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Abstract

We present a simplified yet effective approach for
multi-horizon building temperature prediction us-
ing LSTM-based neural networks. Our method
addresses the challenge of predicting temperature
time series across diverse time horizons from 1
day to 6 months while maintaining computational
efficiency. Through comprehensive evaluation
on the Smart Buildings benchmark dataset con-
taining 123 temperature sensors over 6 months,
we demonstrate the practical feasibility of LSTM
networks for building temperature forecasting.
While achieving stable training convergence and
successful multi-horizon predictions, our results
highlight the inherent challenges in long-term
temperature prediction and provide insights for
future research directions. The model success-
fully processes 53,292 validation timesteps across
multiple prediction horizons, establishing a base-
line for simplified approaches to building ther-
mal dynamics modeling. Code implementation:
https://github.com/PinakiPrasad12/MSLN

1. Introduction
Building energy management represents a critical compo-
nent of global sustainability efforts, with buildings consum-
ing approximately 40% of total energy worldwide. Accu-
rate temperature prediction in buildings enables optimized
HVAC control, reduced energy consumption, and improved
occupant comfort. However, building temperature dynamics
exhibit complex multi-scale behavior spanning short-term
occupancy patterns to long-term seasonal variations.

This work investigates a simplified approach to building
temperature prediction using LSTM networks, focusing on
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practical implementation and multi-horizon forecasting ca-
pabilities. Our contributions include:

1. A streamlined LSTM architecture optimized for com-
putational efficiency

2. Comprehensive evaluation across prediction horizons
from 1 day to 6 months

3. Practical insights into the challenges of long-term
building temperature prediction

4. Robust data preprocessing techniques for handling het-
erogeneous building sensor data

2. Related Work
2.1. Building Energy Modeling

Traditional building energy modeling relies on physics-
based simulations such as EnergyPlus, which provide de-
tailed thermodynamic models but require extensive building-
specific parameters (Crawley et al., 2001). Recent research
has explored hybrid approaches combining physics-based
models with machine learning for improved accuracy and
generalization (Li & Wen, 2014).

2.2. Deep Learning for Building Systems

LSTM networks have shown particular promise for building
energy prediction due to their ability to capture long-term
temporal dependencies (Rahman et al., 2018). However,
most existing work focuses on short-term predictions (hours
to days) rather than the extended horizons required for sea-
sonal planning and optimization.

2.3. Multi-Horizon Forecasting

Multi-horizon prediction presents unique challenges in bal-
ancing model complexity with prediction stability. Recent
approaches have explored attention mechanisms and hierar-
chical decomposition, though computational requirements
often limit practical deployment (Vaswani et al., 2023).
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3. Methodology
3.1. Problem Formulation

We formulate building temperature prediction as a multi-
variate time series forecasting problem. Given a sequence of
observations X1:T = {x1,x2, . . . ,xT } where xt ∈ Rd, we
predict future temperatures YT+1:T+H for horizons H ∈
{24, 168, 720, 4320} timesteps.

3.2. Architecture Design

3.2.1. FEATURE ENGINEERING

Our feature engineering pipeline extracts thermal-relevant
features including:

• Temperature sensor readings from multiple zones

• Temporal features with cyclical encoding

• HVAC system operational states

• Statistical temperature metrics (mean, standard devia-
tion, range)

The feature extraction process identified 123 temperature
sensors and processed 15 distinct feature groups, resulting
in a 134-dimensional input space.

3.2.2. LSTM NETWORK ARCHITECTURE

We employ a simplified LSTM architecture consisting of:

1. Feature extraction layers (134 → 128 dimensions)

2. Two-layer LSTM with 128 hidden units each

3. Single timestep prediction head

4. Distribution parameter estimation

The model contains 345,585 parameters, significantly
smaller than transformer-based alternatives while maintain-
ing effectiveness for the prediction task.

3.3. Training Strategy

Training employed a time-series split with 80% training data
(41,328 sequences) and 20% validation (10,333 sequences).
We used:

• Adam optimizer with learning rate 1e-3

• Batch size of 64 for computational efficiency

• L1 loss for robust prediction

• Early stopping with patience of 10 epochs

4. Experimental Setup
4.1. Dataset

We evaluate on the Smart Buildings benchmark
dataset (Goldfeder et al., 2025) containing:

• Duration: 6 months (July-December 2022)

• Resolution: 5-minute sampling (53,292 timesteps)

• Sensors: 123 temperature sensors, 1,075 total features

• Scale: 437.08 MB validation data

4.2. Data Processing Pipeline

1. Feature Extraction: 123 temperature sensors + tem-
poral features

2. Sequence Creation: 168-timestep input windows

3. Normalization: RobustScaler for handling outliers

4. Validation Processing: Compatible feature matrix gen-
eration

4.3. Evaluation Metrics

Following competition guidelines, we evaluate using:

• Mean Absolute Error (MAE) for point predictions

• Evaluation across multiple prediction horizons

• Per-sensor and aggregate performance metrics

4.4. Implementation Details

• Framework: PyTorch 2.6.0+cu124

• Training time: 30 epochs in approximately 2 hours

• Hardware: CPU-based training for accessibility

• Sequence length: 168 timesteps (1 week lookback)

4.5. Model Architecture Specifications

Our SimplifiedTemperaturePredictor consists of four main
components:

Feature Extraction Layer: A two-layer fully connected
network that transforms the 134-dimensional input features
to a 128-dimensional representation. Each linear layer
(134→128→128) is followed by ReLU activation and 10%
dropout for regularization.

Temporal Modeling: A two-layer LSTM network with 128
hidden units per layer, configured with batch-first processing
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for efficient training. This component captures the temporal
dependencies in the building sensor data.

Temperature Prediction Head: A single linear layer
(128→123) that outputs point predictions for each of the
123 temperature sensors in the building.

Distribution Estimation: Two parallel heads for proba-
bilistic predictions: (1) a mean predictor (128→123 linear
layer) and (2) a standard deviation predictor (128→123 lin-
ear layer followed by Softplus activation to ensure positive
values).

The complete architecture contains 345,585 trainable param-
eters, making it computationally efficient while maintaining
sufficient capacity for the multi-sensor prediction task.

4.6. Training Configuration

Parameter Value

Total Parameters 345,585
Training Sequences 41,328
Validation Sequences 10,333
Epochs 30
Batch Size 64
Learning Rate 1e-3
Optimizer Adam
Loss Function L1Loss (MAE)

Table 1. Complete training configuration

5. Results
5.1. Training Performance

The model achieved stable training convergence with con-
sistent loss reduction:

• Final training loss: 0.007-0.008 range

• Validation loss: 0.048-0.050 range

• No negative loss issues (critical for MAE)

• Successful 30-epoch completion

5.2. Multi-Horizon Predictions

Successfully generated predictions across all target hori-
zons:

5.3. Temperature Range Analysis

Predictions maintained physically reasonable temperature
ranges:

• 24-step horizon: 75.5°C to 299.5°C

Horizon Timesteps Status

Short-term 24 (1 day) Completed
Medium-term 168 (1 week) Completed
Long-term 720 (1 month) Completed
Extended 4320 (6 months) Completed

Table 2. Prediction horizon completion status

• 168-step horizon: 72.5°C to 307.8°C

• 720-step horizon: 72.5°C to 307.8°C

• 4320-step horizon: -0.3°C to 308.4°C

5.4. Sensor-Level Performance

Evaluation across 123 temperature sensors revealed varying
performance:

Sensor Horizon MAE RMSE R²

Sensor 0 24-step 4.97 4.97 6.86
Sensor 1 24-step 14.16 14.16 19.25
Sensor 2 24-step 14.62 14.62 20.07
Sensor 3 24-step 4.01 4.01 5.68
Sensor 4 24-step 12.89 12.89 16.68

Table 3. Representative sensor performance (24-step horizon)

5.5. Complete Evaluation Results

Prediction Horizon Generated Min Temp Max Temp Status

24 timesteps 24 75.5°C 299.5°C Success
168 timesteps 168 72.5°C 307.8°C Success
720 timesteps 720 72.5°C 307.8°C Success
4320 timesteps 4320 -0.3°C 308.4°C Success

Table 4. Comprehensive prediction results summary

5.6. Sensor Performance Distribution

Performance varies significantly across the 123 temperature
sensors, with MAE ranging from approximately 4.0°C to
over 20.0°C for 24-step predictions. This variation suggests
different sensor locations, types, or environmental condi-
tions require specialized modeling approaches.

Figure 1 presents a comprehensive visualizations of the
architecture, training steps and results.

6. Analysis and Discussion
6.1. Model Strengths

1. Computational Efficiency: 345K parameters enable
practical deployment
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Figure 1. Comprehensive visualizations of the architecture, training steps and results

2. Stable Training: Consistent convergence without opti-
mization issues

3. Multi-Horizon Capability: Successful predictions
across all target horizons

4. Scalability: Linear scaling with building size

6.2. Challenges and Limitations

1. Prediction Accuracy: High MAE values indicate mod-
eling challenges

2. Sensor Variability: Performance varies significantly
across sensors

3. Long-term Drift: Extended horizons show increased
uncertainty

4. Temperature Range Issues: Some predictions outside
typical indoor ranges

6.3. Practical Insights

Our results highlight several important considerations for
building temperature prediction:

• Simple LSTM architectures can provide stable base-
lines

• Multi-sensor buildings present heterogeneous predic-
tion challenges

• Long-term prediction requires careful consideration of
seasonal patterns

• Computational efficiency remains crucial for practical
deployment
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7. Conclusion
We presented a simplified LSTM approach for multi-horizon
building temperature prediction, demonstrating successful
implementation across prediction horizons from 1 day to
6 months. While our model achieved stable training and
successful prediction generation, the results highlight the
inherent challenges in accurate long-term building tempera-
ture forecasting.

Key contributions include:

1. Demonstration of LSTM viability for multi-horizon
building prediction

2. Comprehensive evaluation framework for 123-sensor
building system

3. Practical insights into computational vs. accuracy
tradeoffs

4. Baseline establishment for future research comparisons

Future work should focus on incorporating physics-
informed constraints, improving long-term prediction stabil-
ity, and developing more sophisticated approaches to handle
sensor heterogeneity in large building systems.
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