
Under review as a conference paper at ICLR 2021

YOU ONLY SAMPLE (ALMOST) ONCE: LINEAR COST
SELF-ATTENTION VIA BERNOULLI SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models have come to dominate the landscape in a wide range
of natural language processing (NLP) applications. The heart of the transformer
model is the self-attention mechanism, which captures the interactions of token
pairs in the input sequences and consequently, depends quadratically on the input
sequence length. It is known that training such models on longer sequences is
quite expensive, and often, prohibitively so. We show that a Bernoulli sampling
attention mechanism based on Locality Sensitive Hashing (LSH), decreases the
quadratic complexity to linear. We bypass the quadratic cost by considering self-
attention as a sum of individual tokens associated with Bernoulli random variables
that can, in principle, be sampled at once by a single hash (although in practice,
this number may be a small constant). This leads to an efficient sampling scheme
to estimate self-attention which relies on specific modifications of LSH (based
on feasibility of deployment on GPU architectures). We evaluate our proposed
algorithm on the GLUE benchmark with standard 512 sequence length and our
method achieves comparable or even slightly better performance than a standard
pretrained Transformer. To evaluate whether our method can indeed handle longer
sequences, we conduct experiments on long sequence (4096) language model pre-
training and achieve consistent results as standard self-attention, while observing
sizable inference speed-ups and memory savings.

1 INTRODUCTION

The Transformer model (Vaswani et al., 2017) is incredibly effective across a diverse set of natu-
ral language processing (NLP) applications including machine translation (Vaswani et al., 2017),
language inference (Devlin et al., 2018) and paraphrasing (Raffel et al., 2019). Transformer-based
models such as BERT (Devlin et al., 2018) are pretrained in an unsupervised manner and later
finetuned on different downstream tasks, often providing state-of-the-art performance on standard
benchmarks. While such models have strong empirical performance, their high computational and
memory requirements remain quite high. Consequently, in the NLP setting, most current models
have certain constraints on the sequence length, e.g., BERT and other transformer-based language
models (Yang et al., 2019; Liu et al., 2019) limit the sentence length to be at most 512.

The Multi-Head Self-Attention is central to Transformer based models and provides a flexible global
receptive field to exchange information among input tokens. While self-attention provides immense
benefits, it is also a key bottleneck in training with long sequences. In particular, the output of
self-attention is a combination of all tokens where coefficients are determined by the similarities
among tokens. While this is empirically beneficial, it involves a sizable resource footprint. For
sequence length n, this leads to a O(n2) complexity in both time and memory to compute pairwise
similarities among all input tokens. This quadratic cost is a roadblock in attaining potential benefits
that may be realizable in various applications by capturing long term context dependencies. As we
will discuss in more detail later, the foregoing issue is a major thrust of several recent and ongoing
efforts focused on mitigating the sizable resource requirements of such models.

Our work is inspired by ideas of importance sampling via hashing-based sampling techniques
(Spring & Shrivastava, 2017; Charikar & Siminelakis, 2017). We proposed a Bernoulli based sam-
pling to approximate self-attention, scaling linearly with the input sequence length. We achieve this
by viewing self-attention as a sum of individual tokens associated with Bernoulli random variables

1

Under review as a conference paper at ICLR 2021

whose success probability is determined by the similarities among tokens. In principle, we can
sample all Bernoulli random variables at once with a single hash (although in practice, this number
may be a small constant to lower the approximation variance). This leads to an efficient sampling
scheme to estimate self-attention which relies on specific modifications of hashing-based importance
sampling (based on feasibility of deployment on GPU architectures). The resulting strategy (You
Only Sample Almost Once, YOSO-Attention) is far more amenable to an efficient and backpropaga-
tion friendly implementation, and has a favorable empirical performance profile on natural language
modeling tasks. We evaluate our proposed algorithm on the GLUE benchmark (Wang et al., 2019)
with 512 sequence length as well as on long sequence language model pretraining where we see
promising results with speed-ups and memory savings.

2 BACKGROUND: SELF-ATTENTION

Self-Attention. Self-attention is a scaled dot-product attention mechanism to capture token depen-
dencies in the input sequence, which can be defined as,

A(Q,K,V) = softmax

 (QWQ)(KWK)T√
dh︸ ︷︷ ︸
P

V WV = DP exp (P)V WV (1)

where Q,K,V ∈ Rn×d are embedding matrices from the input sequence, called queries, key and
values respectively. Here, n is the input sequence length, d is the embedding dimension of each
token, WQ,WK ,WV ∈ Rd×dh are learned parameter matrices, dh is the dimension of hidden
embedding, and DP is a n × n diagonal matrix which normalizes each row of the exp (P) matrix
such that the row entries sum up to 1. For simplicity, we overload the notations for Q,K,V to
denote QWQ,KWK ,V WV in our presentation.

Multi-Head Self-Attention. Multi-Head self-attention in Transformers runs through the scaled
dot-product attention multiple times and the attention outputs are concatenated to help the model
capture information from multiple representation subspaces Vaswani et al. (2017). Multi-Head Self-
attention can be formally written as,

MultiHead(Q,K,V) = Concat
(
A1(Q,K,V), · · · ,Ah(Q,K,V)

)
W (2)

where h is the number of heads, Ai, i = 1, . . . , h are heads with different parameter matrices.

Self-Attention Bottleneck. A key bottleneck in self-attention is computing the softmax matrix,
softmax(P), which requires the calculation of all pairwise input token similarities. To reduce this
cost, we seek to approximate the softmax matrix by viewing self-attention for each query as an
expectation of a softmax distribution and computing the approximated self-attention with an effi-
cient sampling mechanism. In the following sections, we will first review LSH-based importance
sampling and then propose Bernoulli sampling with LSH to estimate self-attention efficiently.

3 IMPORTANCE SAMPLING VIA LOCALITY SENSITIVE HASHING

Importance sampling (Press et al., 2007) helps approximate properties of a target distribution by a
weighted average of random draws from another distribution. It is known (Press et al., 2007) that
importance sampling can be directly used for the softmax distribution by drawing samples from a
uniform distribution – which avoids sampling from the softmax distribution directly which is harder.
But this leads to a high variance estimate since the softmax distribution is usually concentrated in a
small region. When using this idea for softmax matrix approximation for self-attention in particular,
the variance tends to grow with the input sequence length. Before proceeding, we will summarize
an interesting importance sampling method for low variance estimators, specifically, importance
sampling via LSH from (Charikar & Siminelakis, 2017; Spring & Shrivastava, 2017).

LSH-based Importance Sampling. Consider the case when the angular distance between a key and
a query is small. In this case, the similarity (between the key and the query) as well as the softmax
probability will be large. When viewed through the lens of a nearest neighbor retrieval, the above
property coincides with a large collision probability of high similarity key-query pairs, assuming that

2

Under review as a conference paper at ICLR 2021

the neighbor retrieval is implemented via LSH. Motivated by the link between softmax probability
p and LSH collision probability q, Spring & Shrivastava (2017) and Charikar & Siminelakis (2017)
suggest using LSH as an efficient sampler for low variance softmax estimators.

(a) Spring & Shrivastava (2017) propose approximating softmax by sampling a set, S, a collection
of neighboring keys for each query formed by the union of colliding keys using m hash tables.
The estimator is computed using |S|−1

∑
i∈S

p(q,ki)
q(q,ki)

vi where q is a query vector, ki,vi are key
and value vectors in the sampling set S, and p(·, ·) and q(·, ·) are softmax probability and collision
probability of given pairs. The procedure is equivalent to performing importance sampling without
replacement, which involves a dependency among the samples. Deduplication (avoiding double
counting) requires memory to store keys in each hash table and runtime to deduplicate keys for each
query. If the size of hash buckets is skewed, the GPU memory needs depend on the size of the hash
bucket and the runtime depends on the size of S.

(b) Charikar & Siminelakis (2017) proposed a Hash based Estimator to simulate a proposal distri-
bution for importance sampling via LSH, which can be easily applied in the context of softmax. For
each hash table, a key is uniformly selected from the bucket that the query is hashed to, for simu-
lating a draw from a proposal distribution. The estimate is computed as m−1

∑m
i=1

p(q,ki)|Hi(q)|
q(q,ki)

vi
where |Hi(q)| denotes the size of hash bucket in the i-th hash table which q is hashed to. This sim-
ulates m samples drawn with replacement from the proposal distribution. However, the probability
of one key being sampled depends not only on (a) the angular distance to the query but also (b) the
number of keys within the hash bucket, leading to a sampling dependency among all keys. Further,
using it for self-attention causes a dependence between the sparsity in the softmax matrix and the
number of hashes used. Specifically, the number of tokens that each query can attend to is bounded
by the number of hashes: the procedure samples at most one key for each hash table and so, it adds
one additional nonzero to the softmax matrix, at most.

Remark 1. While LSH-based importance sampling exploits the agreement between high probability
p(·, ·) and high collision probability q(·, ·), the alignment is not perfect. Samples from proposal
distribution must be reweighted to compensate for the difference. Further, for different queries,
the likelihood ratios between softmax distribution and proposal distribution w.r.t. a single key are
different. Therefore, the reweighing has to be done during querying. Although maintaining hash
tables for storing keys is not a major problem in general, the high memory cost for hash tables and
computation time for reweighing would influence efficiency when applied to self-attention.

4 YOSO-ATTENTION

We start from LSH-based importance sampling and seek to address some of the aforementioned
issues when it is deployed for approximating self-attention. Instead of using LSH to simulate sam-
pling from a proposal distribution over tokens, we view attention as a sum of tokens associated with
Bernoulli random variables. This modification relates better to LSH and less with LSH-based im-
portance sampling – the probability of one query colliding with a key is not based on other keys.
This strategy helps avoid the sampling dependency issue in LSH-based importance sampling and
offers an opportunity to develop a strategy more amenable to GPUs.

Remark 2. We assume that the input keys and queries of self-attention are unit length – to unify
dot-product similarity in self-attention and cosine similarity in LSH. This is simple using Neyshabur
& Srebro (2015): a temperature variable τ is used to bound the squared `2 norm of all queries and
keys and to reconstruct new unit length keys and queries while preserving their pairwise similarities.
We can work with the softmax matrix in angular distance metric and derive our algorithm.

Self-Attention via Bernoulli Sampling. We aim to approximate self-attention, which uses a soft-
max matrix to capture the context dependency among tokens via their pairwise similarities. As-
suming that we can represent this context dependency directly using collision probability q(·, ·),
then the challenges discussed in importance sampling can be resolved. The coincidence of soft-
max probability p(·, ·) and LSH collision probability q(·, ·) makes q(·, ·) a sensible starting point
for approximating self-attention. Specifically, to model dependency based on similarity, the col-
lision probability aligns well with the exponential function in softmax in the domain of inter-
est [−1, 1] in Figure 1: both functions have positive zeroth, first and second order derivatives.

3

Under review as a conference paper at ICLR 2021

Figure 1: We compare attention weights using exp(τ(x − 1))
with the collision probability of concatenating τ hyperplane hashes
(Charikar, 2002) (1 − arccos(x)/π)τ for τ = 8. We plot
exp(τ(x − 1)) so that the range is between 0 and 1 but without
changing the actual attention weights in softmax. We also plot the
derivative of exponential function and of collision probability, as
well as a lower bound we will use later during backpropagation.
Our method can be viewed as using LSH collision probability to
estimate a biased approximation of exponential function.

Note that (a) positive zeroth order
derivative indicates that the depen-
dency is positive, (b) positive first or-
der derivative ensures that the depen-
dency based on similarity is mono-
tonic, and (c) positive second order
derivative means that low similar-
ity corresponds to almost no depen-
dency. This leads us to hypothesize
that a collision-based self-attention
may be as effective as softmax-based
self-attention. It can be formulated
as,

n∑
i=1

Bi(q,ki)vi (3)

where Bi(q,ki) is a Bernoulli ran-
dom variable where the success probability is given by the collision probability of q with the keys
ki. Hence, it can be determined by the similarity between q,ki. In a single hash, each Bi(q,ki)
generates a realization to determine whether the corresponding token will be part of attention output
or not. Conceptually, when sampling from softmax distribution, only one token is sampled as the
attention output. In contrast, Bernoulli sampling determines whether each individual token is a part
of the attention output. In principle, to determine the context dependency among tokens, you only
need to sample once (YOSO) using a single hash to generate realizations of all Bernoulli random
variables, Bi(q,ki), i = 1, . . . , n. Specifically, when keys are hashed to a hash table using a sin-
gle hash, the realization of Bi(q,ki) for each query q will be 1 if q collides with ki, otherwise it
will be 0. To our knowledge, using LSH collision probability to replace softmax dependencies for
self-attention has not been studied before.

YOSO-Attention. By replacing softmax dependency with Bernoulli random variables and using
LSH as an efficient sampler to estimate the success probability, we achieve an efficient self-attention
(YOSO-Attention) to approximate softmax-based self-attention.

YOSO(Q,K,V) = B(Q,K)V ; E[YOSO(Q,K,V)] =

(
1− arccos(QKT)

π

)τ
V (4)

where B(Q,K) is the Bernoulli sampling matrix using m hashes.

B(Q,K)i,j =
1

m

m∑
k=1

1fk(Qi,:)=fk(Kj,:) where fk, k = 1, . . . ,m are hash functions. (5)

Normalizing Attention. In standard self-attention, each row of the softmax matrix is normalized
so that the dependencies sum up to 1. In the above, we have discussed how the pairwise query-key
dependencies can be estimated using Bernoulli sampling. We now present how to normalize the
dependency in our method as standard self-attention. We can first estimate the dependencies and
then normalize them using the sum of estimated dependencies estimated by B(Q,K)1 where 1 is a
vector of all entries being 1. B(Q,K)1 can be computed by Eq. 4 by plugging 1 into V . To make
the estimation of self-attention more efficient, we turn to adopt a `2 normalization to the attention
output, similar as Levy et al. (2015) to use `2 normalization for word embedding. Thus, attention
outputs are invariant of the scaling, B(Q,K)1, under `2 normalization. Therefore, we have,

N-YOSO(Q,K,V) = `2(B(Q,K)V) (6)

Value Key Code
v0 k0 3
v1 k1 3
v2 k2 1
v3 k3 2
v4 k4 0
v5 k5 3
v6 k6 0
v7 k7 1

Code Hash Table
0 v4 + v6

1 v2 + v7

2 v3

3 v0 + v1 + v5

Query Code Output
q0 3 v0 + v1 + v5

q1 2 v3

q2 0 v4 + v6

q3 2 v3

q4 2 v3

q5 1 v2 + v7

q6 3 v0 + v1 + v5

q7 0 v4 + v6

=

3 3 1 2 0 3 0 1
k0 k1 k2 k3 k4 k5 k6 k7

3 q0
2 q1
0 q2
2 q3
2 q4
1 q5
3 q6
0 q7

×

Value
v0

v1

v2

v3

v4

v5

v6

v7

Figure 2: Overview of YOSO-Attention. The hash table stores the sum of values associated with hashed keys.

4

Under review as a conference paper at ICLR 2021

Empirically, we show the `2 normalization does not affect the performance of our method as ex-
pected, which can be seen in Figure 3.

LSH-based Bernoulli Sampling. Now we discuss how to implement the procedure of using
Bernoulli sampling to approximate self-attention. While a standard LSH procedure can be used,
maintaining hash tables to store keys is inefficient on a GPU – the GPU memory size required for
hash table cannot be predetermined and the workload might be skewed due to skewed bucket sizes.
To tackle this issue, we propose LSH-based Bernoulli Sampling by only saving the summation of
values corresponding to hashed keys instead of storing a collection of hashed keys.

The overview of our algorithm is shown in Figure 2. To compute Y = B(Q,K)V , the procedure
proceeds as follows. For each k ∈ [1, . . . ,m], we sample a hash function fk and create a hash table
Hk ∈ R2τ×d representing 2τ d-dimensional buckets. For each key Kj,:, we add the value Vj,: to
the bucket whose index is hash code fk(Kj,:), denoted as Hk

fk(Kj,:)
,

Hk
fk(Kj,:)

←Hk
fk(Kj,:)

+ Vj,: (7)

Note that the size of Hk is O(2τd) and is independent of which bucket keys are hashed. With
all keys processed for k ∈ [1, . . . ,m], for each query Qi,:, we maintain an output vector Yi,: ini-
tialized to 0. Then, we allocate the bucket in Hk using fk(Qi,:) for k ∈ [1, . . . ,m] and add all
corresponding results in buckets to the output vector Yi,: as

Yi,: ← Yi,: +Hk
fk(Qi,:),:

(8)

Therefore, each final output Yi,: can be computed as,

Yi,: =

m∑
k=1

n∑
j=1

1fk(Qi,:)=fk(Kj,:)Vj,: =

n∑
j=1

B(Q,K)i,jVj,: (9)

Remark 3. The memory and time complexity of this algorithm are O(m2τd) and O(nmd) respec-
tively, In addition, both time and memory are independent of the size of hash buckets. Further, We
can improve the memory complexity to O(m2τ) by reusing hash table and processing a few dimen-
sions each time without increasing time complexity. The constant τ is small as it controls the decay
rate of attention weight with respect to the angular distance between query and key, and it can be
chosen to be a function of log2(n). In our experiments, τ is set to log2(n).

Speed-up. While not essential, we find that a fast random projection for computing the LSH hash
code will be beneficial, since this step takes a large portion of the overall runtime. As suggested
by Andoni et al. (2015), we use the approximated random projection to reduce time complexity to
O(nmτ log2(d)), allowing fast computation of hash codes.

Backpropagation through YOSO-Attention. For training, we also need to show backward propa-
gation steps for YOSO-Attention. Here, we discuss this last component of YOSO-Attention which
enables end-to-end and efficient training.

For backpropagation, the gradient of the loss L w.r.t. V can be estimated similar to equation 4,

∇V L = ((1− arccos(QKT)

π
)τ)T (∇YOSOL) ≈ B(K,Q)(∇YOSOL) (10)

The gradients of L w.r.t. Q,K are similar, so we only provide the expression for Q,

∇QL =

((
∇YOSOL)V

T
)
�
(
τ(1− arccos(QKT)

π
)τ−1

)
�
(
π
√
1− (QKT)2

))
K (11)

where �,� are element-wise division and multiplication. The problem with the true gradient is that
it goes to infinity as the alignment score between the query and the key approaches 1, which might
lead to divergence. To avoid this numerical issue, we use a lower bound of the actual derivative of
the collision probability, [[(∇YOSOL)V

T] � τ
2 (1 −

arccos(QKT)
π)τ]K, see Figure 1, which can be

efficiently estimated via a variation of LSH-based Bernoulli Sampling. Specifically, note that the
approximation can be decomposed into sum of d LSH-based Bernoulli Sampling,

(∇̂QL)i,: =

d∑
l=1

(∇YOSOL)i,l

n∑
j=1

B(Q,K)i,j(Vj,l
τ

2
Kj,:) (12)

5

Under review as a conference paper at ICLR 2021

Therefore, following LSH-based Bernoulli Sampling, the memory complexity is O(m2τd2), and
time complexity is O(nmd2). The d2 term can be eliminated by repeatedly using the same hash
tables d2 times without increasing runtime, which improves the memory complexity to O(m2τ).
The overall complexity of our method and comparison to standard self-attention is summarized in
Table 1. Further, to address the quadratic dependence on d, in the Appendix, we will discuss a
scheme to estimate the same quantity but is linear in d.

5 RELATED WORKS

There are a number of efforts describing ways to reduce the quadratic cost of self attention w.r.t.
input sequence length. Among these works, Linformer (Wang et al., 2020) suggests that low rank
attention might be sufficient and adds linear projections (on the sequence) to fixed size keys and
values. There are also other low rank approximation ideas (Katharopoulos et al., 2020), (Choro-
manski et al., 2020) using separable functions on queries and keys to replace softmax self-attention.
By assuming the self-attention rank to be independent of input sequence length, these methods can
achieve O(n) time and memory complexity. Another direction is to exploit the sparsity of softmax
matrix and focus on certain sparsity patterns by only computing softmax dependencies within those
patterns, including Sparse Transformer (Child et al., 2019), Longformer (Beltagy et al., 2020), and
Big Bird (Zaheer et al., 2020) and Reformer (Kitaev et al., 2020). Note that, instead of using LSH as
a tool to approximate nearest neighbor search to dynamically determine the sparsity pattern in Re-
former, our YOSO-attention takes advantage of the connection of query-key similarity to the LSH
collision probability to model the dependency among tokens.

6 EXPERIMENTS

In this section, we provide the empirical results for the proposed approach. To evaluate our pro-
posed method, we follow the BERT language model pretraining procedure (Devlin et al., 2018) and
evaluate the performance of our method in both intrinsic tasks and multiple downstream tasks in
GLUE benchmark as well as runtime and memory relative to standard self attention. Previously, we
assumed that queries and keys are unit length and described the construction to make it work. In
the experiments, we found that simply applying a `2 normalization on queries and keys and using
a temperature τ as a hyperparameter does not degrade the performance of model and yet is more
efficient to compute, so we use the simpler version in the experiments.

BERT Pretraining. Following Devlin et al. (2018), the model is pretrained on BookCorpus (Zhu
et al., 2015) and English Wikipedia. To evaluate the capacity of model capturing the sentence level
information, instead of using Next-Sentence-Prediction (NSP) as sentence level loss in the original
BERT, we adapt the Sentence-Ordering-Prediction (SOP) proposed in ALBERT (Lan et al., 2019)
as a more difficult task compared to NSP. All model are trained with Mask-Language-Modeling
(MLM) and SOP objectives. We used the same hyperparameters for pretraining as Devlin et al.
(2018). However, due to the computational resources limit, all models are trained for 500K steps.
The batch size is set so that around 217 tokens are processed per step. (batch size of 256 for sequence
length 512, and batch size of 32 for sequence length 4096).

Number of Hashes during Pretraining. Since the estimation variance decreases as the number of
hashes increases, to evaluate the trade-off between efficiency and performance in YOSO, we test
on four hash settings: 16 hashes, 32 hashes, 64 hashes, and expectation of collision to simulate
infinite hashes. We plot MLM validation perplexity and SOP validation loss curves of 512 length
model pretrained with softmax self-attention and YOSO-Attention in the right plots of Figure 3. The
curves of our method using expectation match and slightly exceed softmax self-attention, indicating
our method is indeed as capable as self-attention. It is expected that as the number of hashes increase,
the performance of our method will approach the curve using expectation as the approximation

Time Memory
Forward Backward Forward Backward

Self-Attention O(n2d) O(n2d) O(n2) O(n2)

YOSO-Attention O(nmτ log2(d) + nmd) O(nmd2) O(nmτ +m2τ) O(m2τ)

Table 1: Time/memory complexity of self-attention and YOSO-attention in forward/backward computation

6

Under review as a conference paper at ICLR 2021

Figure 3: (a) The left two plots are results on MLM and SOP for 512 sequence length. We report MLM
validation perplexity and SOP validation loss for each 2K training steps. (b) The middle two plots are results
for MLM and SOP when using different number of hashes on validation. Since the runtime of YOSO-Attention
is linear with respect to the number of hashes, these two plot directly reflect the equivalent relation between
performance vs inference time. (c) The right two plots are results on on MLM and SOP for 4096 sequence
length. YOSO-x means the model is pretrained with YOSO-Attention using x hashes with E being expectation.

become more accurate. For both MLM and SOP, we confirm that our method is as effective as
softmax self-attention.

Number of Hashes during Validation. YOSO-Attention is a stochastic model. To make the in-
ference deterministic, as in dropout (Srivastava et al., 2014), we take the expectation as our output.
However, directly computing expectation involves a O(n2) cost, so we experiment with the effect
of different hash settings in validation and simulate expectation as the number of hashes increases.
We plot the MLM perplexity and SOP loss of the same pretrained models using different number of
hashes on validation in the center plots of Figure 3. We observe that as the number of hash increases,
the MLM perplexity and SOP loss generally decreases for all pretraining hash settings.

Pretraining on Longer Sequence. To examine whether our method can scale linearly with se-
quence length, we continue to pretrain BERT-base models using the corresponding 500K step check-
points for 512 length model, and add additional positional embedding as suggested in Beltagy et al.
(2020). We observe that compared to 512 sequence length, the small performance gap between
YOSO-Attention and softmax self-attention does not increase as suggested in the left plots of Figure
3, providing evidence that the number of hashes can be chosen independent of sequence length.

Method MRPC RTE SST-2 QNLI QQP MNLI-m/mm
Self-Attention 88.3 70.8 91.1 90.3 87.3 82.4/82.4

YOSO-16 87.1 68.6 90.7 88.3 85.3 79.6/79.5
YOSO-32 87.3 71.8 90.9 89.0 86.3 80.5/80.7
YOSO-64 88.1 69.7 91.5 89.5 87.0 81.6/81.6
YOSO-E 88.1 74.4 92.3 90.1 87.3 82.2/82.9

YOSO-16-E 87.8 69.3 91.5 89.3 86.8 81.0/81.4
YOSO-32-E 87.8 70.4 91.1 90.1 86.8 80.8/81.4
YOSO-64-E 88.3 72.2 91.7 90.0 87.2 81.9/82.8

Table 2: Dev set results on GLUE tasks. We report F1 score for
MRPC and QQP and accuracy for others. YOSO-x means the same
as in Figure 3 and YOSO-x-E means that YOSO-x is finetuned on
downstream tasks using expectation.

GLUE Tasks. In addition to in-
trinsic tasks, we examined the effec-
tiveness of our method on diverse
downstream tasks and ask how our
method compares with standard at-
tention even after finetuning. We
finetuned all pretrained BERT-base
model on MRPC (Dolan & Brock-
ett, 2005), RTE (Giampiccolo et al.,
2007), SST-2 (Socher et al., 2013),
QNLI (Rajpurkar et al., 2016), QQP
(Chen et al., 2018), and MNLI
(Williams et al., 2018) tasks in the GLUE benchmarks and report their corresponding dev metrics.
For large datasets including QNLI, QQP, and MMNL, due to extensive resource needs, we cannot
do hyperparameter search, so we used a batch size of 32 and learning rate 3e-5 to update our model
and finetune our models for 4 epochs. For MRPC, RTE, and SST-2, we follow BERT finetuning
to do a hyperparameter search with candidate batch size {8, 16, 32} and learning rate {2e-5, 3e-5,
4e-5, 5e-5} and select the best dev set result. Results are listed in Table 2. We observed that YOSO’s
performance on downstream tasks is comparable with standard attention, and even has slightly better

7

Under review as a conference paper at ICLR 2021

results in some hash settings. Further, the downstream performance of YOSO generally increases as
more hashes are used, providing an adjustable trade-off between efficiency and accuracy.

Longer Sequence Task. To further evaluate YOSO on long sequence tasks, we extended the po-
sitional embeddings of a trained YOSO-64 model and used it as an initialization to train a 4096
length YOSO-128 model using a batch size of 64 and learning rate 5e-5 on BookCorpus (Zhu et al.,
2015), English Wikipedia, one third of the Stories (Trinh & Le, 2018), and one third of Realnews
(Zellers et al., 2019) for 100K steps, similar to Longformer pretraining (Beltagy et al., 2020). Then,
we finetuned our model on WikiHop (Welbl et al., 2018). Due to the computational resource limits,
we only tested a small set of hyperparameters (batch size = 32, learning rate ∈ {1e-5, 2e-5, 4e-5},
number of epochs = 10). The dev accuracy is 73.7 for YOSO-128-E, which is comparable to 73.8
in Longformer-512 (see caption in Table 3) without hyperparameter search but slightly worse than
75.0 that Longformer-512 achieves with hyperparameter search.

Method SST-2 QQP MNLI-m/mm
YOSO-32 93.5 87.3/90.5 84.4/84.1
YOSO-64 94.2 87.9/90.9 85.1/85.2

Reformer-2 92.9 87.8/91.0 85.6/85.3
Longformer-64 94.9 88.4/91.4 85.3/85.2

Table 3: Dev set results on SST-2, QQP, and
MNLI. We report both F1 score and accuracy
QQP and accuracy for others. Reformer-x: Re-
former using HuggingFace implementation (Wolf
et al., 2019) using x hashes. Longformer-x: Long-
former using HuggingFace implementation (Wolf
et al., 2019) using sliding window of size x.
YOSO-x is similar to description in Figure 3. We
did not re-train Linformer to keep compute costs
reasonable; when trained from scratch Linformer
(Wang et al., 2020) reports accuracy 93.4 for SST-
2 and 90.8 for QQP.

Comparisons to Baselines. Apart from compar-
ing YOSO to standard self-attention, we also evalu-
ated its competitiveness with other efficient attention
methods. To keep the financial costs of these exper-
iments reasonable, instead of training all methods
from scratch, we used RoBERTa-base’s pretrained
weights as the starting point and trained each model
using batch size 512 and learning rate 5e-5 on Book-
Corpus (Zhu et al., 2015) and English Wikipedia for
95K steps. Then, we finetuned the models on SST-2,
QQP, and MNLI. These results are shown in Table
3. We observed that our performance is competitive
with other baselines while the memory consumption
of YOSO is much less (2.6×, 1.9×, 2.1× mem-
ory savings compared to Reformer, Longformer, and
Linformer respectively, see Backward-Cache in Ta-
ble 4). This has potential ramifications for training
such models with more moderate hardware resources which are much less expensive. Further, no-
tice that YOSO is potentially applicable to a wider range of applications, especially where the input
sequence represents an unordered set of high dimensional points (where spatial locality of the input
sequence may not hold).

Figure 4: Attention matrices generated by self-attention and YOSO-Attention with different hash settings
using the same input. Notice that the patterns are preserved well.

Estimation Error. To assess the effectiveness of our algorithm, using Q,K from the trained model,
we generated attention matrices using our algorithm with different number of hashes and compare it
against standard self-attention. In Figure 4, visually, we see that our method produces similar atten-
tion patterns as standard self-attention. The estimation of attention matrix becomes more accurate
as the number of hashes increases. Further, each output of YOSO-Attention is a weighted sum of
random variables as shown in equation 3; so one may suspect that as the sequence length increases,
the variance of YOSO-Attention output might potentially increase. We did not observe this behavior
which may be partly due to the hyperparameter τ = O(log(n)) that controls the decay rate of LSH
collision probability as the similarity changes. We can also ask whether or not the estimation error
of YOSO-Attention for a fixed number of hashes increases as the sequence length increases. We use
Q,K,V generated by the pretrained model and estimate the error between N-YOSO(Q,K,V)
and E[N-YOSO(Q,K,V)]. As the left plot of Figure 5 suggests, the relative error of our method
stays almost constant as the sequence length increases from 128 to 4096. This indicates that using
sampling to estimate attention weight based on YOSO-Attention can scale up with sequence length
and preserve the same estimation quality without increasing the number of hashes.

8

Under review as a conference paper at ICLR 2021

Figure 5: (a) The relative error in the left plot is defined as
E[‖E[N-YOSO(Q,K,V)]−N-YOSO(Q,K,V)‖∞

‖E[N-YOSO(Q,K,V)]‖∞
]. The relative error is es-

timated by computing E[N-YOSO(Q,K,V)] based on collision
probability, then estimating N-YOSO(Q,K,V) multiple times,
finally computing the mean of relative error of each estimate as
an estimation of the outer expectation. (b) The runtime per token
is estimated by estimating N-YOSO(Q,K,V) multiple times and
measuring the total time elapsed and then dividing the total time by
number of iterations and sequence length to get runtime per token.

Runtime and Memory. We mea-
sure the runtime of our method as
sequence length increases. To show
the trend more precisely, we mea-
sured the runtime per token as shown
in Figure 5 (right). There is a
slight increase in runtime per token
as the sequence length increases, but
note that the x-axis of the plot is
log scale, so the increment is small.
When the sequence length increases
by 32×, the runtime per token only
increases by 30%, which is explained
by our choice of hyperparameter τ =
O(log(n)). Aside from the plot, we
report the training and testing ef-
ficiency of our method as well as
three other efficient attention meth-
ods against standard self-attention. The results were measured using Q,K,V of a specified se-
quence length generated by a trained model and fed into a BERT-base Multi-Head Attention module
multiple times. The experiments were performed on a single NVIDIA 2080TI. From Table 4, we can
see that while for a standard 512 length sequence, our method has a similar runtime as self-attention,
as the sequence length increases, the speed-up and memory savings become significant. While our
method offers similar runtime savings as other efficient attention methods, the memory consumption
for training (i.e., Backward-Cache) of our method is much lower than all other methods in almost
all settings.

Model
Sequence Length

512 1024 2048 4096 512 1024 2048 4096
Forward / Backward Time (ms) Backward-Cache / Training-Peak / Testing-Peak Memory (MB)

Self-Attention 0.6 / 0.88 1.81 / 2.29 5.92 / 8.04 21.2 / 29.73 51 / 70 / 48 179 / 260 / 173 671 / 999 / 659 2589 / 3918 / 2565
YOSO-16 0.54 / 0.93 1.09 / 1.87 2.29 / 3.73 4.6 / 7.38 17 / 32 / 27 34 / 63 / 55 68 / 127 / 110 136 / 253 / 243
YOSO-32 0.71 / 1.21 1.49 / 2.43 3.11 / 4.88 6.31 / 9.89 18 / 44 / 40 36 / 89 / 80 71 / 178 / 161 142 / 355 / 345
YOSO-64 1.09 / 1.91 2.26 / 3.9 4.87 / 7.84 10.21 / 16.02 19 / 70 / 66 39 / 140 / 131 77 / 279 / 263 154 / 559 / 549

YOSO-128 1.91 / 3.17 4.09 / 6.45 9.16 / 13.37 19.41 / 28.85 22 / 121 / 117 45 / 242 / 233 89 / 483 / 467 178 / 967 / 957
Linformer-128 0.42 / 0.51 0.86 / 1.03 1.72 / 2.16 3.53 / 4.76 25 / 33 / 17 50 / 66 / 35 101 / 136 / 71 166 / 247 / 154
Linformer-256 0.53 / 0.67 1.05 / 1.36 2.16 / 2.85 4.02 / 6.16 38 / 55 / 24 76 / 111 / 49 156 / 233 / 102 239 / 416 / 227

Reformer-2 0.73 / 1.14 1.52 / 2.29 3.09 / 4.59 6.35 / 9.19 48 / 61 / 38 96 / 122 / 76 192 / 243 / 151 384 / 487 / 302
Reformer-4 1.22 / 2.05 2.47 / 4.1 5.03 / 8.19 10.49 / 16.36 86 / 114 / 71 172 / 228 / 143 344 / 455 / 286 688 / 911 / 572
Reformer-8 2.17 / 3.85 4.44 / 7.69 9.04 / 15.4 18.84 / 30.83 162 / 220 / 139 324 / 439 / 278 647 / 878 / 555 1294 / 1756 / 1111

Longformer-64 0.81 / 1.71 1.63 / 3.37 3.28 / 6.87 6.19 / 13.67 35 / 43 / 25 71 / 86 / 50 142 / 172 / 99 224 / 307 / 198
Longformer-128 0.9 / 2.07 1.81 / 4.12 3.62 / 8.41 6.89 / 16.51 41 / 48 / 32 82 / 96 / 64 165 / 193 / 127 269 / 345 / 253
Longformer-256 1.09 / 2.74 2.19 / 5.56 4.45 / 10.89 8.47 / 22.91 51 / 64 / 46 104 / 129 / 91 208 / 258 / 182 360 / 481 / 363
Longformer-512 1.42 / 3.95 2.96 / 8.65 6.05 / 17.86 11.54 / 36.14 72 / 103 / 80 148 / 211 / 159 299 / 423 / 317 538 / 767 / 585

Table 4: The reported values pertain to a single instance. Time is estimated by averaging total runtime and
then dividing it by batch size, while memory is measured by dividing total memory consumption by batch size.
Linformer-x: Linformer model where the sequence is projected to a fixed x length. The rest of method names
are consistent with Table 3. Backward-Cache: amount of memory required to cache certain tensors for back-
ward pass (e.g., activation and inputs which is required for gradient calculation or is cached to avoid redundant
calculation). Since the Backward-Cache will accumulate as model grows deeper, this part is usually the most
significant portion of memory consumption. Training-Peak: maximum memory needed during training includ-
ing temporary tensors and cached tensors for backward pass. Some tensors are not required for backward pass,
and they are only held in memory temporarily. As model grows deeper, the amount of memory for temporary
tensors does not grow. Testing-Peak: Similar to Training-Peak, but nothing is cached for backward pass.

7 CONCLUSION

We presented a transformer-based model, YOSO-Attention, that scales linearly in the number of in-
put tokens. This allows the model to be applicable to a wide range of long document NLP tasks. Via
a randomized sampling based scheme, our model approximates self-attention as a sum of individual
tokens associated with Bernoulli random variables that can be sampled at once by a single hash, in
principle. With specific modifications of LSH, YOSO-Attention can be efficiently deployed within
a deep learning framework and various aspects of this idea and our implementation, we expect, will
find use in other novel settings and applications (e.g., in vision).

9

Under review as a conference paper at ICLR 2021

REFERENCES

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical
and optimal lsh for angular distance. In Advances in neural information processing systems, pp.
1225–1233, 2015.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032–1043. IEEE, 2017.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs, 2018.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. ArXiv, abs/1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, J. Davis, Tamás
Sarlós, D. Belanger, Lucy J. Colwell, and Adrian Weller. Masked language modeling for pro-
teins via linearly scalable long-context transformers. ArXiv, abs/2006.03555, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1–9. Association for Computational Linguistics, 2007.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. arXiv preprint arXiv:2006.16236,
2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. ArXiv,
abs/2001.04451, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3:211–
225, 2015. doi: 10.1162/tacl a 00134. URL https://www.aclweb.org/anthology/
Q15-1016.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product search.
In International Conference on Machine Learning, pp. 1926–1934, 2015.

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes
3rd edition: The art of scientific computing. Cambridge university press, 2007.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

10

https://www.aclweb.org/anthology/Q15-1016
https://www.aclweb.org/anthology/Q15-1016

Under review as a conference paper at ICLR 2021

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP, pp. 1631–1642, 2013.

Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based sam-
plers and estimators for partition function computation in log-linear models. arXiv preprint
arXiv:1703.05160, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Trieu H Trinh and Quoc V Le. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. ArXiv, abs/2006.04768, 2020.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association for Computational Lin-
guistics, 6:287–302, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of NAACL-HLT, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv, pp. arXiv–1910, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural
information processing systems, pp. 5753–5763, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33, 2020.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. In Advances in Neural Information Processing
Systems, pp. 9054–9065, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

In Appendix, we provide some details of our method that are left out in the main text.

Backpropogation Derivation When using expectation of LSH collision as attention weights, the
attention of one query q to keys ki and associated values vi for all i ∈ {1, ..., n} is defined as

y =

n∑
i=1

(
1− arccos(qTki)

π

)τ
vi (13)

then we want to compute the gradient of loss w.r.t. q, which we denoted as ∇qL, with the gradient
of loss w.r.t. y denoted, ∇yL, given. We start by computing the p-th entry of ∇qL:

∂L

∂qp
=

d∑
j=1

∂L

∂yj

∂yj
∂qp

=

d∑
j=1

∂L

∂yj

∂

∂qp

[
n∑
i=1

(
1− arccos(qTki)

π

)τ
vij

]
(14)

Then use d
dx (1−

arccos(x)
π)τ =

τ(1− arccos(x)
π)τ−1

π
√
1−x2

and plug it into the Eq. 13

∂L

∂qp
=

d∑
j=1

∂L

∂yj

n∑
i=1

τ
(
1− arccos(qTki)

π

)τ−1
π
√
1− (qTki)2

kip

vij (15)

After swapping the order of two summations, Eq. 13 becomes

∂L

∂qp
=

n∑
i=1

(∇yL)
Tvi

τ
(
1− arccos(qTki)

π

)τ−1
π
√
1− (qTki)2

kip (16)

Note that only kip is different for different entries of∇qL, so we can write it as

∇qL =

n∑
i=1

(∇yL)
Tvi

τ
(
1− arccos(qTki)

π

)τ−1
π
√
1− (qTki)2

ki (17)

Equation 11 is the matrix form of above

∇QL =

((
∇YOSOL)V

T
)
�
(
τ(1− arccos(QKT)

π
)τ−1

)
�
(
π
√
1− (QKT)2

))
K (18)

Note that π
√
1− (QKT)2 approaches to 0 as alignment score between the query and the key

approaches 1, so we use the fact that 1
2 (1−

arccos(x)
π) ≤ 1

π
√
1−x2

for x ∈ [−1, 1] and define a lower
bound to replace the actual gradient

∇QL =

((
∇YOSOL)V

T
)
�
(
τ

2
(1− arccos(QKT)

π
)τ
))

K (19)

Approximating Random Projection in LSH. In the main text, we discussed how to estimate self-
attention using Bernoulli sampling via LSH. The first step of using LSH is computing hash code
using random projection. To compute hash codes for a vector x, we proceed as follows.

F : Rd → {0, 1}mτ F (x) = sign(Rx) (20)

where R ∈ R(mτ)×d,Rij ∼ N (0, 1), then the output vector are partition tom τ -dimensional binary
hash code. The time complexity for random project isO(nmτd). To efficiently approximate random
projection, we follow the construction used in Andoni et al. (2015). The output of mτ -dimensional
vector is divided to mτ

d d-dimensional vectors, then hash codes are estimated by

F (x) = concat(sign(HD1
3HD1

2HD1
1x), ..., sign(HD

mτ
d

3 HD
mτ
d

2 HD
mτ
d

1 x)) (21)

where Dj
i are diagonal matrices with entries uniformly sampled from {−1,+1}, and H is

Hadamard matrix. This approximation reduce time complexity to O(nmτ log2(d)).

12

Under review as a conference paper at ICLR 2021

Alternative Procedure for Approximating Backpropagation. In the main text, we provided a
procedure as shown in Eq. 12, which use LSH-based Bernoulli Sampling d times as subroutine. The
complexity of this procedure is linear w.r.t. sequence length n, which is desirable but the runtime
can be large if d is relatively large. Therefore, we provide second procedure, which is linear with
respect to d. The gradient of L w.r.t. the i-th row of Q is written as

(∇̂QL)i,: =

n∑
j=1

(∇YOSOL)
T
i,:Vj,:B(Q,K)i,j

τ

2
Kj,: (22)

Note that if B(Q,K)i,j is zero then the corresponding summation term does not need to be
computed. The alternative procedure counts the number of success in m samples at each entry
B(Q,K)i,j and only computes the summation term when B(Q,K)i,j is non-zero, and thus the
runtime is O(nnz(S(A,B))(m+ d)) (counting number of success + computing nonzero terms). In
the worst case, nnz(B(Q,K)) = n2, it would be as expensive as dense matrix multiplications in
complexity and even worst in practice due to large memory latency resulted from indirect memory
access. However, in practice, B(Q,K) is generally sparse if τ is set properly. Further, the first
procedure guarantees a linear complexity scaling of our method for extremely long sequences. As
an improvement, we can dynamically select one from these two method based on runtime, than the
time complexity is O(min(nmd2, nnz(B(Q,K))(m+ d))).

13

	Introduction
	Background: Self-Attention
	Importance Sampling via Locality Sensitive Hashing
	YOSO-Attention
	Related Works
	Experiments
	Conclusion
	Appendix

