequence, EP can train any energy-based models, e.g., Hopfield networks [11] to perform
classification [10, 13, 14]. In classic EP, training proceeds in two phases. First, a subset of units
are clamped to the input x and the system goes to a ‘free’ fixed point denoted by s∗0. Second, the
loss function `(θ, s,y), with target y, is scaled with a small positive nudging factor β and added to
the energy function E which yields the total energy F (θ, s, β,y) := E + β`(θ, s,y). This added
teaching signal causes the system to reach a second equilibrium s∗β , again by minimizing the total
energy F . Although we write that ` takes all units s as argument, in practice typically only output
units which encode the target label and thus serve as inputs for teaching signals are considered
(Fig. 1b). The learning objective of the system is to optimize the loss function ` at the free fixed point,
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Figure 1: a) Schematic of the neuron model of a continuous Hopfield network [11] with holomorphic
activation function σ. The neuron si receives input both from upstream and downstream neurons sj
plus a bias current bi. b) In a typical supervised learning the input x is clamped, causing the network
dynamics to settle into a fixed point. A complex-valued oscillating teaching signal added to the output
causes neuronal activity to fluctuate around this fixed point.

which is defined by L(θ,x,y) := `(θ, s∗0,y). Scellier and Bengio [10] showed that:

lim
β→0

1

β

(
∂F

∂θ
(θ, s∗β , β,y)− ∂F

∂θ
(θ, s∗0, 0,y)

)
=

dL
dθ

. (2)

This result requires F to be twice continuously differentiable and assumes that one can apply the
implicit function theorem to the equilibrium equation ∂sF (θ, s∗0, 0) = 0 (the y argument is hereafter
omitted for clarity), so that β 7→ s∗β is a continuously differentiable map [10]. In practice, the
left-hand side of Eq. (2) is estimated by finite differences [10, 13, 14, 19]. The appeal of EP for
biological plausibility [3, 20] and neuromorphic hardware [15, 21–23] arises from the fact that (i) the
system only needs to propagate neural activities (Fig. 1a) and (ii) in layered neural networks with
a Hopfield energy [11] (Fig. 1b), the left-hand side of Eq. (2) can be computed by a Hebbian-like
learning rule as the product of pre- and postsynaptic activity. In summary, EP implicitly propagates
error signals through differences of neuronal activity during the two phases, whereas BP propagates
error gradients explicitly [3, 20]. However, Eq. (2) only holds in the limit β → 0 where activity
differences vanish, which can pose a problem in the presence of noise or when activity differences
vanish with network depth, which is related to the problem of vanishing gradients. In the following,
we introduce holomorphic EP (hEP) which avoids these issues by estimating exact gradients with
finite β, and thus from finite amplitude teaching signals.

3 Theoretical results

Our main contribution is to show that if F is holomorphic, i.e., differentiable in the sense of complex
variables (see Appendix A.1 for the definition), hEP computes the gradient of the objective function
L for finite β, i.e., without requiring the vanishing nudging signals (cf. Eq. (2)). To accomplish this
hEP requires a non-vanishing teaching signal that evolves ‘adiabatically’ in the complex plane with
respect to the dynamics of the system (Fig. 1b). In other words, we require the dynamical system to
relax to its equilibrium on a much shorter timescale than the timescale of the nudge.

Derivation of holomorphic EP. To show that hEP yields an unbiased gradient through finite
adiabatic nudging, we use the same notation as in Section 2. Specifically, we extend the theory
by Scellier and Bengio [10] to the complex case and to dynamical systems, or networks whose
scalar function governing the dynamics is holomorphic. In line with classic EP we assume that the
dynamical system has a free fixed point as described above.
Lemma 1 (Holomorphic Equilibrium Propagation). Let F be a scalar function governing the
dynamics, so that the holomorphic implicit function theorem can be applied to the fixed point
equation ∂sF (θ, s∗0, 0) = 0, then the gradient formula of equilibrium propagation (Eq. (2)) holds in
the sense of complex differentiation.

Proof. The proof is an extension of the one provided by [10] for the real nudging case. The
holomorphic implicit function theorem ensures that there exists an open set U ∈ C including 0 such
that the implicit map β ∈ U 7→ s∗θ,β is holomorphic on U . In particular, the fixed point s∗θ,β is
defined on U (see Fig. 2b for how this area looks for a toy example). The proof proceeds in two steps.
First we show that the total derivatives of F with respect to θ and β can still be interchanged for
complex variables by virtue of the Schwarz theorem. Second we show that, at the fixed point, the
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total derivative of F with respect to β (θ) is still equal to the partial derivatives with respect to β (θ).
To that end, we apply the chain rule of complex differentiation in:

dF

dβ
(θ, sθ,β , β) =

∂F

∂β
(θ, sθ,β , β) +

∂F

∂s
· ∂s
∂β

(θ, β) +
∂F

∂s
· ∂s
∂β

(θ, β), (3)

where s denotes the complex conjugate of s. At equilibrium, the second term on the right hand
side cancels by definition of the fixed point, and the third term is zero because F is holomorphic,
i.e., its derivative with respect to the conjugate variable is zero according to the Cauchy-Riemann
condition [24]. The same argument holds for the derivative with respect to θ. Therefore, interchanging
the total derivatives of F with respect to β and θ, and replacing the inner total derivatives by the
partial derivatives, we obtain that the EP gradient formula (Eq. (2)) still holds, but for complex
differentiation (Appendix A.1):

d

dβ

∣∣∣∣
β=0

(
∂F

∂θ
(θ, s∗θ,β , β)

)
=

d

dθ

∂F

∂β
(θ, s∗θ,β , β) =

dL
dθ

, (4)

which concludes the proof (a more detailed version is in Appendix A.2).

We can now evaluate the left hand side of Eq. (4) using a Cauchy integral (Appendix A.1):
Theorem 1 (Exact gradient from finite teaching signals). Assuming that the conditions of Lemma 1
are met and let |β| > 0 be the radius of a circular path around 0 in C contained in the open
set U on which the fixed point s∗θ,β is defined. Further assume that this path is parameterized by
t ∈ [0, T ] 7→ β(t) = |β|e2iπt/T , where i is the imaginary unit. Then the loss gradient is given by:

dL
dθ

=
1

T |β|

∫ T

0

∂F

∂θ

(
θ, s∗θ,β(t), β(t)

)
e−2iπt/Tdt. (5)

The full proof is given in Appendix A.3. Theorem 1 guarantees that given holomorphic dynamics we
can dispense with the requirement of vanishing teaching signal |β| → 0 in the limit of ‘adiabatic’
nudging which corresponds to integrating over infinitely many fixed points with a finite |β|. Note,
that complex-valued teaching signals β ∈ γ produce fixed points in the complex plane computed
through the same equations as in the real case (see Appendix B). In particular, multi-layered neural
networks (Fig. 1b) can be trained by using the continuous Hopfield dynamics [11]. The trainable
parameters are the weights and biases θ = (wij , bi) and the total energy function F is given by:

F (θ, s, β,y) =
1

2

∑
i

s2i −
1

2

∑
i 6=j

wi,jσ(si)σ(sj)−
∑
i

biσ(si) + β`(θ, s,y). (6)

If the activation function σ is holomorphic, which is true in the case of sigmoid functions, the same
F (Eq. (6)) can be evaluated with complex β, and we can apply Eq. (5) to obtain:

− dL
dwij

=
1

T |β|

∫ T

0

σ∗i (t)σ∗j (t)e−2iπt/Tdt, (7)

where σ∗i (t) := σ(s∗i,β(t)). Therefore, assuming a T -periodic teaching signal (Fig. 1b), the gradient
is proportional to the first exponential Fourier coefficient of the product of the oscillating activities.
Although this formulation assumes complex neuronal output, we show in Appendix A.4 that the
gradient in Eq. (7) can be expressed in terms of the real part or imaginary part only. The complex
teaching signal is therefore best thought of as a way to produce unbiased neuronal oscillations on
the nudging timescale. In the next section, we numerically estimate the Fourier coefficient of Eq. (5)
with a fixed number of points N on the circle which we use to train networks in the subsequent
experiments and to compare it to the actual loss gradient computed with automatic differentiation.

Numerical estimation of the loss gradient as a Fourier coefficient. Next, we explain how to
estimate the gradient from the corresponding Fourier coefficient (Eq. (5)). In practice, we use a
Riemann sum to compute the integral numerically. We fix the nudging radius |β| > 0 such that the
circular path lies in the domain U in which equilibria exist as described in Theorem 1. We sample the
path with N ≥ 2 nudging points {βk := |β|e2iπk/N ; k ∈ [0, ..., N − 1]}, and define the estimator:

∇̂(N) :=
1

N |β|

N−1∑
k=0

∂F

∂θ

(
θ, s∗βk , βk

)
e−2iπk/N . (8)
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We have that ∇̂(N) −→
N→∞

dL
dθ , and the remaining bias term when using N points is:

∇̂(N)− dL
dθ

=

∞∑
p≡0 (N)

Cp+1|β|p

(p+ 1)!
, (9)

where Cp is the p-th derivative in 0 of the function β 7→ ∂θF (θ, s∗β , β) (see Appendix A.5 for the
proof). The bias term in Eq. 9 converges to zero with increasing N because it is a sub-sum of
the (N + 1)-th order remainder of the series expansion of β 7→ ∂θF (θ, s∗β , β) in 0. The rate of
convergence depends on the Cp coefficients and the radius |β|. In the case N = 2, the estimate of
Eq. (8) coincides with the ‘symmetric’ estimate of Laborieux et al. [14]. However, the bias term on
the right hand side of Eq. (9) is only valid when the dynamics are holomorphic. Next, we illustrate
the approach in a toy experiment, and list three practical improvements brought by hEP.

4 Experiments

In all the experiments, we used the discrete setting of convergent recurrent neural networks of [13],
and the readout scheme of [14] for optimizing the cross-entropy loss function with EP (Appendix B).
All simulations were implemented in Jax [25] and Haiku [26] (Apache License 2.0). The datasets
were obtained from the Tensorflow datasets library [27]. Our code is publicly available on GitHub1.
The details of simulations and hyperparameters can be found in Appendix E and F.

Demonstration of holomorphic Equilibrium Propagation on a single data point. To provide
the first numerical validation of Theorem 1 while also allowing us to gain intuitions about dynamics
of individual neurons, we implemented a small-scale multi-layer perceptron (MLP) with layer
dimensions 6-4-4-4, including input and output layers. The activation function was a shifted sigmoid,
which is holomorphic (Appendix B). The network was fed with a single datapoint, namely a randomly
sampled point from a Gaussian and a random one-hot target. The dark blue region in Figure 2b shows
the map of complex β for which the network settles to a fixed point after 200 time steps. We found
experimentally that the area in the complex plane where stable fixed points exist strongly depends on
the activation function and the weight initialization (see Appendix D). As β evolves on the circle of
radius 0.1 (N = 24) hidden layer neurons settle into different equilibrium points in the complex plane
(Fig. 2a). We observed that while the teaching signal β(t) = |β|e2iπt/T was purely sinusoidal, the
non-linearity of the network induces neural oscillations that are not purely sinusoidal. Nevertheless,
the gradient is contained in the first mode of these non-linear oscillations (Fig. 2c).

To understand how the gradient is computed accurately when the magnitude of the teaching signal is
increased, we recorded the adiabatic product of activities σ∗i (t)σ∗j (t) for one pair of neurons (dark
blue) over one teaching period and for increasing values of |β| (Fig. 2c). In the case |β| = 0.001,
the perturbation induced by the sinusoidal teaching signal is also purely sinusoidal, and the gradient
magnitude is simply the radius of the circle. However, when |β| is increased to 0.01, the linear
approximation of the perturbation becomes less accurate, because higher powers of β become
significant in the series expansion around the free fixed point. The gradient could still be well
approximated by taking the mean of the two radii corresponding to real positive and negative
β, as done by Laborieux et al. [14]. Increasing |β| further to 0.1 and 0.5 yields an even more
deformed perturbation, but the gradient is still correctly contained in the first Fourier coefficient of
the perturbation. hEP breaks down when β reaches amplitudes for which the corresponding path
intersects with areas in which no stable equilibrium exists (cf. Fig. 2b, light areas, and Fig. 2d).
However, as we will see in the next sections, the finite teaching amplitudes are beneficial when the
neuronal dynamics are subject to noise and when training deep neural networks.

Holomorphic EP can estimate the gradient in continuous time. Our theoretical findings allow
us to revisit in a principled way an idea introduced by Baldi and Pineda [15] for a continuous-time-
implementation of contrastive Hebbian learning [16] and learning rules looking to maximize slowness
[28–30]. In this context, the oscillating teaching signal is always-on, and the dynamical network
is governed by three mechanisms acting on distinct timescales. The smallest timescale Tdyn is the
typical time needed by the network to reach its fixed point. The second timescale is the period of

1https://github.com/Laborieux-Axel/holomorphic_eqprop
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Holo. EP (Eq. (7))

Figure 2: Overview of hEP for a small MLP. a) Neural oscillations sampled at N = 24 points in the
complex plane relative to the free fixed-point in the center (left, point sizes increasing with time).
The corresponding real part values over two periods (right). b) Map of the euclidean norm between
two consecutive steps of the dynamics in the complex plane spanned by β. The map describes the
network’s dynamical stability. Dark blue corresponds to regions with stable fixed points, while light
blue indicates lack of stability. c) Adiabatic correlations between two neurons for different |β| values
(dark blue dots). Filtering the mode over the period T of the teaching oscillation gives the light blue
dots, the temporal mean of which (orange cross) is the gradient (grey plus sign). d) Cosine similarity
with the true gradient of hEP (orange), and classic EP [10] (blue). The ? marks the teaching radius
|β| of the path in panel b). hEP breaks down when the path passes through unstable (light) regions.

Machine precision

Figure 3: a) Cosine similarity between the true gradient obtained with BP through time and the
online estimate (N = 10) as a function of oscillation periods. Different curves correspond to different
oscillation periods (darker color indicates larger Tosc). Tplas ≈ 10Tosc is enough to accurately estimate
the gradient. b) Measure of the residual convergence of the network as a function of the oscillation
period Tosc, showing that Tdyn ≈ 400/10 = 40 time steps. c) Cosine similarity of hEP (N = 15) and
classic EP with the true gradient as a function of |β| with neuronal output noise. All panels used the
same MLP with two hidden layers of 256 neurons each, fed with a minibatch of ten MNIST samples.

one teaching oscillation Tosc, and the third timescale is the number of periods after which synaptic
plasticity occurs Tplas. The gradient can be estimated online by:

∇̃(Tplas) := − 1

Tplas|β|

∫ Tplas

0

σi(t)σj(t)e
−2iπt/Toscdt, (10)

which converges to the gradient if Tdyn � Tosc � Tplas (see Appendix A.6). This expression is
similar to Eq. (5.2) in [15]. However their teaching signal oscillates discretely between 0 and 1, and
therefore produces a biased estimate of the gradient. To test the influence of the oscillation timescale
Tosc on the online estimate of Eq. (10), we compared the online estimation of the gradient over several
periods between several values of Tosc. To this end, we used a MLP with two hidden layers with 256
units each, which we fed with a minibatch of MNIST data [31]. We observed that the gradient could
be accurately estimated in a few periods for high enough Tosc (Fig. 3a, dark curves). However, when
the oscillations were too fast, a non-vanishing bias remained in the gradient estimates even for many
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Machine precision

Non holo.

Holomorphic
Machine precision

Figure 4: a) Cosine similarity between hEP and the true gradient in a holomorphic (plain lines)
seven-layer VGG-like CNN [32], and a non-holomorphic version using max pooling and ReLUs
(dashed lines). Input data is a minibatch of ImageNet 32× 32 [18] consisting of 10 images. The left
plot shows a comparison of the gradient with respect to the parameters of network’s output layer.
The right plot takes into account the gradient with respect to all network parameters. b) Cosine
similarity in function of N for three teaching amplitude values. Increasing N is only required for
higher amplitudes. c) Average training error on CIFAR-10. The average is calculated over three
random initializations and error bars correspond to two standard deviations.

periods (Fig. 3a, lighter curves). This bias is in all likelihood due to the inability of the system to
reach the fixed point (Fig. 3b). Finally, we found that given appropriate period timings, hEP used in
the online setting can train a network on MNIST (Table 1). Importantly, the online formulation of
hEP allows to dispense with the requirement of strictly separate learning phases by replacing them
with separate plasticity mechanisms acting on different timescales.

Table 1: MNIST validation errors in % for classic EP [10], hEP, and online hEP, with and without
noise. Results are averages (n = 3) ± stddev. For training errors see Table 4 in Appendix E.

Noise Class. EP, |β| = 0.1 Class. EP, |β| = 0.4 hEP, |β| = 0.4 Online hEP

Noise-free 1.87 ± 0.01 2.24 ± 0.05 1.97 ± 0.08 2.05 ± 0.02
With noise 88.7 ± 0.0 3.01 ± 0.1 1.96 ± 0.07 1.91 ± 0.16

Finite size teaching oscillations provide robustness to noise. To analyze hEP’s robustness to
noise, we injected a small-amplitude zero-mean Gaussian noise to each neuron in the network in
addition to the input from other neurons. We then used a single minibatch from the MNIST dataset
to compute gradient estimates using classic EP and hEP. The latter was computed by using one
realisation using N = 15 points, whereas the classic EP estimate was computed using the free and
nudged fixed points each averaged over dN/2e to provide a fair comparison. We found that for small
β when noise amplitudes were comparable to the activity changes caused by teaching oscillations the
gradient estimate diverged from the true gradient of the noise-free system (Fig. 3c). To some extent
this effect could be mitigated by choosing a finite teaching signal (β � 0) [12]. However, since β
also increases the bias for classic EP this creates a trade-off between choosing β either too small or
too large. Importantly, even for the optimal choice of β, classic EP did not accurately approximate the
gradient of the noise-free system. In contrast, hEP thanks to its robustness to finite teaching signals
did provide an accurate estimate of the gradient despite the noise. We verified that hEP is indeed
more robust to noise than classic EP when used to train the network (Table 1). Thus, hEP combined
with finite teaching amplitudes provides an effective way for training noisy computational substrates.

Holomorphic EP matches BP performance on large-scale vision benchmarks. To test hEP’s
ability to train deep neural networks, we first investigated the influence of the number of fixed points
N and the teaching amplitude |β| on the approximating quality ∇̂(N) of the loss gradient in a
seven-layer VGG-like architecture ([32]; Fig. 4a,b). We ensured holomorphic dynamics by using
softmax pooling layers [23] instead of the non-holomorphic max pooling, and by relying on sigmoid
weighted linear units (dSiLU) [33] (see Appendix B) instead of standard ReLUs. We first considered
a minibatch of ten images from the ImageNet 32× 32 dataset [18] and computed the gradient using
hEP as well as BPTT for reference. Here, our estimate (Eq. (8)) was computed by first letting the
network settle to the free fixed (β = 0), and then running the phases with complex β. We found that
the change to holomorphic dynamics already improved upon the gradient estimates used in previous
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work [14, 19]. Moreover, we observed that for the last layer increasing N only extended the range
of usable teaching magnitudes |β|, but did not improve the quality of the gradient estimate. This
phenomenon can be understood from Eq. (9), since higher N reduces the bias term considerably,
which accommodates higher teaching magnitude |β|. However, larger amplitudes tended to improve
the total gradient, particularly in deep layers where small teaching magnitudes were not enough
to produce sufficient error signals (see Appendix C for details). Additionally, larger N were only
required when using a higher teaching amplitude (Fig. 4b). Finally, we tested how the gradient
quality impacts the network training accuracy on CIFAR-10. We observed that the non-holomorphic
VGG was unable to reach low training error (Fig. 4c), which is consistent with the poor gradient
quality (Fig 4a). Changing to a holomorphic architecture with the same number of points resulted in
a substantial improvement of training accuracy, which was further boosted when training with N = 4
consistent with our theory.

Table 2: Validation accuracy of BP and hEP. All values are averages (n = 3) ± stddev.

CIFAR-10 CIFAR-100 ImageNet 32× 32

Top-1 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

BP 88.3 ± 0.1 62.0 ± 0.5 86.2 ± 0.1 37.2 ± 0.4 60.9 ± 0.1
hEP 88.6 ± 0.2 61.6 ± 0.1 86.0 ± 0.1 36.5 ± 0.3 60.8 ± 0.4

Finally, we wondered whether hEP could train deep neural networks on large-scale datasets, which
has remained an open problem for most if not all alternative algorithms to BP [4]. To this end,
we trained a five-layer CNN based on the VGG architecture [32] on multiple vision benchmarks
including CIFAR-10, CIFAR-100 [17], and the 32 × 32 pixel version of ImageNet [18], which
contains 1.2 million data points and 1000 classes like the full ILSVRC dataset [34]. In all cases we
found that the validation accuracy reached by networks trained with BP and hEP using only two fixed
points (N = 2) were identical within their uncertainties (Table 2). Note that the networks trained
with BP were the feed-forward equivalent of the holomorphic networks used with EP, but with ReLUs
instead of dSiLU, which did not give satisfactory results. Thus, hEP permits training deep CNNs on
ImageNet 32× 32 to comparable performance levels as standard BP.

5 Discussion

We have introduced hEP which extends classic EP by computing exact loss gradients through
integration over finite size adiabatic neuronal oscillations caused by a teaching signal (Section 3).
Importantly, such integration can be accomplished online with purely local learning rules which
makes it an exciting theoretical framework for studying learning in the brain where oscillations are
ubiquitously observed [35, 36]. In practice we found that numerically evaluating a small number of
points during one oscillation cycle provides an excellent gradient approximation that outperforms
classic EP and thanks to the finite oscillation amplitude is robust to noise, which is an advantage for
training neuromorphic hardware systems [21, 22, 37]. Additionally, the possibility of using finite
teaching signals is conducive for training deep CNNs, where infinitesimal teaching signals as used by
classic EP, may vanish (Section 4).

A body of previous work has attempted to reconcile BP with neurobiology [3, 38]. EP is most closely
related to classic theories of predictive coding (PC) [39–45] which similarly assumes convergent
network dynamics cast into an energy minimization problem. PC further assumes that errors are
encoded in neuronal dynamics, dedicated dendritic compartments, or separate temporal phases
[20, 40, 46, 47]. In a similar vein, Target Propagation (TP) [48–50] assumes locally encoded error
signals which in some cases are obtained by iterating approximate inverses, a property reminiscent of
EP [51–54] which comes with theoretical guarantees [55]. However, all previous EP studies and most
of the works above, with two notable exceptions [38, 50], were all limited to small-scale problems
[4]. In contrast, we demonstrate in this article that hEP scales to ImageNet 32× 32.

While the ability to run hEP online makes it an appealing model for credit assignment in biological
neural networks, this interpretation has several notable shortcomings. First, hEP requires complex-
valued neuronal outputs and a holomorphic dynamical system which precludes the use of max pooling
and ReLUs and hampers a direct comparison to neurobiology. However, we found that holomorphic
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alternatives exists which empirically yield comparable performance. Moreover, complex outputs have
a long-standing tradition in computational neuroscience where they appear in variations of Hopfield
networks [56–58], in the framework of theta neurons [59], and phasor networks [60] where they are
used to describe oscillatory neuronal dynamics. It is possible to interpret hEP within such frameworks.
For instance, it is straightforward to interpret complex neuronal output as oscillating activity with
a defined amplitude and relative phase to some reference signal accessible to the entire neuronal
population. Such a signal could be provided by neuromodulators such as acetylcholine which has
been implicated in neural oscillations [61]. Within our framework, the oscillatory teaching signal then
corresponds to a slow phase precession between the neuronal activity and the reference. Importantly,
such a mechanism implies a hierarchy of oscillation frequencies. Such different oscillations are
known to exist in the brain, e.g., theta (4–8 Hz) and gamma (30–70 Hz), but their precise purpose
remains elusive. While establishing formal circuit-level equivalences with hEP will require future
work, the principled link between oscillatory activity, learning and memory as developed in this article
seems promising. Like other algorithms hEP requires symmetric synaptic connectivity between layers
which seems biologically implausible. While theoretical guarantees for exact gradient computation
are lost without strict symmetry [62], it may not be required for learning [63–65]. Alternatively,
symmetry may be acquired through plastic feedback connections [66, 67]. Although our approach
neither uses time-varying input nor neuronal spiking dynamics, spiking extensions to EP have been
proposed [68, 69]. However, applying our theory to time-varying tasks requiring memory will require
additional architectural modifications and theoretical concepts [70] and establishing links to present
spike-based approaches [38, 71–73].

Our work augments classic EP with desirable properties for potential neuromorphic applications,
which promise power-efficient and equitable artificial intelligence (AI) at the edge and in IoT devices
[74–77]. While current software implementation of EP are generally slow compared to backprop,
its appeal lies in its potential for training physical networks on future neuromorphic mixed-signal
devices that are incompatible with backprop, but achieve settling times on the order of nanoseconds
[21, 37]. As exciting as such developments are, they also risk negative societal impacts, e.g., through
mass surveillance or allowing AI systems with potentially discriminatory biases to permeate our
everyday lives further. A transparent research strategy and taking into account ethical considerations
early during product design will be essential to avoid such adverse outcomes. On the upside, our
theoretical work further consolidates EP as a conceptual framework for understanding the brain, a
fundamental requirement to inform future biomedical research targeted at nervous system disorders.
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