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Abstract
Neural networks are fragile, it is widely reported that trivial
disturbances on the inputs can make a neural network model
flip its decision, and as a black box model, it cannot provide
any explanations. Many of the current neural network expla-
nation methodologies are heuristic, cannot guarantee their ac-
curacy. Thus, formal explanation methodologies for neural
network models are imperative, for machine learning models
to be trustworthy and widely applied in real-life applications.
Prime implicant (PI) explanations (also known as abductive
explanations) are able to provide logical sufficient explana-
tions for a neural network that are guaranteed to be correct.
However, formally extracting PI explanations from a neural
network model is NP-hard. In this paper, by converting the
neural network model as a game, we propose an algorithm to
extract formal explanations out of the neural network model
with linear complexity. We apply the algorithms on real-life
zero-day intrusion detection use case, and demonstrate the
formal explanations extracted. Valuable insights and conclu-
sions are discussed.

Introduction
With the pervasion of Artificial Intelligence, more and

more research work rely on machine learning, especially
neural network models for decision making. However, neu-
ral network are known to be fragile and untrustworthy. It has
been widely reported that trivial disturbances on the input
can make the neural network model flips its decision, deteri-
orating the performance significantly and abruptly, without
any explanations (LeCun, Bengio, and Hinton. 2015; Gun-
ning and Aha 2019; Shi et al. 2020; Stewart 2020; Mnih et al.
2015; Domingos 2015; Zhao and Hastie 2021; Mathur 2015;
Banks, Plant, and Stanton 2018; Deeks 2019; Srinivasan and
Chander 2020; Kuppa and Le-Khac 2021; Muna, Maliha,
and Hasan 2021). Neural network models are opaque black-
boxes, they cannot explain the decisions they made (Zhao
and Hastie 2021; Mathur 2015; Banks, Plant, and Stanton
2018; Deeks 2019; Srinivasan and Chander 2020; Kuppa
and Le-Khac 2021; Muna, Maliha, and Hasan 2021; Lip-
ton 2018; Arrieta et al. 2020). In domains where security
is of utmost importance, such as cybersecurity, trust is the
fundamental basis and guarantee of the validity and prosper-
ity of AI-based decision making. People’s trust on the deci-
sions made is based on the interpretability and transparency
of the machine learning models make them (Gunning and

Aha 2019). Consequences of the decision made by unin-
terpretable machine learning models are occasionally catas-
trophic, for example the fatal car crushes by Google’s au-
tonomous car (Mathur 2015) and Tesla’s autopilot system
(Banks, Plant, and Stanton 2018); an automatic bail risk as-
sessment algorithm is believed to be biased and keep many
people in jail longer than they should without explicit rea-
sons, and another machine learning based DNA trace analy-
sis software accuses people with crimes they did not commit
1; Millions of African-American could not get due medical
care by a biased machine learning assessment algorithm 2;
In Scotland, a football game is ruined because the AI camera
mistakes the judge’s bald head as the ball and keep focusing
on it even during the goal scene3.

That gives rise to the surge of research interest in Ex-
plainable Artificial Intelligence (XAI) or Interpretable Ma-
chine Learning (IML), numerous machine learning expla-
nation methodologies have been proposed (Lundberg et al.
2020; Ignatiev 2020; Darwiche 2023; Shi et al. 2020; Ig-
natiev, Narodytska, and Marques-Silva 2019b; Johansson,
König, and Niklasson 2003; Van den Broeck et al. 2021;
Ribeiro, Singh, and Guestrin 2016; Guo et al. 2018; Lund-
berg and Lee 2017; Ribeiro, Singh, and Guestrin 2018; Jo-
hansson, König, and Niklasson 2004; Grover et al. 2019;
Kim, Khanna, and Koyejo 2016), most of them are heuris-
tic, such as SHapley Additive exPlanations (SHAP), Lo-
cal Interpretable Model-Agnostic Explanations (LIME), and
ANCHOR, providing approximated explanations by simu-
lating the behavior of the model with a simpler and more
explainable model, such as decision trees, but as discussed
in previous work, although many believe tree-based machine
learning models are explainable, the explanations they pro-
vide are “shallow”, containing lots of redundancies of rules
and features. Explanations extracted with formal methods,
such as Prime Implicant (PI) explanations, on the contrary,
are logical sufficient and complete, and are guaranteed to
be correct (Ignatiev, Narodytska, and Marques-Silva 2019a;

1See https://www.nytimes.com/2017/06/13/opinion/how-
computers-are-harming-criminal-justice.html

2See https://www.wsj.com/articles/researchers
-find-racial-bias-in-hospital-algorithm-11571941096

3see https://www.ndtv.com/offbeat/ai-camera-ruins-
football-game-by-mistaking-referees-bald-head-
for-ball-2319171



Ignatiev 2020; Darwiche 2023; Shi et al. 2020; Chan and
Darwiche 2003). Heuristic explanation methodologies are
not extracted with formal methods, and thus cannot guar-
antee its accuracy, the explanations may change at differ-
ent run times, even for the same instance. However, ex-
tract formal explanations from neural network models are
NP-hard, because converting each individual neuron into
a boolean expression is an NP-hard problem; representing
the boolean expressions into more tractable representations,
such as OBDD, MDD or SDD is an NP-hard problem; ex-
tracting prime implicants from the boolean expression is
also at least an NP-hard problem (Quine 1952). Decades of
effort has been devoted to relax these problems into tractable
ones (Ignatiev, Narodytska, and Marques-Silva 2019a; Ig-
natiev 2020; Darwiche 2023; Shi et al. 2020; Chan and Dar-
wiche 2003), it has been recently reported that compiling a
neuron into OBDD can be accomplished in polynomial time
(Chan and Darwiche 2003; Shi et al. 2020) and prime im-
plicants can now be extracted in linear time (Cooper and
Marques-Silva 2021).

By representing a neuron as a threshold based linear clas-
sifier, and represent the decision making behavior of a neu-
ron as a Game, this paper proposed a methodology to ex-
tract formal prime implicant explanations as game changing
strategies in O(1) time complexity. In this paper, we formu-
late an Zero-Day intrusion detection neural network model
as a linear classifier, and then represent the linear classifier
into a multi-valued decision tree with multi-valued logic. By
treating the multi-valued linear classifier as a game, we can
decompose the prime implicates extracting problem into a
game strategy making problem, which can be solved in O(1)
time for each instance given. The prime implicants can be
represented as the thresholds of game changing points, thus
are also the explanations for the decision strategies. User
cases studies based on real life Zero-Day intrusion detection
demonstrate that for a specific instance, the prime implicant
explanations can be calculated in linear time complexity.

From Neural Network to Game
To extract minimum and formal explanations from the

model, we need to compile the model into a logical expres-
sion with formal method – knowledge compilation. The final
model is a MLP neural network with fully connected three
layers, include one input layer with 14 neurons, one hidden
layer y(1) with 100 neurons and an activation function σ, and
one output layer y(2) with one neuron and an activation func-
tion δ, as shown in Fig. 2a. The output calculation process of
matrix multiplication of weight matrixes and bias matrixes
are shown in Fig. 2a. For simplicity, the hidden layer acti-
vation function σ is the identity function: y = x, the output
layer activation function δ is logistic function. Although the
function expression is different from identity function, the
decision logic of logistic function is the same with y = x,
“y is positively correlated with x, when x > 0, y is classi-
fied as ‘Evil’, otherwise, y is classified as ‘Benign’ ”. Thus,
we calculate the expression of the MLP neural network as
Fig. 2b. The “if-clause” in yellow background is the output
of the entire neural network, also shown in Fig. 2c. This is a

threshold based linear classifier (Borowski and Choi 2023;
Shi et al. 2020), formally defined below:

Definition 1. Let f(x) be a function has input X, where
X is a set of n variables X1, X2, . . . , Xn (n is a positive
integer), and a theshold T . Each variable Xi has a real val-
ued weight ωi. The function is a Threshold-Based Linear
Classifier if it has the following format (Shi et al. 2020):

f(x) =

1, if

n∑
i=0

ωi ·Xi > T

0, otherwise

(1)

It can be considered as a mapping between input variables
X and the boolean value of output f(x). Depend on the input
X values, it can be further classified as discrete linear clas-
sifier and positive discrete linear classifier, formally defined
below.

Definition 2. Let f(x) be a threshold based linear clas-
sifier, if all of its inputs Xi are positive integer step values,
starting from 1, 2, 3, . . . and are finite, it is a Threshold-
Based Discrete Linear Classifier.

It is easy to see that threshold-based discrete linear classi-
fier is a special case of threshold-based discrete linear clas-
sifier. Depending on the weights, input variables X can be
further classified into two categories: positive inputs X+ and
negative inputs X−, formally defined below.

Definition 3. In a threshold-based positive discrete linear
classifier f(x), if a weight of an input ωi > 0, then it is a
Positive Weight ω+, otherwise, it is a Negative Weight ω−.

In a threshold-based positive discrete linear classifier
f(x), if a inputXi has a Positive Weight, then it is a Positive
Input x+, if it has a Negative Weight, then it is a Negative
Input x−, the set of all the positive input of f(x) is named
Positive Inputs X+, the set of all negative input of f(x) is
defined as Negative Inputs X−.

The Positive Inputs and Negative Inputs of the model in
our use case are presented in Fig. 2d and 2e, and are sup-
ported by Fig. 2f and 2g. In Fig. 2d, the Positive Inputs,
which are B, C, E, G, H, I, J, N in our model, are la-
belled in color red, Negative Inputs, A, D, F, K, L, M are
labelled in color blue, the threshold T in our model is the
bias 0.4485. To get a clearer view, we transformed the equa-
tion into Fig. 2e, and further to 2f, where the Positive Inputs
are denoted as X+, Negative Inputs are denoted as X−.

Fig. 2b describes the decision behavior of the entire neu-
ral network, it is the multi-valued logical expression of the
model. For any specific instance, if its input feature make
this equation holds, then it is classified into “Evil” by this
model, which means it is an intrusion, otherwise, the model
will label it as “Benign”, a normal traffic flow.

The task of extracting logical sufficient and complete ex-
planations is to find the minimum rules that leads to “always
true” or “always fail” results, formally defined below.

Definition 4. An equation is always pass iff for any value
within the given input range, the equation will always hold.
Similarly, the equation is always fail iff for any value within
the given input range, the equation never hold.

An always pass zone of an equation is a range of input
values, that for any value within that range, the equation al-
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Figure 1: The overview of the study design.

ways hold. On the contrary, an always fail zone is a range of
input values, that for any value within that range, the equa-
tion always fail.

Based on that definition, we have the following observa-
tion:

Observation 1. To find the logical complete explanations
of the neural network model, we need to find all the “always
pass zone” and “always fail zone” for the corresponding
threshold-based linear classifier equation.

Proposition 1. (Boundary Input Values) For an equa-
tion f(x) with the following form,

n∑
i=0

ωi · xi > X

where xi is the discrete input variable, n is the total num-
ber of variables, ωi > 0 is the weight of each input variable,
and X is a constant. Given a specific value for X, the bound-
ary input values of f(x)’s always pass zone is a set of com-
binations of inputs B: x1, x2, . . . , xn that

∑n
i=0 ωi ·xi > X,

and, let ωmin be the minimum of weights ω, and its corre-
sponding input xmin, then

∑
x 6=xmin

ωi ·xi+ωmin ·(xmin−
1) < X, and the combination of inputs B′

= B that each
combination B′

, there is one and only one xi > 1, that
x

′

i = xi − 1, is the boundary input values of f(x)’s al-
ways fail zone.

The proof of this proposition is given in Appendix . To ex-
plain the algorithm in a clearer way, we use card game as an
analogy, as shown in Fig. 2g, the left hand side shows all the
positive input as red bars, the positive weights as the length
of the bars, analog to the pips of the cards, and the radius
of the spheres at the end of each bar are the largest values it
could take, analog to the total number of cards of the same
pip. The corresponding negative input and the absolute value
of the negative weights are shown in blue on the right hand
side, as the partner’s suit in the card game. Thus, the formal
explanation extraction problem turns to a card game strat-
egy problem, “for each time the partner play, which cards
should I play to win by the smallest margin?4” or to put it in

4Here “by the smallest margin” does not mean the total value of

a more formal way, “what is the least necessary combina-
tion of cards, that is larger than the partner’s play?”

Use Case: Formal Explanations for Zero-Day
Intrusions

With the observations, we can now extract formal
explanations for Zero-Day intrusions. As shown in
Fig. 2, the positive inputs for our model are X+ =
B, C, E, G, H, I, J, N, corresponding positive weights
are 0.104, 0.049, 0.157, 0.143, 0.296, 0.165, 0.024, 0.296,
the largest values they are allowed to take are
31, 28, 23, 17, 17, 19, 13, 7, positive sensitivity is
S+ = 0.022, positive inputs’ range is [0.96, 16.53],
and the Negative Inputs are X− = A, D, F, K, L, M,
the corresponding absolute negative weights are
0.074, 0.418, 0.348, 0.065, 0.23, 0.287, the largest value
allowed are 15, 10, 24, 29, 13, 10, negative sensitivity is
S− = 0.065, together with the threshold T = 0.4485, the
negative inputs’ range is [1.8705, 21.8355].

From Observation 4 and 5, we can directly get the follow-
ing sample rules:

Rule 1: “If a instance has any one and only one of the
following situations: N 6 3, or I 6 5, or E 6 5, G 6 6, or
B 6 8, or C 6 18, the other positive inputs = 1, whatever
the negative inputs are, the model will classify it as benign.”

According to the discretization algorithm, the semantic
behind the Rule 1 is:

“If a traffic flow has Idle Min 6 60072774, or
Fwd Header Len 6 18, or Flow IAT Min 6 11.5,
or Fwd IAT Std 6 49980.80, or Flow Duration 6
13158.0, or Fwd Pkt Len Max 6 338.5, and if not given,
the other positive inputs have Idle Min 6 6104707, and
Fwd Header Len 6 4, or Flow IAT Min 6 −0.5, and

the cards has to be the smallest among all possible winning strate-
gies, it means “no unnecessary cards”, for example, if 3A+ 2B >
Target, 3A + B > Target, 3A < Target, 3C + 3D > Target,
3C + 2D > Target, and 3C + D < Target, then the extra B
in 3A + 2B and extra D in 3C + 3D are unnecessary, but both
3A + B and 3C + 2D are deemed as “winning strategies by the
smallest margin” in our paper.



Fwd IAT Std 6 4.60, and Flow Duration 6 156.5,
and Fwd Pkt Len Max 6 0.5, and Fwd IAT Max 6 0.5,
and Fwd Pkts s 6 0.05, no matter what the other fea-
tures’ values are, this flow is benign.”

Rule 2: “If a instance has M and A take whatever values
they are allowed, the other negative inputs take their largest
value, whatever the positive inputs are, the model will clas-
sify it as benign.”

The semantics of Rule 3 is:
“If a traffic flow has Fwd IAT Tot > 66039593.5, and

Fwd Pkt Len Min > 314.5, and Subflow Fwd Pkts
> 7983.0, and Fwd Seg Size Avg > 373.15, no matter
what the other features are, the model will classify it as be-
nign traffic.”

Rule 3: “If a instance has M and K take whatever values
they are allowed, the other negative inputs take their largest
value, whatever the positive inputs are, the model will clas-
sify it as benign.”

The semantics of Rule 3 is:
“If a traffic flow has Fwd IAT Tot > 66039593.5, and

Fwd Pkt Len Min > 314.5, and Subflow Fwd Pkts
> 7983.0, and Dst Port > 49778.5, no matter what the
other features are, the model will classify it as benign traf-
fic.”

Rule 4: “If a instance has K and A take whatever values
they are allowed, the other negative inputs take their largest
value, whatever the positive inputs are, the model will clas-
sify it as benign.”

The semantics of Rule 4 is:
“If a traffic flow has Fwd IAT Tot > 66039593.5, and

Fwd Pkt Len Min > 314.5, and Subflow Fwd Pkts
> 7983.0, and Idle Mean > 63254398, no matter what
the other features are, the model will classify it as benign
traffic.”

Rule 5: “If a instance has all the positive inputs = 1, and
M > 2 or D > 2 or F > 2, the other negative inputs take
whatever value they are allowed, the model will classify it as
benign. ”

The semantics of Rule 5 is:
“If a traffic flow has Idle Min 6 6104707, and

Fwd Header Len 6 4, or Flow IAT Min 6 −0.5, and
Fwd IAT Std 6 4.60, and Flow Duration 6 156.5,
and Fwd Pkt Len Max 6 0.5, and Fwd IAT Max 6 0.5,
and Fwd Pkt Len Max 6 0.5, and Fwd Pkts s 6 0.05,
and Idle Mean > 6128868, and Fwd Pkt Len Min >
3.5, and Fwd IAT Tot > 78811.0, no matter what the
other features are, the model will classify it as benign traf-
fic.”

Rule 6: “If a instance has all the positive inputs = 1, and
N > 4 and satisfy one of the following situations D > N−3,
or M > N− 3, or F > N− 3, the other negative inputs take
whatever value allowed, the model will classify it as benign.
”

The semantics of Rule 6 is:
“If a traffic flow has the positive inputs Idle Min

> 61783648, and Fwd Header Len 6 4, or
Flow IAT Min 6 −0.5, and Fwd IAT Std
6 4.60, and Flow Duration 6 156.5, and
Fwd Pkt Len Max 6 0.5, and Fwd IAT Max 6 0.5,

and Fwd Pkts s 6 0.05, and when Idle Min
> 61783648\65038801\63254398, one of the following
situations satisfy, Fwd Pkt Len Min > 0.5\3.5\38.5 re-
spectively, or Idle Mean> 5898747\6128868\25400460
respectively, or Idle Mean > 0.5\78811.0\1475745.0
respectively, then no matter what the other features’ values
are, this flow is benign.”

Discussions and Conclusions
From the explanations, we get a conclusion that, “for

neural networks, only number matters, the semantic does
not matter”. For example in Rule 1, the equations N 6 3
(Idle Min < 60072774), I 6 5 (Fwd Header Len
< 18), E 6 5 (Flow IAT Min < 11.5), G 6 6
(Fwd IAT Std< 49980.80), B 6 8 (Flow Duration<
13158.0), and C 6 18 (Fwd Pkt Len Max < 4106868.0)
are EQUAL to the model, although to human experts, these
features and values have totally different semantics and
should never be deemed as equal, or even related. Take
Rule 8 for another example, the D,M,F have the same
effect when the model is making decisions and can be
replaceable, however, Fwd Pkt Len Min, Idle Mean,
and Fwd IAT Tot have no direct relations, and it is absurd
to treat them as the same when making decisions as a human.
From Fig. 2, it is obvious that the neural network model is
in its essential an equation, it does not understand the se-
mantics or can reason with logic, all it cares are the values
of the numbers. Thus, it is essential that the formal expla-
nations for the rules neural network has learned, be interro-
gated by human experts before any neural network models
can be trusted or used in any security critical real-life do-
mains.
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Figure 2: The knowledge compilation process.
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Appendix A: Proof of Proposition 1.
Proof: We already know B is in the always pass zone of

f(x), if B′
is not the boundary input value of f(x)’s always

fail zone, it means that there is a xp ∈ B that satisfies:
n∑

i=0

ωi ·Xi > X (2)

there is also a x
′

p = xp − 1 ∈ B′
that satisfies:∑

i 6=p

ωi · xi + ωp · (xp − 1) > X (3)

we already know that x
′

p’s weight

ωp > ωmin > 0 (4)

and ∑
xi 6=xmin

ωi · xi + ωmin · (xmin − 1) < X (5)

Eq. 3 can transform to∑
i6=p

ωi · xi + ωp · xp − ωp > X (6)

which is equivalent with∑
i

ωi · xi − ωp > X (7)

and with ∑
i

ωi · xi − X > ωp (8)

Similarly, Eq. 5 can transform to:∑
xi 6=xmin

ωi · xi + ωmin · xmin − ωmin < X (9)

which can be further transform to:∑
i

ωi · xi − ωmin < X (10)

and to ∑
i

ωi · xi − X < ωmin (11)

put Eq. 8 and Eq. 11 together, we get:

ωp < ωmin (12)

which is contrast to Eq. 4, thus, the hypothesis does not hold.
Done.


