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Abstract
This paper considers the unlabeled sparse recov-
ery under multiple measurements, i.e., Y =
⇧\XB\ + W, where Y 2 Rn⇥m

,⇧\ 2
Rn⇥n

,X 2 Rn⇥p
,B\ 2 Rp⇥m

,W 2 Rn⇥m

represents the observations, missing (or incom-
plete) correspondence information, sensing ma-
trix, sparse signals, and additive sensing noise,
respectively. Different from the previous works
on multiple measurements (m > 1) which all
focus on the sufficient samples regime, namely,
n > p, we consider a sparse matrix B\ and investi-
gate the insufficient samples regime (i.e., n ⌧ p)
for the first time. To begin with, we establish the
lower bound on the sample number and signal-
to-noise ratio (SNR) for the correct permutation
recovery. Then, we present a simple yet effective
estimator. Under mild conditions, we show that
our estimator can restore the correct correspon-
dence information with high probability. Numeri-
cal experiments are presented to corroborate our
theoretical claims.

1. Introduction
In recent years, linear regression with permuted correspon-
dence has received increasing attention due to its wide appli-
cations in the field of machine learning, signal processing,
and statistics. Among all these applications, two most promi-
nent examples are (i) linkage record, which merges two
datasets of the same objects into one comprehensive dataset;
and (ii) data de-anonymization, which infers the hidden
labels of private data with the help of public datasets. Apart
from these two applications, other applications include cor-
respondence estimation between pose and estimation in
graphics; time-domain sampling in the presence of clock
jitter; multi-target tracking; unsupervised data alignment,
etc (Pananjady et al., 2018; Slawski and Ben-David, 2019;
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Zhang et al., 2018; Slawski et al., 2020; 2019; Zhang et al.,
2019; Fang and Li, 2022; Zhang et al., 2022; Zhang and Li,
2023). In this paper, we consider the canonical model, i.e.,
a linear sensing relation with permuted labels:

Y = ⇧\XB\ +W,

where Y 2 Rn⇥m is the sensing result, ⇧\ 2 Rn⇥n is
an unknown permutation matrix, X 2 Rn⇥p is the design
(sensing) matrix, B\ 2 Rp⇥m represents the sparse signals
of interest, and W 2 Rn⇥m denotes the additive noise.
Assuming the signal B\ is a sparse signal, to put more
specifically, each column of B\ is k-sparse, we would like
to (i) study the statistical limits of the permutation recovery
under this scenario, e.g., the minimum sample number n
and signal-to-noise ratio (SNR); and (ii) propose a practical
estimator that can efficiently recover the permutation once
the minimum requirements are met. To begin with, we
briefly review the previous works.

Related Works. The study of permuted linear regression
has a long history that can at least date back to DeGroot
and Goel (1976; 1980); Goel (1975); Bai and Hsing (2005).
Recent interest in this area start from Unnikrishnan et al.
(2015). Focusing on the noiseless case W = 0 with single
measurement (m = 1), Unnikrishnan et al. (2015) establish
the necessary condition n � 2p for the permutation recovery
if B\ is an arbitrary vector residing within the linear space
Rp. Later, Pananjady et al. (2018) extend the analysis to the
noisy scenario. They showed the minimum SNR should be
at least the order of ⌦(nc), where c > 0 is some positive
constant. Numerical experiments suggest c is within the
region [4, 5]. Other works such as Hsu et al. (2017); Abid
et al. (2017); Slawski and Ben-David (2019); Tsakiris et al.
(2020); Haghighatshoar and Caire (2018) also focus on this
regime and obtain the same answer. In Emiya et al. (2014),
the setting with a sparse signal B\ is first studied. However,
only empirical investigation is conducted without rigorous
theoretical analysis. In the first work with theoretical anal-
ysis (Zhang and Li, 2021), both the statistical limits and
practical estimators with almost optimal performance are
presented for the permutation recovery. Peng et al. (2021)
study the problem from the viewpoint of algebraic geometry.
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All existing works suggest that SNR = ⌦(nc) is inevitable
for the permutation reconstruction if only one measurement
is conducted, namely, m = 1.

On the other hand, numerous works suggest multiple mea-
surements, i.e., m > 1, can greatly reduce the SNR require-
ment, even to some positive constant. This line of research
starts from Zhang et al. (2019; 2022), where the information-
theoretic lower bounds and the maximum likelihood (ML)
estimator are investigated. Later, Zhang and Li (2020) study
this problem from the viewpoint of non-convex optimiza-
tion and propose an optimal estimator for the permutation
recovery. Independently, Slawski et al. (2020) investigate
this problem from the viewpoint of denoising. Putting parsi-
monious constraints on the number of permuted rows, they
view (I � ⇧\)XB\ as sparse outliers and design the per-
mutation recovery algorithm accordingly. Notice that all
these works focus on the sufficient samples regime, namely,
n = ⌦(p). In this paper, we focus on the insufficient sam-
ples regime. Assuming B\ to be sparse, we would like to
show the correct permutation can be obtained with n ⌧ p

and SNR = O(1).

Our contributions are summarized as follows

• We study the lower bounds w.r.t the number n and signal-
to-noise ratio (SNR) for the correct reconstruction of both
the permutation matrix ⇧\ and the signal B\. Assuming
each column B\

:,` (1  `  m) is k-sparse, we show
that the sample number n should be at least of the order
⌦(k log p); meanwhile the SNR should satisfy log det(I+
B\>B\

/�2) > log n+
m log (pk)

n .

• We propose a one-step estimator for the correspondence
recovery, which consists of two sub-parts: one for ⇧\ and
another for B\. By formulating the correspondence recov-
ery as a linear assignment problem (LAP) (Kuhn, 1955;
Bertsekas and Castañón, 1992; Burkard et al., 2012), we
show the correct permutation matrix can be obtained
when (i) SNR is above certain positive constant and
(ii) the minimum sample number n is in the linear
dependence with the sparsity number k.

On top of the above contributions, we would like to briefly
mention our proof strategy, which is based on a tailored
version of the leave-one-out technique. Compared with the
previous works that adopt the leave-out-out technique (Chen
et al., 2020; Sur et al., 2019; Karoui, 2013; 2018; Cai et al.,
2021), our construction has the following characteristics:

• Our construction method is adaptive, which replaces mul-
tiple rows ranging from 2 to 4 depending on each per-
muted row. Meanwhile, previous works such as Chen
et al. (2020); Sur et al. (2019); Karoui (2013; 2018); Cai
et al. (2021) replace a fixed number of rows (or columns).

• We not only leave out the rows but also modify the thresh-
olding operator operated on the perturbed samples eB(··· )
from thres(·) to (·)imax (its definition is deferred to Sub-
section 4.2). This step is essential in controlling the ap-
proximation error since otherwise the non-zero elements
in matrices bB (/ X>Y) and eB(·) may not share the
same position and the approximation error can be con-
siderably large. A detailed explanation is deferred to the
proof of Theorem 3.

Notations. Denote c, c
0
, ci as some positive constants,

whose values are not necessarily the same even for those
with the same notations. We denote a . b if there exists
some positive constants c0 > 0 such that a  c0b. Simi-
larly, we define a & b provided a � c0b for some positive
constant c0. We write a ⇣ b when a . b and a & b hold
simultaneously.

For an arbitrary matrix M, we denote Mi,: as its ith row,
M:,i as its ith column, and Mij as its (i, j)th element. Its
Frobenius norm is defined as |||M|||F while the operator norm
is denoted as |||M|||OP, whose definitions can be found in
Section 2.3 of Golub and Van Loan (2012). In addition,
we define its stable rank as srank(·) , |||·|||2F/|||·|||

2
OP (Sec-

tion 2.1.15 in Tropp (2015)) and its support set supp(·) as
{(i, j) : (·)i,j 6= 0}. The inner product between matrices is
denoted as hh·, ·ii while the inner product between vectors is
denoted as h·, ·i.

We define the set of all possible permutation matrices as
Pn, which is defined as {⇧ 2 {0, 1}n⇥n :

Pn
i=1 ⇧ij =

1,
Pn

j=1 ⇧ij = 1}. Associate with each permutation ma-
trix ⇧, we define the operator ⇡(·) that transforms index
i to ⇡(i) under ⇧. The Hamming distance dH(⇧1,⇧2)
between two permutation matrices ⇧1 and ⇧2 is defined
as dH (⇧1,⇧2) , Pn

i=1 (⇡1(i) 6= ⇡2(i)). The SNR is
defined as

������B\
������2

F/(m · �2).

Organizations. In Section 2, we formally state our prob-
lem setting and briefly discuss its relations with previous
works. In Section 3, we investigate the mini-max lower
bound. In Section 4, we present a practical estimator for the
permutation and signal recovery; along with its performance
analysis. We show that its performance almost matches the
mini-max lower bound. In Section 5, we present the numer-
ical experiments and draw the conclusions in Section 6.

2. Problem Formulation
We start this section with a formal restatement of the con-
sidered problem reading as

Y = ⇧\XB\ +W, (1)

where ⇧\ 2 Pn denotes the (fixed but unknown) permuta-
tion matrix, X 2 Rn⇥p is the sensing (design) matrix with
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its entries being i.i.d. standard normal random variables,
i.e., Xij ⇠ N(0, 1), 1 B\ 2 Rp⇥m is a fixed sparse matrix
awaiting to be reconstructed (corresponding to the sparse
signal), and W 2 Rn⇥m represents the additive sensing
noise with each entry Wij

i.i.d⇠ N(0,�2). Here we put the
separate sparse constraints on each column of B\, namely,
kB\

:,`k0  k (1  `  m). In addition, we denote h as the
number of permuted rows, or equivalently, the Hamming
distance between the identify matrix I and the permutation
matrix ⇧\, namely, h , dH(I,⇧

\).

Our goal is to reconstruct both the permutation matrix ⇧\

and sparse signal B\ from (1). Note that we do not assume
that different columns of ⇧\ share the same support set.
Actually, we prefer each column to be with a different sup-
port set, since otherwise rank(B\) will be bounded by k and
will bring more difficulties to the permutation recovery. A
detailed explanation is deferred to Section 4.

Before proceeding, we briefly review the prior art. In Un-
nikrishnan et al. (2015), where B\ can reside within the
entire linear space Rp, it is proved that n � 2p is required
for the correct permutation recovery. As a result, subsequent
works such as Pananjady et al. (2018); Zhang et al. (2019);
Slawski and Ben-David (2019); Slawski et al. (2020); Zhang
and Li (2020) all focus on the sufficient sample regime, i.e.,
n = ⌦(p). Only until Zhang and Li (2021), the insufficient
sample regime, i.e., n = o(p), receives its first theoretical
investigation. Similar to our setting, they put sparsity as-
sumptions on B\ however focus on the single measurement
scenario, namely, m = 1. They show that the minimum
SNR for correct (⇧\

, supp(B\)) to be ⌦(nc1/srank(B\)
p

c2p/n).
In the following context, we will show that the minimum
SNR can be reduced to some positive constant provided
multiple measurements are made (m � 1).

3. Information Theoretic Lower Bounds
This section establishes the information-theoretic lower
bounds for the correct permutation recovery. Our goal is
to ensure both ⇧\ and B\ can be reliably reconstructed.
We investigate this problem from two perspectives: (i) the
sample number n and (ii) the minimum SNR.

3.1. The minimum sample number n

We obtain the minimum sample number n such that sparse
signal B\ can be reliably recovered with high probability.
Here we consider the oracle situation where ⇧\ is given a
prior. As each column in B\ does not necessarily share the
same support set, we need to iteratively reconstruct each
column B\

:,`, a k-sparse signal, from the corresponding read-
ings Y:,` (1  `  m). With the classical result in Donoho

1Experiments suggest that we may relax this assumption to that
Xij are i.i.d. sub-Gaussian random variables.

(2006); Candes et al. (2006); Candès et al. (2006), we obtain
the lower bound on n, namely, n & k log p. Naturally, we
can expect this bound to apply to the non-oracle situation as
well, since a reliable estimation of B\ is hopeless provided
it is out of reach even in the oracle situation.

3.2. The minimum SNR

Then we turn to the minimum SNR requirement for the
correct permutation recovery. To begin with, we restate the
previous result in Zhang et al. (2019).
Theorem 1 (Theorem 1 in Zhang et al. (2019)). Consider
the oracle case where B\ is given a prior. Then, there exists
an integer n0 such that for an arbitrary estimator b⇧, we
have

inf
b⇧

sup
⇧\2Pn

PX,W( b⇧ 6= ⇧\) � 1

2
,

provided that (i) log det(I + B\>B\
/�2) < log n and (ii)

n � n0.

One drawback of this bound is the missing role of the spar-
sity number k. This is because Theorem 1 assumes B\ to
be perfectly known while sparsity number k only kicks in
when B\ needs to be reconstructed. To handle such an issue,
we take supp(B\) into account as well. Then we have
Theorem 2. There exists an integer n0 � 0 such that for
arbitrary estimators b⇧ and bB, we have

inf
b⇧,bB

sup
⇧2Pn,

B2Bn,p,m,k

PX,W[( b⇧, supp(bB)) 6= (⇧, supp(B))] � 1

2
,

hold for all n � n0, where Pn denotes the set of all per-
mutation matrices, Bn,p,m,k is defined as the set reading as

{B 2 Rp⇥m : log det(I + B>B/�2)  log n +
m log (pk)

n },
and supp(·) , {(i, j) : (·)i,j 6= 0} denotes the support set.

This theorem suggests that for all possible estimators to
reconstruct ⇧ and supp(B), there exists at least one pair
(⇧,B) ,⇧ 2 Pn,B 2 Bn,p,m,k such that the recon-
struction error rate will be at least 1/2. Hence, a reli-
able correspondence reconstruction requires B\ (a fixed
but unknown matrix) to satisfy log det

�
I+ B\>B\

/�2
�
>

log n+ m log (pk)/n.

We leave its rigorous proof to the supplementary material
and only give an intuitive interpretation, which comes from
the coding theory. First, we assume each entry in B to be
binary, i.e., Bij 2 {0, 1}, (1  i  p, 1  j  m). Thus,
the information of B is fully incorporated in supp(B). In
the following, we will use supp(B) and B interchangeably,
as they are identical.

Afterward, we view the sensing relation in (1) as the follow-
ing transmission process: (i) pair (⇧,B) is encoded into
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the codeword ⇧XB; (ii)⇧XB passes through a Gaussian
additive channel; and (iii) one observes Y, from which one
would like to obtain (⇧,B).

Using the terminology from coding theory, we can com-
pute the corresponding code rate and channel capacity as
logn!+m log (pk)

n and log det(I+ B>B/�2), respectively. Due
to the Shannon theorem, we can expect non-negligible de-
coding error if the coding rate is greater than the channel
capacity, which leads to log det(I + B>B/�2) < log n +
m log (pk)

n , the formula in Theorem 2.
Remark 1. Note that the minimum SNR requirements can
be derived from Theorem 2 as log det(I+B>B/�2) is closely
related to SNR. When B is of rank-one, we have log det(I+
B>B/�2) be log(1 +m · SNR). When B is of full rank and
with identical singular values, we have log det(I+B>B/�2)
be rank(B) · log(1 + SNR).

Having obtained the information-theoretic lower bounds, we
will propose a computationally efficient estimator, whose
performance matches these lower bounds to a good extent.

4. Estimator Design
This section proposes a computationally efficient estimator
for the permutation recovery. Denote thres(·) as the operator
which only keeps the element with the largest magnitude in
each column, we reconstruct ⇧\ with the linear assignment
problem (LAP) (Kuhn, 1955; Bertsekas and Castañón, 1992;
Burkard et al., 2012) reading as

⇧opt = argmax⇧2Pn

⌦
⇧,Y · thres(X>Y)> ·X>↵

,

Once the permutation matrix ⇧opt is obtained, we can trans-
form (1) to the previous setting and iteratively recover each
k-sparse column B\

:,i. A formal statement of the algorithm
is in Algorithm 1. Here, we use the Lasso estimator, which
can be replaced with other estimators (say Dantzig estimator,
etc), to reconstruct the signal B\.

Design intuition. The design of (2) shares a similar idea
of the estimator in Zhang and Li (2020): we would like to
approximate the direction of B\ by the product X>Y. How-
ever, due to insufficient samples, product X>Y is poorly
aligned with B\, or equivalently, large errors in approximat-
ing B\ with X>Y and weak correlation hB\

,X>Yi. To
reduce the approximation errors, we apply thres(·) and set
certain entries in X>Y to zero.

Note that we always keep one nonzero entry in the oper-
ation thres(·) regardless of the sparsity number k. This
operation is different from almost all previous works, which
range from Blumensath and Davies (2009); Foucart (2011)
in the literature on compressed sensing to Jain et al. (2013);
Yuan et al. (2014); Li et al. (2016) in the literature on op-
timization, since all these works suggest keeping at least

Algorithm 1 One-step estimator.
Input: observation Y and sensing matrix X.
Output: pair (⇧opt

, Bopt), which is written as

⇧opt = argmax⇧2Pn

⌦
⇧,Y · thres(X>Y)> ·X>↵

,

(2)

Bopt = argminB(2n)
�1
���
���
���⇧opt>Y �XB

���
���
���
2

F
+ �nkBk1,

(3)

where thres(·) applies to each column and thresholds all
entries to zero except the one with the largest magnitude,
Pn denotes the set of all possible permutation matrices,
k·k1 , P

i,j |(·)i,j | denotes the absolute sum of all en-
tries, and �n > 0 is some regularizer coefficient.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Figure 1. Keeping more non-zero elements in X>Y deteriorates
permutation recovery. n = 100, p = 500, h = 25, k = 5,
srank(B\) = 100. #non-zero elements refers to the number of
non-zero elements kept in each column of X>Y.

O(k) non-zero elements for a k-sparse signal.

More surprisingly, our numerical experiments suggest keep-
ing more non-zero elements can be harmful to permutation
recovery. An illustration is put in Figure 1, from which
we observe the SNR required for correct correspondence
recovery increases with the number of non-zero elements
kept in X>Y.

An intuitive explanation of the operator thres(·)’s role
is given as follows. Roughly speaking, we apply the
operator thres(·) to X>Y for a better approximation of
B\’s direction, or equivalently, increase the correlation
hthres(X>Y),B\i. Due to the insufficient sample num-
ber n, X>Y is poorly aligned with B\. Thus, keeping more
non-zero elements in thres(·) leads to a potential decrease
of hthres(X>Y),B\i and less satisfying performance.
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4.1. Main results

This subsection formally presents our main results.

4.1.1. RESULTS IN RECOVERING ⇧\

First, we study correspondence recovery. A formal state-
ment is given as

Theorem 3. Suppose that n � n0 and p � p0, where
n0, p0 > 0 are some positive constants. Provided
that (i) n � k(log n)(log2 mnp), (ii) srank(B\) �
k
2 log2(1+"0) n, (iii) h  c0 · n, and (iv) SNR � c1, we

have {⇧opt = ⇧\} with probability at least 1 � c2 · n�c3 ,
where "0 > 0 is an arbitrary positive constant and h ,
dH(I,⇧

\) denotes the number of permuted rows.

Discussion. Table 1 compares our result with the previous
works. Our work gives the first affirmative answer such that
SNR � ⌦(1) is sufficient to obtain the correct permutation
matrix with insufficient samples, i.e., n ⌧ p.

In addition, we would like to compare it with the lower
bound. To begin with, we discuss the SNR requirement,
which is the top priority of our analysis. From Theorem 3,
we can see that the correct permutation matrix can be ob-
tained provided that SNR is above some positive constant;
meanwhile Theorem 2 requires SNR > 0. This means
our SNR requirement has at most a gap of some positive
constant with the statistical lower bound.

For the sample number n, the lower bound requires n to be
at least of order ⌦(k log p); while Theorem 3 requires n to
be ⌦(k(log n)(log2 mnp)), which means the lower bound
is matched up to some multiplicative logarithmic terms. We
conjecture that the required n in Theorem 3 can be further
optimized with a more delicate analysis.

Moreover, our estimator allows the maximum number of
permuted rows to be linearly proportional to the sample
number, i.e., hmax ⇣ n, which is order-optimal.

In the end, we would like to discuss the assumption on
srank(B\). When the eigenvalues of B\ is almost uniformly
distributed, we have srank(B\) ⇣ rank(B\), which is of
order O(min(p,m)). Thus, we conclude that the constraint
srank(B\) � k

2 log2(1+"0) n will reduce to the following
requirement, i.e.,

min(p,m) � k
2 log2(1+"0) n. (4)

Notice the assumption p � n, we conclude that the first
requirement in (4), i.e., p � k

2 log2(1+"0) n, is not very
strict. For the second constraint, m � k

2 log2(1+"0) n, it
suggests more multiple measurements are desired. 2 In

2Specifically, we should mention the stable rank assumption is
almost independent of the sparsity assumption, in other words, it
does not confine matrix B\ to be an extremely sparse matrix.

addition, if we assume that for each column its maximum
entry’s energy is at least a constant proportion of the total
energy, i.e., infj maxi |B\

i,j |/kB\
:,jk2 � "1 (1  i  p, 1 

j  m, we can further relax the requirements on stable rank
srank(B\), to put it more specifically, srank(B\) � log2 n.
Here "1 > 0 is an arbitrarily small positive constant. A
formal statement is given as
Corollary 1. Consider the large-system limit where n

and p are sufficiently large. Under the conditions (i)
infj maxi |B\

i,j |/kB\
:,jk2 � "1, (ii) n � k(log n)(log2 mnp),

(iii) srank(B\) � log2(1+"0) n, (iv) h  c0 · n, and (v)
SNR � c1, we have {⇧opt = ⇧\} with probability at least
1� c2 · n�c3 , where "0, "1 > 0 are some arbitrarily small
positive constants; and h , dH(I,⇧

\) is the number of
permuted rows.

In this scenario, the requirements in (4) reduce to

p � log2 n and m � log2 n.

Notice that the first requirement is almost trivially satisfied,
as p � n � log2 n.
Remark 2. Compared with Zhang and Li (2020) which
only requires srank(B\) to be above certain positive con-
stant, our estimator needs a larger stable rank srank(B\).
Although we cannot claim that srank(B\) must be lower
bounded by some non-decreasing functions of log n, we
have a numerical evidence such that srank(B\) may have
to increase with sample number n, in other words, its lower
bound may not be reduced to be some positive constant.
Fixing the parameters p, k, h, and srank(B\), we study the
impact of sample number n on the permutation recovery
and put the results in Figure 2. We observe that a larger
n has a negative impact on the permutation reconstruction
once n exceeds a certain threshold. One possible reason
is that the stable rank srank(B\) is fixed as a constant and
violates the requirement srank(B\) � log2 n.

50 850 1650 2450 3250 4050
0

0.2

0.4

0.6

0.8

1

Figure 2. Illustration of the dual role of sample number n, for the
noiseless case (infinite SNR) with p = 200 (signal length), k = 5
(sparsity number), and h = 25 (number of permuted rows).
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Table 1. Comparison with previous works. All results are presented in their best order, which only holds in certain regimes. Here, SNRmin,
nmin and hmax denotes the minimum SNR required for correct permutation recovery, the minimum required sample number and maximum
allowed number of permuted rows, respectively. We represent the matrix rank as rank(·). In addition, we use NA to denote that the
analysis is not applied to the corresponding work. Moreover, the logarithmic term is omitted in e⌦(·).

SNRmin (�) nmin/p (�) hmax/n ()

m = 1 m � 1 m = 1 m � 1 m = 1 m � 1

Pananjady et al. (2018) e⌦(nc) NA e⌦(1) NA e⌦(1) NA

Slawski and Ben-David (2019) e⌦(nc) NA e⌦(1) NA e⌦(log�1
n) NA

Zhang et al. (2019) NA e⌦(1) NA e⌦(1) NA e⌦
�
log�1

r(B\)
�

Slawski et al. (2020) NA e⌦(1) NA e⌦(p) NA e⌦(log�1
n)

Zhang and Li (2020) e⌦(nc) e⌦(1) e⌦(1) e⌦(pp) e⌦(1) e⌦(1)

Zhang and Li (2021) e⌦(nc) NA o(1) NA e⌦(1) NA

Our Estimator NA e⌦(1) NA o(1) NA e⌦(1)

4.1.2. RESULTS IN RECOVERING B\

Once the ground truth ⇧\ is obtained, we can reduce (1)
to the traditional model in compressed sensing/sparse re-
covery (Candès et al., 2006; Candes et al., 2006; Donoho,
2006; Wainwright, 2019) and reconstruct the signal B\

with a Lasso estimator. Concerning the reconstruction error������B\ �Bopt
������

F, we have the following corollary.

Corollary 2. Suppose that n � n0 and p � p0, where
n0, p0 > 0 are some positive constants. Provided
that (i) n � k(log n)(log2 mnp), (ii) srank(B\) �
k
2 log2(1+")

n, (iii) h  c0 ·n, and (iv) SNR � c1. Setting
�n in (3) as c2�

p
log p/n, we conclude

������B\ �Bopt������
F . �

r
mk log p

n

holds with probability exceeding 1� c3 · n�c4 � c5 · p�c6 .

Its proof is a simple combination of Theorem 3 and the pre-
vious results in Candès et al. (2006); Candes et al. (2006);
Donoho (2006); Wainwright (2019). However, we observe
a new phenomenon: the reconstruction error

������Bopt �B\
������

F
is affected by the signal energy

������B\
������

F on top of the sensing
noise �

2. 3 Moreover, we should mention that the above
difference will still exist even when we replace (3) with
other estimators, say, Dantzig estimator.

At last, we can relax the constraints on srank(B\) and n with
an additional constraint on infj maxi |B\

i,j |/kB\
:,jk2, which is

3This corollary has one requirement on SNR, which is affected
by both

������B\
������

F and �2. In addition, we may have
������Bopt �B\

������
F

be directly linked to
������B\

������
F, as a wrong correspondence can be

obtained with low SNR.

the same as that in Corollary 1. A formal statement is given
as the following.

Corollary 3. Suppose that n � n0 and p � p0, where
n0, p0 > 0 are some positive constants. Provided that (i)
infj maxi |B\

i,j |/kB\
:,jk2 � "1, (ii) n � k(log n)(log2 mnp),

(iii) srank(B\) � log2(1+"0) n, (iv) h  c0 · n, and (v)
SNR � c1. Setting �n in (3) as c2�

p
log p/n, we conclude

������B\ �Bopt������
F . �

r
mk log p

n

holds with probability at least 1� c3 · n�c4 � c5 · p�c6 .

4.2. Proof outline

Due to the space limit, we only give a sketch of our proof
ideas and leave the technical details to the supplementary
material. Denote bB = (n� h)�1X>Y, our goal is to show

hY,⇧\X · thres(bB)i > hY,⇧X · thres(bB)i, 8 ⇧ 6= ⇧\

(5)

holds with high probability under the settings in Theorem 3.

Same as Zhang and Li (2020), our analysis faces the difficul-
ties brought by (i) combinatorial nature of the problem and
(ii) high-order moments of sub-Gaussian random variables.
On top of these challenges, we are subject to insufficient
samples, i.e., n ⌧ p. These issues are tackled by a combina-
tion of relaxation and tailored leave-one-out analysis, which
can be roughly divided into the following three stages.

Stage I. We consider the sufficient condition of (5), which
can be written as

6
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hYi,:, thres(bB)>X⇡\(i),:i � hYi,:, thres(bB)>Xj,:i,
8 j 6= ⇡

\(i).

Re-arranging the terms, we obtain an equivalent form read-
ing as

hB\>X⇡\(i),:, thres(bB)>X⇡\(i),:i

� hB\>X⇡\(i),:, thres(bB)>Xj,:i

+ hWi,:, thres(bB)>
�
X⇡\(i),: �Xj,:

�
i. (6)

Informally speaking, we first assume that thres(bB) is al-
most parallel to B\; and the dependence of thres(bB) on
X⇡\(i),:,Xj,: is negligible. Then, we can approximate
(6)’s left-hand side as

������B\
������2

F and its right-hand side as
a sum of z1B\>B\z2 and

p
2z
������B\

������
F up to some nor-

malization constant, where z1, z2
i.i.d⇠ N(0, Ip⇥p) and

z
i.i.d⇠ N(0, Im⇥m) are Gaussian random vectors. Eas-

ily, we can see that (6) holds with high probability pro-
vided the SNR is sufficiently large. In the following two
stages, we will verify the above two assumptions, that is, (i)
\(thres(bB),B\) is small and (ii) the dependence between
thres(bB) and X⇡\(i),:,Xj,: is negligible.

Stage II. We would like to lower-bound the inner
product hB\

, thres(bB)i. Denote b� as the correspond-
ing column in bB, we can express hB\

, thres(bB)i asP
�\2{B\

:,`}1`m
h�\

, thres(b�)i. From the definition of

thres(·), we notice that thres(b�) only has one non-zero
entry. W.l.o.g. we assume its index is one and hence have

h�\
, thres(b�)i = �\

1
b�1 = (�\

1)
2 + �\

1(b�1 � �\
1)

� (�\
1)

2 �max
i

|�\
i | · k�

\ � b�k1. (7)

We (i) upper-bound maxi |�\
i | and k�\ � b�k1; and (ii)

lower-bound |�\
1|. Part (i) is quite standard and part (ii)

lies in analyzing the event |b�1| � maxj |b�j |, which is due
to the definition of thres(·).

Stage III. We would like to show the dependence between
thres(bB) and rows X⇡\(i),: and Xj,: is negligible. This
is accomplished by a tailored leave-one-out analysis. For
each row indices pair (⇡\(i), j), we construct a perturbed
matrix bB(⇡\(i),j) by replacing the rows X⇡\(i),:,Xj,: with
their i.i.d. substitutes. A more detailed description of the
construction process is given as follows.

First, we draw i.i.d. samples for each rows of Xi,: and
denote it as eXi,: (1  i  n). Similarly we draw samples
fWj,: for each row in W, 1  j  n. For arbitrary indices
⇡
\(i) and j such that j 6= ⇡

\(i), we create the samples
bB(⇡\(i),j) as (assume i 6= ⇡

\(i) and j 6= ⇡
\(j))

bB(⇡\(i),j) = (n� h)�1

✓ X

`,⇡\(`) 6=⇡\(i),j

X`,:X
>
⇡\(`),:

◆
B\

+ (n� h)�1

✓
eXi,:

eX>
⇡\(i),: +

eX⇡\(i),:
eX>

⇡\(⇡\(i)),:)B
\

+ (n� h)�1

✓
eXj,:

eX>
⇡\(j),: +

eX⇡\�1(j),:
eX>

j,:

◆
B\

+ (n� h)�1
X

` 6=⇡\(i),i

X`,:W
>
`,:

+ (n� h)�1

✓
eX⇡\(i),:

fW>
⇡\(i),: +

eXi,:
fW>

i,:

◆
.

Provided that i = ⇡
\(i), we can simplify the summaries

eXi,:
eX>

⇡\(i),: +
eX⇡\(i),:

eX>
⇡\(⇡\(i)),: and eX⇡\(i),:

fW>
⇡\(i),: +

eXi,:
fW>

i,: in the above construction as the terms eXi,:
eX>

i,:

and eXi,:
fW>

i,:, respectively. Similarly, we will simplify
eXj,:

eX>
⇡\(j),:

+ eX⇡\�1(j),:
eX>

j,: as Xj,:X>
j,: when j = ⇡

\(j).

Easily, we can verify that bB(⇡\(i),j) is independent from the
rows X⇡\(i),:,Xj,: as the latter are not involved in bB(⇡\(i),j).
Meanwhile, we have bB(⇡\(i),j) exhibit a similar behavior
as bB as they share almost identical components. In fact,
this is the basic idea of leave-one-out technique (Chen et al.,
2020; Sur et al., 2019; Karoui, 2013; 2018; Cai et al., 2021).
Compared with these works, our construction method has
the following characteristics

• The number of replaced rows in our method varies for
different pairs of row indices. As we can see from the
above example, we need to substitute the rows X⇡\(i),:

and Xj,: in bB with their i.i.d. replicas. Since the number
of impacted terms depends on the relations between index
⇡
\(i) and index j, we need to replace a varying number of

terms in the perturbed matrix bB(⇡\(i),j). Meanwhile, the
number of replaced terms is fixed in the works thereof.

• We modify the operator thres(·) in approximating
thres(bB). While the previous works usually keep the op-
erator thres(·) intact, we approximate it with the operator
(·)imax, which denotes the positions of non-zero elements
in thres(bB). In other words, the positions of the non-zero
elements we keep in the leave-one-out samples eB(·) are
determined by thres(bB) rather than thres(eB(·)). In our
analysis, we can see this step is essential in controlling
the approximation errors. Otherwise, the approximation
error can be considerably large, since thres(bB) may not
share the same support set with thres(eB(·)), let alone
their `2 differences.

Note that the above explanation is a simplified version of our
proof technique. The technical details, which are deferred to

7
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Figure 3. Simulated recovery rate P( b⇧ = ⇧\) with n =

{100, 150}, p 2 {500, 600}, h 2 {25, 37}, and Xij
i.i.d⇠ N(0, 1),

w.r.t. SNR.

the supplementary material, can be different from the above
description but do follow the same spirit.

Moreover, we would like to briefly discuss our algorithm’s
computational complexity: in the first step for permutation
recovery, our estimator only requires one matrix multipli-
cation and thresholding operation on top of the operations
in the oracle estimator; in the second step for sparse signal
recovery, our estimator needs one additional matrix multipli-
cation when compared with the work without permutation.

5. Numerical Results
This section presents the numerical experiments to verify
our main theorem, to put it more specifically, Theorem 3: we
would like to prove the correct permutation can be obtained,
i.e., {⇧opt = ⇧\}, with n ⌧ p and SNR � c.

5.1. Numerical results on synthetic data

To begin with, we present the numerical results with syn-
thetic data. First, we adopt the Gaussian sensing matrix
X, i.e., Xij

i.i.d⇠ N(0, 1), which is the same setting of The-
orem 3. Then, we separately investigate the impact of the
sampling ratio n/p and the sparsity number k on the permuta-
tion recovery. Second, we extend our sensing matrix setting
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Figure 4. Simulated recovery rate P( b⇧ = ⇧\) with n =

{100, 150}, p 2 {500, 600}, h 2 {25, 37}, and Xij
i.i.d⇠

Rademacher P(Xij = �1) = P(Xij = 1) = 1/2, w.r.t. SNR.

from Gaussian to sub-Gaussian. Assuming Xij to be i.i.d.
Rademacher random variable, namely, P(Xij = ±1) = 1/2,
we show that our reconstruction algorithm in Algorithm 1
can successfully reconstruct the permutation matrix under
the sub-Gaussian setting as well.

Experiment setting with Gaussian distribution. We let
Xij

i.i.d⇠ N(0, 1) and pick the sample number n to be
{100, 150} and set h = n/4. We vary the signal length p to
be {500, 600}. Then we set the sparsity number k within
the region {10, 15, 20}. And the stable rank srank(B\) is
within the range {150, 200, 250}. The corresponding simu-
lation results can be found in Figure 3.

Discussion w.r.t n/p. First, we confirm our theory such that
correct permutation can be obtained with insufficient sam-
ples, i.e., n ⌧ p. In addition, we notice that the permutation
recovery becomes easy with a larger n/p: the first row in
Figure 3 is with n/p = 0.2 while the second row is with
n/p = 0.25. We can verify the SNR for the correct permu-
tation recovery is smaller in the second row than that for
the first row. However, we should stress that this conclusion
may not hold provided that srank(B\) is not sufficiently
large. More details are referred to Figure 2.

Discussion w.r.t. sparsity number k. We vary the spar-
sity number k to be within {10, 15, 20}. We conclude a
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Figure 5. We set the sample number n as 100 and the sensing noise variance �2 as 1. (Top panel.) The ground-truth images. (Middle
panel.) The reconstructed images with our algorithm using both (2) and (3). (Bottom panel.) The reconstructed images with only (3),
where ⇧opt is set to be the identity matrix.

large sparsity number k can make the permutation recov-
ery more difficult. For example, consider the case when
(n, p, srank(B\)) = (100, 500, 200). When k = 10, correct
permutation requires SNR � 1.4; when k = 15, correct
permutation needs SNR � 2.2; and when k = 20, correct
permutation requires SNR � 4. The same conclusion holds
for other cases as well. 4

Experiment setting with the sub-Gaussian distribution.
In addition to the Gaussian setting, we also evaluate our
estimator’s performance when Xij is sub-Gaussian. Here,
we pick Xij to be i.i.d. Rademacher random variables such
that P(Xij = ±1) = 1/2. The corresponding results are put
in Figure 4, from which we can observe a similar pattern as
that of the Gaussian setting.

5.2. Numerical results with real-world data

This subsection evaluates our algorithm on the real-world
dataset, namely, MNIST dataset (LeCun et al., 1998). An
illustration of the reconstructed images is put in Figure 5.

First, we create the sparse matrix B\ as a block-diagonal
matrix diag

�
imagetrain

0 , imagetest
0 , imagetrain

1 , · · · imagetest
9

�
,

where imagetrain
i 2 R28⇥28 (resp. imagetest

i 2 R28⇥28) rep-
resents an arbitrary image of digit i (0  i  9) in the
training (resp. test) set. These images under the testing test
are put in the “Ground-Truth” panel.

Then, we create a Gaussian sensing matrix X and a noise
matrix W. Afterward, we permute the sensing results and
apply our algorithm in Algorithm 1 to reconstruct the im-
ages. The reconstructed images are put in the panel under
the name “Permutation Correction”.

As the benchmark, we pretend there is no missing informa-
4The result is consistent with Theorem 2 as Bn,p,m,k covers

a broader class of matrices B when k increases from 15 to 20,
which implies a larger SNR is required for permutation recovery.

tion of correspondence between B\ and Y. We set ⇧opt in
(3) be the identity matrix and reconstruct B\ with the Lasso
estimator. Since there is no permutation recovery in the algo-
rithm, we present the corresponding reconstructed images in
the “No-Permutation Correction” panel. From Figure 5,
we observe that our permutation recovery algorithm can
significantly improve the reconstruction performance.

6. Conclusion
In this paper, we studied the unlabeled sparse recovery with
multiple measurements (i.e., m > 1) for the first time. To
begin with, we investigated the lower bounds on the sample
number n and the SNR. Furthermore, we proposed a sim-
ple yet effective estimator, which restores the permutation
matrix via a linear assignment problem. We proved that our
estimator can obtain the correct correspondence informa-
tion when SNR is above certain positive constant and the
required sample number n is in linear dependence with
sparsity number k. In addition, we discovered multiple
phenomena that are seldom encountered before: (i) keeping
more non-zero elements in thres(·) deteriorates permuta-
tion recovery; and (ii) increasing sample number n plays a
dual role in reconstructing the permutation. In the course of
analyzing our estimator’s performance and explaining the
above phenomena, we developed a tailored version of the
leave-one-out technique, which involves an adaptive number
of replaced elements and simultaneous modification of the
threshold operator. Moreover, we provided numerical exper-
iments to corroborate our claims and showed our estimator
can reliably reconstruct the permutation matrix even when
the entries Xij are sub-Gaussian random variables.
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A. Proof of Theorem 2
Proof. The proof technique is a combination of that in Zhang et al. (2019) and Zhang and Li (2021). First, we put uniform
distribution as the prior of ⇧, i.e., P(⇧\ = ⇧samp) = |Pn|�1, where ⇧samp is an arbitrary fixed permutation matrix and Pn
denotes the set of all possible permutation matrices. In addition, we introduce distributions for the support set of B. For an
arbitrary column B:,`, we assume its support set to be uniformly distributed among

�p
k

�
possible patterns. Easily, we can

verify the relation

sup
⇧,B

PX,W

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
� PX,W,⇧,B

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
. (8)

Since inf b⇧,bB can be safely added to the left-hand side of (8), our goal becomes lower-bounding PX,W,⇧,B

⇥
(⇧, supp(B)) 6=

( b⇧, supp(bB))
⇤
. Adopting the proof technique used in Theorem 2.10.1 in Cover and Thomas (2012), we consider the entropy

H(⇧, supp(B)), which can be computed as

H(⇧, supp(B))
1�
= H(⇧) + H(supp(B))

2�
= log n! +m · log

✓
p

k

◆
, (9)

where in 1� we use the independent among ⇧ and supp(B), and in 2� we use the fact |Pn| = n! and |supp(B)| =
�p
k

�m.
Meanwhile, we have the relation

H(⇧, supp(B))
3�
= H(⇧, supp(B) | X)

4�
= H(⇧, supp(B) | X, b⇧, supp(bB))| {z }

, ⇣1

+ I(⇧, supp(B); b⇧, supp(bB) | X)| {z }
, ⇣2

. (10)

where 3� is due to the independence between X and ⇧,B; and 4� is because of the definition of conditional entropy and
mutual information. The proof is thus complete by separately bounding ⌘1 and ⌘2.

Analysis of ⇣1. We upper-bound ⇣1 with Fano’s inequality (Cover and Thomas, 2012, Theorem 2.10.1), which proceeds as

⇣1  H(⇧, supp(B) | b⇧, supp(bB))  1 + log (|(⇧, supp(B))|) · PX,W,⇧,B

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
. (11)

Analysis of ⇣2. Due to the Markov property of (⇧, supp(B)) ! Y ! ( b⇧, supp(bB)), we invoke the data-processing
inequality (Cover and Thomas, 2012, Theorem 2.8.1) and conclude

⇣2  I(⇧, supp(B);Y | X).

Invoking the definition of conditional mutual information, we have

I(⇧, supp(B);Y | X) = EX,W,⇧ [h(Y | X = x))� h(Y | ⇧, supp(B),X = x)]

5�
 1

2
log det

�
EX,W,⇧YY>�� mn

2
log �2

,

where in 5� we use the property (Cover and Thomas, 2012, Theorem 8.6.5)

h(Z)  1

2
log detCov(Z)  1

2
log detE

�
ZZ>�

,

for a random vector Z with finite covariance matrix Cov(Z), and the entropy for a Gaussian random vector. Following the
same procedure as in Zhang et al. (2019) (Lemma 11), we have

log detEX,W,⇧YY> = nm · log �2 + n · log det
�
I+ B>B/�2

�
,

which further yields to

I(⇧, supp(B);Y | X)  n

2
log det

�
I+ B>B/�2

�
.

12



One-Step Estimator for Permuted Sparse Recovery

Summary. Combing (9), (10), and (11) then leads to a lower-bound on PX,W,⇧,B

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
reading

as

PX,W,⇧,B

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
�

log n! +m ˙log
�p
k

�
� 1� (n/2) log det

�
I+ B>B/�2

�

log (|(⇧, supp(B))|) .

Easily, we can verify PX,W,⇧,B

⇥
(⇧, supp(B)) 6= ( b⇧, supp(bB))

⇤
is lower bounded by 1/2 given the assumptions in

Theorem 2 and thus complete the proof.

B. Proof of Theorem 3
We define bB as (n� h)�1X>Y and define operator imax(i) as argmaxj |bBj,i| (1  i  m) for each column in bB, which
returns the index of the entry with the largest magnitude. With a slight abuse of notation, we denote bBimax = thres(bB). The
benefits of this notation will be seen shortly.

In addition, we define the error Eerr as

Eerr =
n
9 ⇧, s.t.

D
Y,⇧X · bBimax

E
�
D
Y,⇧\X · bBimax

Eo
. (12)

According to the sensing relation such that Y = ⇧\XB\ +W, we rewrite (12) as
D
⇧\XB\ +W,⇧X · bBimax

E

D
⇧\XB\ +W,⇧\X · bBimax

E
,

and would like to show it holds with a probability near zero. The major technical difficulties come from the fact that bB
is correlated with sensing matrix X, which introduces high-order moments. The solution to such a challenge is broadly
divided into the following two parts.

Part I: Relaxation of the error event. We first relax the error event Eerr

Eerr ✓
nD

Yi,:,
bB>
imax

X⇡\(i),:

E

D
Yi,:,

bB>
imax

Xj,:

E
, 9 j 6= ⇡

\(i)
o

| {z }
, Eerr-relax

, (13)

which means P(Eerr)  P(Eerr-relax).

Part II: Decoupling dependence via a modified leave-one-out technique. To decompose the dependence between bB
and the rows X⇡\(i),: and Xj,:, we modify the leave-one-out technique and construct a perturbed matrix bB(⇡\(i),j), which
shares almost identical statistical behaviors as bB. Before delving into the technical details, we first provide a glimpse of the
construction idea. Recalling the definition of bB, which is written as

bB =
1

n� h

 
nX

`=1

X`,:X
>
⇡\(`),:

!
B\ +

X>W

n� h
,

we construct the perturbed matrix bB(⇡\(i),j) by replacing the corresponding rows with their i.i.d. samples. The detailed
construction method is stated as follows.

To begin with, we draw i.i.d. samples for each rows of Xi,: and denote it as eXi,: (1  i  n). Similarly we draw samples
fWj,: for each row in W, 1  j  n. For arbitrary indices ⇡\(i) and j such that j 6= ⇡

\(i), we create the samples bB(⇡\(i),j)

as (assume i 6= ⇡
\(i) and j 6= ⇡

\(j))

bB(⇡\(i),j) = (n� h)�1

✓ X

`,⇡\(`) 6=⇡\(i),j

X`,:X
>
⇡\(`),:

◆
B\

+ (n� h)�1

✓
eXi,:

eX>
⇡\(i),: +

eX⇡\(i),:
eX>

⇡\(⇡\(i)),: +
eXj,:

eX>
⇡\(j),: +

eX⇡\�1(j),:
eX>

j,:

◆
B\

13
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+ (n� h)�1

0

@
X

` 6=⇡\(i),i

X`,:W
>
`,: + eX⇡\(i),:

fW>
⇡\(i),: +

eXi,:
fW>

i,:

1

A . (14)

Provided that i = ⇡
\(i), we can simplify the summaries eXi,:

eX>
⇡\(i),:+

eX⇡\(i),:
eX>

⇡\(⇡\(i)),: and eX⇡\(i),:
fW>

⇡\(i),:+
eXi,:

fW>
i,:

in the above construction as the terms eXi,:
eX>

i,: and eXi,:
fW>

i,:, respectively. Similarly, we will simplify eXj,:
eX>

⇡\(j),:
+

eX⇡\�1(j),:
eX>

j,: as Xj,:X>
j,: when j = ⇡

\(j).

With the above construction method, easily we can verify that bB(⇡\,j) is independent of the rows X⇡\(i),:, Xj,: and Wi,: as
they are not involved in bB(⇡\,j). Before delving into the technical details, we first collect all required notations.

B.1. Notations
Define the following events

E1 ,
(�����

P
`=⇡\(`) X

2
`,i

n� h
� 1

�����  c0

r
log(np)
n� h

, 8 1  i  p

)
;

E2(�) ,

8
<

:

P
`=⇡\(`) X`,i

D
X`,\i�\i

E

n� h
.

r
log(mnp)
n� h

k�\ik2, 8 1  i  p

9
=

; ;

E3(�) ,
(P

` 6=⇡\(`) X`,i

⌦
X⇡\(`),:,�

↵

n� h
.

p
h log(mnp)
n� h

k�k2, 8 1  i  p

)
;

E4 ,
(Pn

`=1 X
>
`,iW`,j

n� h
. �

p
n log(mnp)
n� h

, 8 1  i  p, 1  j  m

)
;

E5 ,
(���

�bBimax � bB(⇡\(i),j)
imax

�>
x
���
2
. log3/2(np)

n� h

���
���
���B\

���
���
���

F
+

�(log np)
p

m(logmn)

n� h
, 8 1  ⇡\(i) 6= j  p

)
,

where � 2 Rp is an arbitrary column of B\
`,: (1  `  m), �\i 2 Rp denotes its copy with the ith entry being set to be

zero, and x 2 Rp denotes an arbitrary row in matrix X, which follows Gaussian distribution N(0, Ip⇥p). Note that x is not
necessarily independent from bB and bB(⇡\(i),j).

For an arbitrary event E, we denote its complement as E. In addition, we define matrix M(⇡\(i),j) as B\> bB(⇡\(i),j)
imax

. For
the notation simplicity, we drop the superscript ⇡\(i) and j in M(⇡\(i),j) when there is no ambiguity. The following context
provides the technical details and a diagram representing the dependence among all lemmas is put in Figure 6.

Lemma 13
Lower bound on hB\, bB(⇡\(i),j)i

Lemma 11
Lower bound on |b�

imax
|

Lemma 12
Upper bound on kb� � �\k1

Condition on (Lemma 7, 8, 9, and 10)
E1

T
E2(�)

T
E3(�)

T
E4

Lemma 14 (E5)
Upper bound on

����
�bBimax � bB(⇡\(i),j)

imax

�>x

����
2

Analysis of F1

Equation (15)
Analysis of F6

Equation (20)
Analysis of F3

Equation (17)
Analysis of F5

Equation (19)

Figure 6. Dependence diagram of lemmas.
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B.2. Proof of Theorem 3

Proof. The proof can be broadly divided into three stages.

Stage I. To begin with, we prove the relation Eerr ✓ Eerr-relax, whose definition can be found in (13). Conditional on Eerr-relax,
we have

D
Yi,:,

bB>
imax

X⇡\(i),:

E
>

D
Yi,:,

bB>
imax

Xj,:

E
, 8 j 6= ⇡

\(i).

Thus we conclude
D
Y,⇧\X · bBimax

E
>

D
Y,⇧X · bBimax

E
, 8 ⇧ 6= ⇧\

,

which suggests Eerr-relax will automatically lead to Eerr, in other words, Eerr-relax ✓ Eerr. Hence, we could upper bound P (Eerr)
by P (Eerr-relax).

Stage II. Regarding the relation hYi,:,
bB>
imax

X⇡\(i),:i  hYi,:,
bB>
imax

Xj,:i, we can recast it as

hB\>X⇡\(i),:,
bB(⇡\(i),j)>
imax

X⇡\(i),:i| {z }
⌘(⇡\(i),j)
1

 hB\>X⇡\(i),:,
bB(⇡\(i),j)>
imax

Xj,:i| {z }
⌘(⇡\(i),j)
2

+ hB\>X⇡\(i),:,

⇣
bBimax � bB(⇡\(i),j)

imax

⌘> �
Xj,: �X⇡\(i),:

�
i

| {z }
⌘(⇡\(i),j)
3

+
D
Wi,:,

bB(⇡\(i),j)>
imax

�
Xj,: �X⇡\(i),:

�E

| {z }
⌘(⇡\(i),j)
4

+

⌧
Wi,:,

⇣
bBimax � bB(⇡\(i),j)

imax

⌘> �
Xj,: �X⇡\(i),:

��

| {z }
⌘(⇡\(i),j)
5

.

We should emphasize that the subscript imax are solely determined by bB rather than its perturbed partner bB(⇡\(i),j). This is
to ensure bB and bB(⇡\(i),j) share the same support set. In the following analysis, we will see this property plays an important
role in bounding the difference between bBimax and bB(⇡\(i),j)

imax
, which is contained in ⌘

(⇡\(i),j)
3 and ⌘

(⇡\(i),j)
5 . The following

context separately studies each term ⌘
(⇡\(i),j)
` (1  `  5). First we define quantities �(⇡\(i),j)

` (1  `  5) as

�(⇡\(i),j)
1 ,

������B\
������2

F
k

� m�
2 (logmnp)2

n
�

p
m� log(mnp)p

n

������B\
������

F �
c0 log np
srank(B\)

������B\
������

F

���
���
���bB(⇡\(i),j)

imax

���
���
���
F
;

�(⇡\(i),j)
2 , log n

������B\
������

F

���
���
���bB(⇡\(i),j)

imax

���
���
���
F
/

q
srank(B\);

�(⇡\(i),j)
3 ,

������B\
������2

F

p
log n (log np)3/2

n
+

������B\
������

F�
p
m log n(logmn)1/2(log np)

n
;

�(⇡\(i),j)
4 , �(log n)

���
���
���bB(⇡\(i),j)

imax

���
���
���
F
;

�(⇡\(i),j)
5 ,

p
m log n

⇣
log3/2 np

⌘

n� h

������B\
������

F� +
m�

2(log np)
p

(log n)(logmn)

n� h
.

In addition, we define the events F` (1  `  6) as

F1 ,
n
⌘
(⇡\(i),j)
1 & �(⇡\(i),j)

1 , 8 1  ⇡
\(i) 6= j  p

o
; (15)
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F2 ,
n
|⌘(⇡

\(i),j)
2 | . �(⇡\(i),j)

2 , 8 1  ⇡
\(i) 6= j  p

o
; (16)

F3 ,
n
|⌘(⇡

\(i),j)
3 | . �(⇡\(i),j)

3 , 8 1  ⇡
\(i) 6= j  p

o
; (17)

F4 ,
n
|⌘(⇡

\(i),j)
4 | . �(⇡\(i),j)

4 , 8 1  ⇡
\(i) 6= j  p

o
; (18)

F5 ,
n
|⌘(⇡

\(i),j)
5 | . �(⇡\(i),j)

5 , 8 1  ⇡
\(i) 6= j  p

o
, (19)

F6 ,
⇢���
���
���bB(⇡\(i),j)

imax
�B\

imax

���
���
���
F
. log(mnp)p

n

������B\
������

F +
� log(mnp)

p
mp

n
, 8 1  ⇡

\(i) 6= j  p

�
. (20)

In Lemma 1, Lemma 2, Lemma 3, Lemma 4, Lemma 5, and Lemma 12, we will show all the above events, namely, F`

(1  `  6), hold with probability approaching one.

Stage III. Given the assumptions in Theorem 3, we will verify the relation
T6

`=1 F` ✓ Eerr-relax. Considering the difference
�(⇡\(i),j)

1 �
P5

`=2 �
(⇡\(i),j)
` , we can lower-bound it as

�(⇡\(i),j)
1

m�2
�

5X

`=2

�(⇡\(i),j)
`

m�2
� SNR

 
1

k
�

p
log n log

3/2(np)

n
� 2 log np

srank(B\)

!

| {z }
⇣1

�
p
SNR

 p
log n(log np)

�p
logmn+

p
log np

�

n
+

logmnpp
n

+
log np

m
+

2(log n)(logmnp)p
n · srank(B\)

!

| {z }
⇣1/2

�
 
log n(logmnp)p

mn
+

log2(mnp) +
p
log n(logmn)(log np)

n

!

| {z }
⇣0

.

Under the assumptions in Theorem 3, we have

⇣1 ⇣ k
�1;

⇣1/2 ⇣
logmnpp

n
+

log np
m

;

⇣0 ⇣ log n(logmnp)p
mn

+
log2(mnp)

n
,

which leads to

�(⇡\(i),j)
1

m�2
�

5X

`=2

�(⇡\(i),j)
`

m�2
� ⇣1 · SNR� ⇣1/2

p
SNR� ⇣0

1�
& 1

k
� 1

k
p
log n

� 1

k log" n
� 1

k2 log"+
1/2

n
� 1

k2 log n
> 0,

where in 1� we use the relation m � rank(B\) � srank(B\) � k
2 log2(1+")

n. Then we conclude

5X

`=2

|⌘(⇡
\(i),j)

` | 
5X

`=2

�(⇡\(i),j)
`  �(⇡\(i),j)

1  ⌘
(⇡\(i),j)
1 , 8 1  ⇡

\(i) 6= j  p,

which means we will automatically obtain Eerr-relax when assuming
T6

`=1 F`, in other words,
T6

`=1 F` ✓ Eerr-relax. Hence,
we can complete the proof by P (Eerr)  P (Eerr-relax) 

P6
`=1 P(F`).
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Lemma 1. Conditional on the intersection of events E1
Tm

`=1 E2(B
\
`,:)

Tm
`=1 E3(B

\
`,:)

T
E4, we have P(F1) � 1� c0n

�c1

provided n � k log2(mnp).

Proof. Recalling the definition of M, i.e., M , B\> bB(⇡\(i),j)
imax

, we divide the proof procedure as

• Step I. Condition on M, we have

⌘
(⇡\(i),j)
1 � Tr(M)� c0 log np

srank(B\)

������B\
������

F

���
���
���bB(⇡\(i),j)

imax

���
���
���
F
, 8 1  ⇡

\(i) 6= j  n,

hold with probability exceeding 1� n
�c.

• Step II. Provided n � k log2(mnp), we have

Tr(M) & 1

k

������B\
������2

F � m�
2 (logmnp)2

n
�

p
m� log(mnp)p

n

������B\
������

F,

condition on E1
Tm

`=1 E2(B
\
`,:)

Tm
`=1 E3(B

\
`,:)

T
E4.

For the clarify of presentation, we defer the proof of Step II to Lemma 13 and focus on Step I. Due to the construction of
bB(⇡\,j) in (14), we conclude bB(⇡\,j) is independent with row X⇡\(i),:. Hence we can first condition on M and rewrite term
⌘1 in terms of a quadratic product x>Mx, where x 2 Rp is a random vector satisfying x 2 N(0, Ip⇥p).

With Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)), we have

P
⇣
|⌘(⇡

\(i),j)
1 � E⌘(⇡

\(i),j)
1 | � t, 9 1  ⇡

\(i) 6= j  n

⌘

 n
2 · P

���x>Mx� Tr(M)
�� � t

�
 n

2 · 2 exp
 
�c0

 
t

|||M|||OP
^ t

2

|||M|||2F

!!
.

Setting t = log n|||M|||F, we have

⌘
(⇡\(i),j)
1 � E⌘(⇡

\(i),j)
1 � c0 log n|||M|||F = Tr(M)� c0 log n|||M|||F, 8 1  ⇡

\(i) 6= j  n,

holds with probability 1� 2n�c. Then we complete the proof by showing

|||M|||F 
������B\

������
OP

���
���
���bB(⇡\(i),j)

imax

���
���
���
F

1�
=

1p
srank(B\)

������B\
������

F

���
���
���bB(⇡\(i),j)

imax

���
���
���
F
,

where 1� is due to the definition of stable rank.

Lemma 2. We have P(F2) � 1� 4n�c where event F2 is defined in (16).

Proof. First, we fix the indices ⇡\(i) and j such that ⇡\(i) 6= j. Due to the independence across the rows of X, we conclude

P
�
|x>My| & log n|||M|||F

�
 P

⇣
|x>My| & log n|||M|||F, kMyk2 .

p
log n|||M|||F

⌘

+ P
⇣
kMyk2 &

p
log n|||M|||F

⌘

1�
 P

⇣
|x>My| &

p
log nkMyk2

⌘
+ 2n�c  4n�c

,

where M is defined as B\> bB(⇡\(i),j)
imax

and in 1� we have the rotation invariance of Gaussian random vector. Regarding the
event F2, we invoke the union bound and complete the proof as P(F2)  n

2 · 4n�c = 4n�c
0
.
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Lemma 3. Condition on E5, we conclude P (F3|E5) � 1� 2n�c, where F3 is defined in (17).

Proof. First we recall the definition of ⌘3, which is written as

⌘3 , hB\>Xi,:,

⇣
bBimax � bB(⇡\(i),j)

imax

⌘>
(Xj,: �Xi,:)i.

We begin the proof as

P
�
F3|E5

�
 P

✓
kB\>Xi,:k2 & log n

������B\
������2

F, 9 1  i  n|E5
◆
+ P

⇣
F3, kB\>Xi,:k2 . log n

������B\
������2

F, 8 1  i  n|E5
⌘
.

For the first term, we invoke the Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)), which leads to

P
✓
kB\>Xi,:k2 & log n

������B\
������2

F, 9 1  i  n|E5
◆

 n · P
⇣��kB\>Xi,:k22 � EkB\>Xi,:k22

�� & log n
������B\

������2
F|E5

⌘

 2n · exp
 
�c

 
log2 n

������B\
������4

F

|||B\>B\|||2F
^

log n
������B\

������2
F

|||B\>B\|||OP

!!
 2n�c

.

For the second term, we will prove it to be zero. This is because

|⌘(⇡
\(i),j)

3 |  kB\>X⇡\(i),:k2 ·
���
�bBimax � bB(i,j)

imax

�> �
Xj,: �X⇡\(i),:

����
2

1�
.

p
log n

������B\
������

F ·
log3/2(np)

n� h

������B\
������

F +
�(log np)

p
m(logmn)

n� h
,

for all 1  ⇡
\(i) 6= j  n, where in 1� we condition on E5 and

��B\>X⇡\(i),:

��
2
. p

log n
������B\

������
F.

Lemma 4. We have P(F4) � 1� 4n�c.

Proof. First we fix the indices ⇡
\(i) and j such that ⇡\(i) 6= j. Invoke the definition of bB(⇡\(i),j)

imax
, we conclude Wi,:,

bB(⇡\(i),j)
imax

, Xj,:, and X⇡\(i),: are independent with each other. Hence we can complete the proof as

P
⇣
|⌘(⇡

\(i),j)
4 | & �(log n)

���
���
���bB(⇡\(i),j)

imax

���
���
���
F

⌘

 P
⇣���bB(⇡\(i),j)>

imax

�
Xj,: �X⇡\(i),:

����
2
&
p

log n
���
���
���bB(⇡\(i),j)

imax

���
���
���
F

⌘

+ P
⇣
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���
���
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���
���
���
F
,

���bB(⇡\(i),j)>
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�
Xj,: �X⇡\(i),:

����
2
.
p

log n
���
���
���bB(⇡\(i),j)

imax

���
���
���
F

⌘

 2n�c + P
⇣
|⌘4| & �

p
log n

���bB(⇡\(i),j)>
imax

�
Xj,: �X⇡\(i),:

����
2

⌘ 1�
 4n�c

,

where in 1� we use the tail bound for the Gaussian random variable. The proof is then completed with the union bound such
that

P
�
F4

�
 n

2P
⇣
|⌘(⇡

\(i),j)
4 | & �(log n)

���
���
���bB(⇡\(i),j)

imax

���
���
���
F

⌘
 4n2 · n�c = 1� 4n�c

0

.

Lemma 5. Condition on E5, we conclude P(F5|E5) � 1� 2n�c.

Proof. The proof is in a similar form to that for Lemma 3. First we decompose the probability P(F5|E5) as

P(F5|E5)  P(kWi,:k2 & �

p
m log n, 9 1  i  n|E5) + P

⇣
F5, kWi,:k2 . �

p
m log n, 8 1  i  n|E5

⌘
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 2n · n�c + P
⇣
F5, kWi,:k2 . �

p
m log n, 8 1  i  n|E5

⌘
,

where the last inequality is due to the tail bound for the Gaussian random variable. We complete the proof by showing the
second probability is zero. This is because

|⌘(⇡
\(i),j)

5 |  kWi,:k2 ·
���
�bBimax � bB(i,j)

imax

�>
(Xj,: �Xi,:)

���
2

.
p
m log n

⇣
log3/2 np

⌘

n� h

������B\
������

F� +
m�

2(log np)
p

(log n)(logmn)

n� h
.

Lemma 6. Conditional on the intersection of events E1
Tm

`=1 E2(B
\
`,:)

Tm
`=1 E3(B

\
`,:)

T
E4, we have P(F5) = 1.

Proof. We complete the proof by

���
���
���bB(⇡\(i),j)

imax
�B\

imax

���
���
���
2

F
=

X

�\

����b�
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����
2

2

1�
=
X

�\

����b�
(⇡\(i),j)
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� �\

imax

����
2

1

2�
. log2(mnp)

n

������B\
������2

F +
m�

2 log2(mnp)

n
,

where 1� is due to the fact such that b�
(⇡\(i),j)

imax
� �\ has only one non-zero element, and 2� is due to Lemma 12.

B.3. Supporting Lemmas

Lemma 7. We have P(E1) � 1� 2n�c1p�c2 when n� h � log np, and n, p are sufficiently large.

Proof. Due to the Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)), we have

P (E1)  2p exp

"
�c

 
(n� h) log(np)
������I(n�h)⇥(n�h)

������2
F

^
p

(n� h) log(np)������I(n�h)⇥(n�h)

������
OP

!#
1�
 2p · n�c

p
�c = 2n�c1p

�c2 ,

where in 1� we use the fact n� h � log(np).

Lemma 8. For a fixed � 2 Rp, we have P(E2(�)) � 1� pe
�c0(n�h) � n

�c1m�c2p�c3 .

Proof. To begin with, we construct the sensing matrix XS by concatenating all rows X`,: such that ` = ⇡
\(`). With union

bound, we can upper bound P
�
E2(�)

�
as

P
�
E2(�)

�
 pP

⇣��XS�
\
\i
��
2
�
p
2(n� h)k�\

\ik2
⌘

| {z }
⇣1

+ pP
 

n�hX

`=1

X`,i

D
X`,:,�

\
\i

E
&
p

(n� h) log(mnp)k�\
\ik2,

��XS�
\
\i
��
2
<

p
2(n� h)k�\

\ik2

!

| {z }
⇣2

.

Since X are with i.i.d Gaussian entries, we have each row in XS�
\
\i be a Gaussian random vector with zero mean and

variance k�\
\ik

2
2. Hence, we have kXS�\

\ik
2
2/k�\

\ik
2
2 be a �

2 random variable with freedom n� h, which leads to
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⇣1

1�
 p exp

✓
n� h

2
(log 2� 1)

◆
 pe

�0.65(n�h)
,

where 1� is due to Lemma 15.

For ⇣2, we notice that X`,i is independent of the inner product hX`,:,�
\
\ii. Hence, we can view the product

Pn�h
`=1 X`,ihX`,:,�

\
\ii as a Gaussian random variable N(0, kXS�

\
\ik

2
2), which leads to

⇣2  pP
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D
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\
\i

E
&
p
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\
\ik2

!
2�
 2n�c

m
�c

p
�c

,

where in 2� we use the tail bound of Gaussian random vectors.

Lemma 9. For a fixed � 2 Rp, we have P(E3(�)) � 1� c0n
�c1m�c2p�c3 .

Proof. According to Lemma 16, we can decompose the index set
�
` : ` 6= ⇡

\(`)
 

into three disjoint sets Ij such that
(i) indices ` and ⇡

\(`) do not fall into the same set Ij ; and (ii) the cardinality of each set satisfies hj , |Ij | � bh
3 c,

(1  j  3).

Then we can decompose product
P

` 6=⇡\(`) X`,i

⌦
X⇡\(`),:,�

↵
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X

` 6=⇡\(`)

X`,i

⌦
X⇡\(`),:,�

↵
=

3X

j=1

X
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X`,i

D
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\
E
.

With the union bound, we have

P(E3(�))  p ·
3X
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P

0

@
X

`2Ij

X`,i

D
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\
E
& (logmp)

p
hjk�\k2

1

A . (21)

Due to the properties of Ij , we have X`,i and hX⇡\(`),:,�
\i be independent and hence

P

0

@
X

`2Ij
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D
X⇡\(`),:,�

\
E
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1
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2
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\
���
2

2
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X

`2Ij
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D
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\
E
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1

A
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
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(log(c0 logmnp)� c0 logmnp+ 1)
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X⇡\(`),:,�

\
E
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1

A
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. n

�c0m
�c0p
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�c1 ⇣ n

�c
m

�c
p
�c

,

where 1� is due to Lemma 15 and 2� is due to the Gaussian tail bound. Plugging it in (21) then completes the proof.

Lemma 10. We have P(E4) � 1� cn
�c0m�c

p
�c.

Proof. We complete the proof as

P(E4)
1�
 mp · P

 
nX

`=1

X>
`,iW`,j & �

p
n log(mnp)

!
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2�
 mp

"
P
⇣
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p
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⌘
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�c

p
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,

where 1� and 2� are due to the union bound, 3� is due to Lemma 15, and 4� is due to the tail bound for the Gaussian random
variable.

Lemma 11. Conditional on the intersection of events E1
T

E2(�\)
T

E3(�\)
T

E4, we have

|�\
imax

| & |�\
max|�

p
log(mnp)p

n
k�\k2 �

� log(mnp)p
n

,

where imax and max are defined as the indices of b� and �\ with the largest magnitude, i.e., imax , argmaxi|b�i| and
max , argmaxi|�

\
i |, respectively.

Proof. To begin with, we define ⇣
(i)
1 , ⇣(i)2 , and ⇣

(i)
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⇣
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1
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X`,i

D
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\
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E
;

⇣
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1
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D
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\
E
;

⇣
(i)
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1

n� h
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`=1

X>
`,iW`,j ,

respectively. Then we can write b�i as
P4

j=1 ⇣
(i)
j . Due to the definition of imax, we conclude |b�

imax
| � |b�max|, where max

is defined as the index of �\ with the largest magnitude, i.e., max , argmaxi|�
\
i |. With triangle inequality, we obtain

4X

j=1

|⇣(imax)
j | � |b�

imax
| � |b�max| � |⇣(max)

1 |�
4X

j=2

|⇣(max)
j |. (22)

The following context separately discusses each term. First, we consider |⇣(imax)
1 | and |⇣(max)

1 |. Conditional on E1, we have

|⇣(imax)
1 | 

 
1 + c0

r
log(np)

n� h

!
|�\

imax
| . |�\

imax
|;

|⇣(max)
1 | �

 
1� c0

r
log(np)
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!
|�\

max| & |�\
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Then we turn to study the rest of the terms. Conditional on E2(�\)
T

E3(�\)
T

E4, we have

|⇣(imax)
2 |, |⇣(max)

2 | .
r

log(mnp)

n� h
k�\k2;
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3 |, |⇣(max)

3 | . log(mnp)
p
h

n� h
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|⇣(imax)
4 |, |⇣(max)

4 | . �
p
n log(mnp)

n� h
. (24)

Combining (22), (23), and (24) then yields the lower-bound for |�\
imax

|
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| & |⇣(imax)
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1 |�
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p
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,

which concludes the proof as n & h.

Lemma 12. Conditional on the intersection of events E1
T

E2(�\)
T

E3(�\)
T

E4, we have

kb� � �\k1 . log(mnp)p
n

k�\k2 +
� log(mnp)p

n
.

Proof. For an arbitrary index i, we consider the difference b�i � �\
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Conditional on the intersection of events E1
T

E2(�\)
T

E3(�\)
T

E4, we can bound #i (1  i  4), as
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p
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respectively, and complete the proof as |⇣1|+ |⇣2| .
q

log(mnp)
n�h k�\k2 and h  n.

Lemma 13. Conditional on the intersection of events E1
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`=1 E2(B
\
`,:)
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\
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provided n � k(logmnp)2.

Proof. First, we pick one arbitrary column �\ of B\. W.l.o.g. we assume that �\
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� 0. Then we obtain

b�
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� �\
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� kb�
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where b�
(⇡\(i),j)

denotes the corresponding column in bB(⇡\(i),j). Then we obtain the following lower bound on b�
imax

�\
imax

b�
imax

�\
imax

� (�\
imax

)2 � |�\
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|kb�
(⇡\(i),j)
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Similarly, we can show (25) holds as well when �\
imax

< 0. Recalling the definition of �\
max, to put more specifically

|�\
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i | (1  i  p), we can further lower bound b�
imax
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For |�\
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|, we can lower bounded it by Lemma 11. While for kb�
(⇡\(i),j)

� �\k1, we cannot directly use Lemma 12
since, strictly speaking, it concerns X with rows X⇡\(i),:,Xj,: rather than eX⇡\(i),:,

eXj,: However since they follow the same
distributions, we can follow the same procedure and show
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where in 1� we use the relation (a � b)2 � a2
/2 � b

2. Under the assumption n � k(logmnp)2, we have |�\
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p
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where in 2� we use the fact that x2 � 2ax is monotonically increasing in the region [a,1); and the equality is achieved
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k. Hence, we obtain
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Having obtained the lower bound for one single column of B\, we complete the proof as
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Lemma 14. We have P(E5) � 1� 4n�c
p
�c � 2n�c

0
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0
.

Proof. We begin the proof with the union bound
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+ P
⇣
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where w(·) and ew(·) denote the corresponding entries from W and fW.

Then we would prove that # is zero. The technical details are attached in the following. Due to the fact that bB(i,j)
imax
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same support set as bBimax, we have
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where in 1� we condition on the relation kxk1 . p
log np.
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shares the same support set as bBimax. Otherwise, the best result we can have is kb�
imax

� b�
\(i,j)
imax

k1 
max

�
kb�

imax
k1, kb�

\(i,j)
imax

k1
�
. Afterward, we obtain

kb�
imax

� b�
\(⇡\(i),j)

imax
k1  (n� h)�1

���
⇣
Xi,:X

>
i,: +Xj,:X

>
j,: � eXi,:

eX>
i,: � eXj,:

eX>
j,:

⌘
�\
���
1

+ (n� h)�1
���X⇡\(i),:w⇡\(i) +Xi,:wi � eX⇡\(i),: ew⇡\(i) � eXi,: ewi

���
1

. (n� h)�1kxhx,�\ik1 + (n� h)�1kxwk1

. (n� h)�1kxk1|hx,�\i|+ (n� h)�1kxk1kwk1
2�
. (n� h)�1(log np)k�\k2 + (n� h)�1

�

p
(log np)(logmn),

where in 2� we use the condition kxk1 . p
log np, |hx,�\i| . p

log npk�\k2, and kwk1 . �
p
log nm.

Iterating over all columns B\, we can show E5 holds with probability one provided kxk1 . p
log np, |hx,�\i| .p

log npk�\k2, and kwk1 . �
p
log nm, in other words, # is zero.

C. Useful Facts
This section collects some useful facts about probability for the sake of self-containing.

Lemma 15 (Dasgupta and Gupta (2003)). For a �
2-random variable Z, which is with freedom `, we conclude

P (Z  t)  exp


`

2

✓
t

`
� t

`
+ 1

◆�
, t < `;

P (Z � t)  exp


`

2

✓
t

`
� t

`
+ 1

◆�
, t > `.

Lemma 16 (Pananjady et al. (2018)). Suppose the permutation matrix ⇧ with Hamming distance h from the identity matrix
I, namely, dH(I,⇧) = h. We can decompose the index set {i : i 6= ⇡(i)} into 3 independent sets Ii (1  i  3) such that
the cardinality of each set satisfies |Ii| � bh/3c � h/5.
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