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ABSTRACT

Spatial transcriptomics enables studying cellular interactions by measuring gene
expression in situ while preserving tissue context. Within tissues, distinct cellular
niches define micro-environments that influence cell states and function. A funda-
mental task in spatial transcriptomics is identifying differentially expressed genes
within a specific cell type across different niches to quantify context-dependent
cell state variation. Despite advances in cell segmentation algorithms, the persist-
ing problem of the wrong assignment of molecules to cells can obscure the anal-
ysis by introducing spurious differentially expressed genes that originate from
neighboring cells rather than the group of interest. Here, we introduce 2DE, a
probabilistic framework designed to refine spatial differential expression analyses
by filtering out genes that are over-expressed due to local contamination rather
than true cell-intrinsic expression. 2DE operates downstream of any differential
expression method, filtering irrelevant genes by considering gene over-expression
relative to the expression in the neighborhood and returning marker confidence
scores. In a study of human breast cancer, we demonstrate that 2DE improves the
precision of the discoveries. 2DE is available as open source software at
YosefLab/2DE

1 INTRODUCTION

Single-cell Spatial Transcriptomics (ST) technologies provide a powerful means to study tissue or-
ganization by capturing the spatial location and transcriptomic profiles of individual cells (Bressan
et al., 2023). Despite significant advances (Petukhov et al., 2022; Jones et al., 2024), molecular
quantification and cell segmentation errors during ST protocols can lead to inaccurate expression
estimates, such as the artificial co-expression of gene markers from different lineages (Ergen &
Yosef, 2025). A key task in ST analysis is identifying differentially expressed genes within a spe-
cific cell type across distinct tissue environments to quantify context-dependent cell state variation
(Chen et al., 2024). However, this task is confounded by the misassignment of molecules to cells.
Here, we introduce 2DE, a probabilistic method designed to refine Differential Expression (DE)
analyses in single-cell ST by filtering out gene signals originating from neighboring cells. Op-
erating downstream of any DE method, 2DE enhances the precision of detected gene expression
changes. We demonstrate its effectiveness by applying it to spatially confined endothelial popula-
tions in human breast cancer, showcasing its ability to improve the precision of discoveries across
different DE approaches.

∗correspondence to cergen@berkeley.edu, nir.yosef@weizmann.ac.il, contributed equally to this work.
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2 THE 2DE METHOD

We consider a single-cell resolved spatial transcriptomics dataset, providing a N ×G gene expres-
sion matrix, cell center coordinates, and cell type annotations c. We assume that we have access
to a Differential Expression (DE) methodM, which takes as input two groups of cells and returns
Log-Fold Changes (LFCs). LFCs are ratios of expression levels between two groups, transformed
into a logarithmic scale, where positive values indicate upregulation and negative values indicate
downregulation. Considering two groups G1 and G2 corresponding to different spatial contexts (for
instance, astrocytes in two brain regions), our goal is to determine which genes have reproducibly
different expression levels between the two groups. The naive approach consists in applyingM to
{G1, G2} only. However, empirically this approach returns spurious discoveries due to errors in
molecule assignment leading to detection of genes expressed by neighboring cells. Therefore, we
should also consider the neighborhood gene expression.
We introduce the group spatial neighborhoods N1 and N2, which are the spatial nearest neighbors of
a different type than the cells in G1. For instance, if G1 consists of astrocytes, we want to exclude
astrocyte neighbors from the neighborhood N1. We proceed in the same way for N2.
To formalize this, let us consider a tissue slide b consisting of Nb cells. We compute the slide adja-
cency matrix A ∈ [0, 1]Nb×Nb , by defining either a radius neighbors graph or a nearest neighbors
graph. Then, we multiply this matrix with a cell type mask to get an adjusted matrix A′

ij = Aijδci ̸=cj
where δci ̸=cj = 1 if ci ̸= cj and δci=cj = 0 if ci = cj with ci, cj being the types of cells i and
j, respectively. If the dataset consists of multiple slides, we construct a block diagonal adjacency
matrix containing all cells N . We then extract the rows corresponding to the group of interest and
gather all the non-zero indices appearing in these rows. For instance, we call this list I1 for G1.
Finally, we define N1 = {i|i ∈ I1} as the set of unique indices appearing in I1 .

To determine the upregulated genes of G1 vs G2, we compute DE between {G1, G2}, {N1, G2} and
{G1, N1}, using the methodM. The significantly upregulated genes for {G1, N1} define a set of
local cell type markers, denoted S1. Conversely, if a gene is both higher expressed in N1 compared
to G1 and G1 compared to G2, it is likely that the increased expression in G1 is spurious.
We argue that the probability of a gene being a local marker could be a relevant score to filter
spurious genes. To compute this score, we considered the upregulation of a gene in one group
relative to the upregulation in its neighborhood: a local marker g should verify

LFC g
G1 vs G2 > LFC g

N1 vs G2 , (1)

which means that the signal comes from cells in G1 rather than their neighbors N1.
We select genes for which LFCG1 vs G2 > 0 and use the genes S1 as truely differentially expressed.
We also define N1 = {g|LFC g

G1 vs G2 > 0, g /∈ S1}. We train a Gaussian process classifier on
X = [LFCG1 vs G2 , LFCN1 vs G2] to classify between the local markers S1 and the neighbor-
hood genes N1. Once fitted, the classifier returns a local marker probability pg = p(g ∈ S1|X) for
each gene g, that we can compare to a given threshold τ to filter the neighborhood genes. We show
pseudocode in Algorithm 1.

3 2DE REVEALS NEO-VASCULARIZATION IN TUMOR REGIONS OF BREAST
CANCER

We applied 2DE to an in-situ sequencing dataset of human breast cancer sections, generated with
10X Xenium (Janesick et al., 2023). We found the original cell segmentation to contain a high
amount of erroneously assigned transcripts. We resegmented the cells using Proseg (Jones et al.,
2024), which led to improved cell-type delineation (Figure 1B). Unless specified, we will report
results from the Proseg-segmented data in the following.
We focused our analysis on endothelial cells, which can play crucial roles in the tumor microen-
vironment, either by favoring the recruitment of anti-tumor effector T and B cells or triggering
tumor-supportive states (Harris et al., 2024). In order to retrieve region-specific gene modules, we
applied Hotspot (DeTomaso & Yosef, 2021) on spatial coordinates, enabling the grouping of genes
into five different modules(Figure S1), among which one highly associated with the invasive tumor
region (Figure 1C-left) and another one with the tumor stroma (Figure 1C-right). We then assigned
cells to G1 for endothelial cells in the invasive niche and G2 for endothelial cells in the stroma (Fig-
ure 1D-left). We also defined N1 and N2, the non-endothelial spatial nearest neighbors of G1 and
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Algorithm 1 Find robust upregulated genes of G1 vs G2 using 2DE

Require: Gene expression matrix with genes g = 1, .., G and cell coordinates, cell types c, groups
G1 ,G2 , DE methodM and threshold τ

1: Compute adjacency matrix A from cell coordinates
2: Construct masked adjacency: A′

ij = Aij · 1{ci ̸= cj}
3: Extract neighborhood indices for G1 from A′ to form N1
4: Compute:

LFCG1 vs G2 ←M(G1,G2)
LFCN1 vs G2 ←M(N1,G2)
LFCG1 vs N1 ←M(G1,N1)

5: Define local markers : S1 ← {g | LFC g
G1 vs G2 > 0 and g significantly up in G1 vs N1}

6: Define neighborhood genes : N1 ← {g | LFC g
G1 vs G2 > 0, g /∈ S1}

7: Train GP classifier on features X =
[
LFCG1 vs G2,LFCN1 vs G2

]
, labels: S1 vs. N1

8: Compute local marker probabilities pg = P(g ∈ S1|X)

9: Filter genes: Ŝ1 ← {g | pg ≥ τ}
10: return Filtered gene set Ŝ1 and probabilities {pg}

G2, respectively (Figure 1D-right).
To characterize endothelial gene expression in invasive and stromal regions, we performed differ-
ential expression (DE) analysis between G1 and G2, comparing two methodsM: a latent-variable
model DE (lvm-DE) (Boyeau et al., 2023), implemented in scvi-tools, and a t-test, implemented
in Scanpy (Wolf et al., 2018). We first investigated genes enriched within endothelial cells of the
invasive region compared to the tumor stroma. To assess the reliability of these discoveries, we
compared the results of both methods against an scRNA-seq reference dataset (Appendix C). The
naive approach identified genes that were downregulated in endothelial cells within the scRNA-seq
reference (Figure 1E), suggesting contamination from neighboring cell types. We therefore filtered
genes by setting τ = 0.9. To quantitatively compare the refined DE results from 2DE with the naive
approach, we evaluated precision using endothelial-upregulated genes in the scRNA-seq reference
as ground truth markers. Across both DE methods and segmentations, we observed a consistent
increase in precision (Table 1). As expected, we find a stronger improvement in the lower quality
original segmentation compared to the improved Proseg segmentation validating our benchmarking
strategy.

Table 1: Precision of gene discoveries for the task of finding upregulated genes in G1 vs G2. lvm-
DE: latent-variable model DE. Details in Appendix C.

Original segmentation Proseg segmentation
t-test lvm-DE t-test lvm-DE

Naive 0.27 0.29 0.41 0.47
2DE 0.69 0.75 0.67 0.88

Among the confident genes, we found ESM1, described to be upregulated in invasive breast cancer
tissue (Zeng et al., 2023). Also enriched were SNAI1 and ZEB1. SNAI1 is a key regulator of dysfunc-
tional blood vessels in cancer (Hoffmann et al., 2024). Upon being activated during endothelial to
mesenchymal transition, SNAI1 induces the expression of multiple other transcription factors such
as ZEB1, resulting in neoangiogenesis and promoting cancer growth (Youssef & Nieto, 2024). In ad-
dition, we found increased expression of KDR, encoding vascular endothelial growth factor receptor
2 (VEGFR2), which is essential for angiogenesis as well as increased permeability (Pérez-Gutiérrez
& Ferrara, 2023). Spatial plots of ESM1, SNAI1 and KDR show spatial specificity in endothelial cells
(Figure 1F-top) and limited expression in non-endothelial cells (Figure 1F-bottom). Taken together,
ESM1, KDR and ZEB1 are critical for angiogenesis in invasive cancer and we thereby identify spa-
tially confined tumor-promoting endothelial cells (Motzer et al., 2020; Li et al., 2022).
We compared the results obtained with both segmentations in Figure S2. In the original segmenta-
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tion, the naive approach identifies genes, such as FOXA1 (Balsalobre & Drouin, 2022; Janesick et al.,
2023; Bhat-Nakshatri et al., 2024)) and KRT7 (Elmentaite et al., 2022) that are actually expressed by
cancer cells and therefore spurious signal. Spatial plots of these two genes show high expression in
non-endothelial cells (Figure 1G-bottom, Figure S3B-bottom). While we find a drastically reduced
frequency of spurious upregulated genes using improved segmentation, 2DE identifies a similar set
of marker genes. We computed Jaccard indices between sets of local markers and neighborhood
genes, Jaccard(Soriginal1 ,Sproseg1 ) and Jaccard(N original

1 ,N proseg
1 ), and found a low overlap

between neighborhood genes but a high overlap between markers (Figure S2).

Endothelial cells located in the stroma express higher levels of canonical markers of endothelial cells
including EDN1 encoding endothelin a potent vasoconstrictor (Geldhof et al., 2022), CAVIN2, key
for the formation of caveolae and regulating nitric oxide production, which is a potent vasodilata-
tor (Aitken et al., 2023; Boopathy et al., 2017) as well as the canonical marker of endothelial cells
CLDN5 (Reed et al., 2024) (Figure S3C). Spatial plots of EDN1, CAVIN2 and CLDN5, showing
spatial specificity in endothelial cells, are displayed in Figure S3D-E. Higher expression of these
canonical markers of endothelial cells highlights more mature functional endothelial cells in the
stroma compared to those in the invasive cancer region, expressing markers of angiogenesis as well
as endothelial-to-mesenchymal transition and, thereby, the loss of markers of differentiated endothe-
lial cells. To summarize, endothelial cells promoting angiogenesis are spatially tightly confined to
invasive cancer and likely provide a tissue environment promoting cancer growth.

4 DISCUSSION

Differential expression analysis in spatial transcriptomics data is confounded by spurious signals
originating from neighboring cells, and thereby wrong gene discoveries. To address this issue, we
introduced 2DE, a method that assigns confidence scores to genes by assessing their upregulation
relative to the neighborhood. Applying 2DE to a breast cancer dataset, we demonstrated its utility
as a post-processing step for multiple DE methods, significantly improving the precision of detected
markers compared to a naive approach. Furthermore, we showed that 2DE identifies a consistent set
of confident marker genes, regardless of segmentation quality.
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Figure 1: 2DE enables the characterization of spatially confined endothelial populations in breast
cancer samples. A. Tissue slice colored by cell type labels. B. UMAP of embeddings obtained
with the NicheVI model (Levy et al., 2024), using the original cell segmentation (left) and after
resegmenting the cells using Proseg (Jones et al., 2024) (right). Cells are colored by cell type labels.
C. On the resegmented data, endothelial gene modules from Hotspot applied on spatial coordinates.
One module co-localizes with the invasive tumor region, and the other with the tumor stroma. Cells
are colored by module scores. D. We identify endothelial cells in the invasive niche G1 and en-
dothelial cells in the stroma G2. N1, N2 refers to the nearest neighbors in space of G1 and G2 while
ignoring endothelial cells. E. After Proseg segmentation and for two different DE methods, we vi-
sualize pg as a function of the log-fold change from an endothelial-vs-all comparison in scRNA-seq
data of breast cancer. All genes identified by the naive DE approach are shown, colored by their
marker label. Notably, neighborhood genes are downregulated in the reference dataset, suggesting
contamination from neighboring cells in spatial data. Genes with pg > 0.9 are kept as confident
markers. F. We display the spatial gene expression of marker genes upregulated in both segmen-
tations, subset to endothelial cells (top) and subset to non-endothelial cells (bottom). These genes
are higher expressed in endothelial cells. G. Similar to F. These genes are higher expressed in non-
endothelial cells. Here, we display the observed expression after Proseg segmentation.
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A METHODS

A 2DE DETAILS

2DE takes as input two defined groups of cells {G1, G2} as well as their spatial coordinates and cell
types. To determine the upregulated genes of G1 vs G2, the first step is to compute the neighborhood
N1 . We computed a nearest neighbors graph with kDE = 6 neighbors, which led to an average
number of neighbors kadj = 2.7 after removing cell-type connections. Then, we compute DE
between {G1, G2}, {N1, G2} and {G1, N1}, using the methodM. We considered two methods;
the first one, lvm-DE (Boyeau et al., 2023), leverages a fitted generative model to estimate log-fold
changes between conditions from the normalized expression distribution. We used the NicheVI
(Levy et al., 2024) deep generative model using default architecture and training parameters, then
ran lvm-DE with the following parameters: a pseudo-count ϵ = 10−4, a LFC cutoff δ = 0.03 for
all comparisons except {G1, N1} for which δ = 0.15, nsamples = 105 samples from the posterior.
We also ran a t-test with Scanpy, using the scanpy.tl.rank genes groups method, on the
log-transformed gene expression.

On the upregulated genes of G1 vs G2, we then trained a Gaussian process classifier to distinguish
between marker and neighborhood genes. We used the Scikit-learn (Pedregosa et al., 2011) im-
plementation and defined the kernel as the product of a constant kernel C with a rational quadratic
kernelK(l, a). We tuned the Gaussian process hyperparameters by sampling 20 combinations within
given bounds. We set C ∈ [10−3, 103], l ∈ [10, 102] and a ∈ [10−3, 1].

To determine the upregulated genes of G2 vs G1, we follow the same steps: we first retrieve N2,
then compute DE between {G2, G1}, {N2, G1} and {G2, N2}.
For the spatial plots of gene expression, we processed the counts as follows: we applied a
scanpy.pp.log1p transformation followed by min-max scaling, then selected the 99.9th
percentile as the upper limit of the color scale.

B SPATIAL GENE MODULES COMPUTATION

We use Hotspot (DeTomaso & Yosef, 2021) to uncover spatial signatures of cell states. To gen-
erate Figure 1C, we ran Hotspot using the spatial coordinates as similarity metric, following
hotspot.readthedocs.io/tutorial. Then we used the module scores to assign cells to modules, by
considering the maximal module score for the cell. To account for cells expressing a mixture of
gene modules with no clear over-expression of one module, we set a threshold ∆ to the score. For-
mally, for N cells and M modules, we denote H ∈ RN×M the module scores matrix. For any cell
n, the module mn is:

mn =

{
j = argmaxm∈M [Hnm] , if Hnj > ∆
′Unassigned′ otherwise.

(2)

We set ∆ = 0.5. Spatial plots of module assignments m are displayed in Figure S1.

C BENCHMARK WITH NAIVE APPROACH USING SCRNA-SEQ REFERENCE DATA

To assess the biological plausibility of the upregulated genes discovered by a DE method from spatial
transcriptomics data, we can compare our results with reference scRNA-seq data. We considered a
breast cancer atlas (Wu et al., 2021) of 26 tumors and defined ground truth endothelial markers by
computing endothelial-vs-all DE using a t-test and selecting genes with positive LFCs. We selected
the intersection of these markers with the Xenium gene panel. We then defined the precision of a
DE method as the fraction of relevant discoveries (genes that are within the ground truth markers)
among all discoveries.
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B SUPPLEMENTARY FIGURES

Figure S1: A. Spatial plots of module scores, computed with Hotspot on the resegmented data. We
assigned each cell to a specific module by taking the argmax over the cell module scores and setting
a threshold of 0.5, under which cells are assigned to a ’weak’ module class. B. Similar to A, but on
the original segmentation.
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Figure S2: A. Using lvm-DE, median Log-Fold Change (LFC) of upregulated genes in G1 vs G2,
using the original segmentation (left) and the resegmented data (right) displayed on x-axis, while
we compare differential expression computed between N1 and G2 on the y-axis. Genes are colored
by their marker label S1(yellow)/N1(green). We also display the classifier decision boundary. The
Jaccard index measures gene overlaps for the markers/ neighborhood gene sets. B. Similar to A,
with t-test as DE method.
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Figure S3: A-B. Similar to Figure 1F-G, but in the original segmentation. C. Using lvm-DE, median
Log-Fold Change (LFC) of upregulated genes in G2 vs G1, using the original segmentation (left)
and the resegmented data (right) displayed on the x-axis, while we compare differential expression
computed between N2 and G1 on the y-axis. Genes are colored by their marker label S1/N1. We
also display the classifier decision boundary. The Jaccard index measures gene overlaps for the
markers/ neighborhood gene sets. D. Spatial plots of genes upregulated in G2, in endothelial cells
(top) and non-endothelial cells (bottom), showing stromal endothelial specificity. Here, we display
the observed expression in the original segmentation. E. Similar to D, but after Proseg segmentation.
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