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ABSTRACT

This paper revisits multi-play multi-armed bandit with shareable arm capacities
problem (MP-MAB-SAC), for the purpose of revealing fundamental insights on
the statistical limits and data efficient learning. The MP-MAB-SAC is tailored
for resource allocation problems arsing from LLM inference serving, edge in-
telligence, etc. It consists of K arms and each arm k is associated with an un-
known but deterministic capacity my and per-unit capacity reward with mean p
and o sub-Gaussian noise. The aggregate reward mean of an arm scales linearly
with the number of plays assigned to it until the number of plays hit the capac-
ity limit my, and then the aggregate reward mean is fixed to myug. At each
round only the aggregate reward is revealed to the learner. Our contributions are
three folds. 1) Sample complexity: we prove a minmax lower bound for the sam-

ple complexity of learning the arm capacity Q(Z—; log 5~ 1), and propose an algo-
k

rithm to exactly match this lower bound. This result closes the sample complexity
gap of Wang et al,|(2022a), whose lower and upper bounds are Q(logd~!) and
2 2

O(mjg log 6—1) respectively. 2) Regret lower bounds: we prove an instance-

independent regret lower bound Q2(c+/T'K') and instance-dependent regret lower
bound Q(Zle % logT'). This result provides the first instance-independent
regret lower bound and strengths the instance-dependent regret lower bound of
Wang et al.| (2022a) Q(Zle logT). 3) Data efficient exploration: we pro-
pose an algorithm named PC-CapUL, in which we use prioritized coordination
of arm capacities upper/lower confidence bound (UCB/LCB) to efficiently bal-
ance the exploration vs. exploitation trade-off. We prove both instance-dependent
and instance-independent upper bounds for PC-CapUL, which match the lower
bounds up to some acceptable model-dependent factors. This result provides the
first instance-independent upper bound, and has the same dependency on m;, and
1 as [Wang et al.| (2022a) with respect to instance-dependent upper bound. But
there is less information about arm capacity in our aggregate reward setting. Nu-
merical experiments validate the data efficiency of PC-CapUL.

1 INTRODUCTION

Multi-play multi-armed bandits (MP-MAB) is a natural and popular variant of the vanilla multi-
armed bandits framework /Anantharam et al.| (1987a). MP-MAB has various applications such as
online advertising [Lagrée et al.[(2016); Komiyama et al.| (2017); [Yuan et al.|(2023), power system
Lesage-Landry & Taylor| (2017), mobile edge computing (Chen & Xie| (2022); [Wang et al.| (2022al);
Xu et al.| (2023)), etc. The canonical MP-MAB model consists of a number K € N, arms. Each
round the learner assigns K plays to arms, where each arm can be pulled by at most one play.
Once an arm is pulled, a reward is generated, which is modeled as a sample from a random variable
with unknown mean and known tail property such as standard sub-Gaussian tail. The research line
of MP-MAB is still active, evidenced by various recent generalizations of MP-MAB |Chen & Xie
(2022); Moulos| (2020); I Xu et al.| (2023); [Wang et al.|(2022a)); |Yuan et al.| (2023).

One notable generalization of MP-MAB is MP-MAB-SAC, which enables each arm with a finite
number of shareable capacities Xu et al.| (2023); [Wang et al| (2022a). The key idea is modeling
each arm with a finite capacity and allowing multiple plays to be assigned to the same arm. This



Under review as a conference paper at ICLR 2025

generalization provides a finer capturing of the resource sharing nature of resource allocation prob-
lems arising from LLM inference serving, edge intelligence, etc. Formally, Xu et al.| (2023); Wang
et al.| (2022a))’s model considers a finite number of K € N, arms and a finite number of N € N
plays. Each arm k is characterized by a tuple (my, ug, o), where my, € N; models the capacity
limit and p € R4 models the unit-capacity reward mean. Both my and py are unknown to the
learner and the arm capacity my, is deterministic. The reward function of assigning a;, € N, to arm
k is modeled as:

Wang et al.|(2022a)’s Reward Model : Ry (a) = min{ag, my }(pr + €x), (1)

where €, is a zero mean o sub-Gaussian random noise. Wang et al.| (2022a)’s main results can be
summarized as:

2,2
Sample complexity: Q(log 6 ) (lower bound), O <U’Jgk log & 1) (lower bound),  (2)
H,
Regret lower bound: ) (Z log T) (rough bound, instance-dependent), 3)
k
o’m?
Regret upper bound: O Z 5 k Jog T | (rough bound, instance-dependent). 4
H
k

In fact, the sample complexity lower bound and regret lower bound stated in |Wang et al.| (2022al)
are Q ((o?m3 /p3)log 1) and Q((X°, o?m3 /13 ) log T) respectively. However these two bounds
hold under the same condition p2/(0?*m3) > 2 (Theorem 4.1 and Theorem 4.3 of Wang et al.
(2022a)), which implies that (0?m3)/u; < 0.5, yielding the sample complexity lower bound
Q(log 5—1) and regret lower bound 2 (Y, log T').

Note that implies a large sample complexity gap, while |3 and {4 implies a large regret gap.
Motivated by narrowing these gaps, we revisit the MP-MAB-SAC problem, aiming to reveal fun-
damental insights on statistical limits and data efficient learning. Note that the reward func-
tion (1), encodes the capacity in both the mean E[Rg(ar)] = min{ag, my}ug. and variance
Var[Ry(ax)] = (min{ag, my})?Var[ex]. To understand essentials, first we reduce the capacity
information in the reward to the minimum such that only the reward mean encodes the capacity
information. Formally, we propose a new reward function to achieve this goal:

Ry (ax) = min{ag, mg Hup + €. 5)

Note that [5] finds its root in the reward model of conventional linear bandits with one dimensional
feature|Lattimore & Szepesvari|(2020). One can check that under (E]), only the reward mean encodes
the arm capacity. Intuitively, the learning of the arm capacity would be harder than (I)), and the
insights derived from (5)) should be more fundamental. Wang et al.| (2022a)) considered the capacity-
abundant setting with N < M, where M := Zszl my, which is not suitable enough for real-
world severe competition under scarce resources. We thus focus on the capacity scarce setting with
N > M, for the purpose of understanding the exploration vs. exploitation trade-off under severe
capacity constraint. Assigning a play to an arm generates a constant movement cost ¢ € R, which
is assumed to satisfy ¢ < miny, p and adds a cost constraint for exploration.

Applications to LLM inference serving. Understanding the MP-MAB-SAC has the potential to
provide drive force for real-world applications. It is shown in Wang et al.| (2022a) that MP-MAB-
SAC can be applied to edge computing, cognitive ratio applications etc. Here we elaborate on how
to map our model to LLM inference serving applications |Li et al.|(2024). Each arm model can be
mapped as a deployment instance of an LLM. Arm capacity models the number of queries that an
LLM can process at a given time slot. Due to multiplexing behavior of computing systems, the
capacity is unknown and the processing is uncertain Zhu et al.| (2023). An LLM deployed on more
powerful computing facilities would be modeled with larger capacity. The reward mean p; can be
mapped as the capability of an LLM such as large, medium and small LLM mixed inference serving.

1.1 MAIN RESULTS AND CONTRIBUTIONS

Contributions of this paper can be summarized into the following three folds.
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Sample complexity. We prove a minmax lower bound for the sample complexity of learning the arm

capacity Q(;—j log §~1), and propose an active inference algorithm named Act InfCap to exactly
k

match this lower bound. This result closes the sample complexity gap of[Wang et al.| (2022a), whose

mf 0’2
i
is that the difficulty of learning the arm capacity is determined by the per-capacity reward mean.
ActInfCap contributes new uniform confidence intervals for the arm capacity estimation and new
idea of actively probing an arm with its capacity’s UCB or LCB for data efficient learning of arm
capacity. And the UCB or LCB are adopted alternatively in the data gathering process. These
findings shed new lights on arm capacity estimation and serving building blocks for designing data

efficient exploration algorithms.

lower and upper bounds are (log 6—1) and O( log 5~ 1) respectively. The new finding here

Regret lower bounds. We prove an instance-independent regret lower bound Q(cvTK) and

instance-dependent regret lower bound Q(Zszl Cf—j log T'). This result provides the first instance-
=1 12

independent regret lower bound and strengths the instance-dependent regret lower bound of Wang

et al.| (2022a)) Q(Zszl logT'). Our regret lower bounds have no dependency on the arm capacity
myg. At the first glance, this looks counterintuitive, however it is aligned with our sample complexity
lower bound which states that the sample complexity is independent of the arm capacity. Also the
dependency on the reward mean is aligned with the sample complexity. The finding here is that
the difficulty of learning the optimal action is basically limited by the number of arms K and the
per-unit capacity reward mean u. Increasing the number of arms or decreasing the reward mean
would make the learning more difficult.

Data efficient exploration. We propose an algorithm named PC—-CapUL, in which we use pri-
oritized coordination of arm capacities upper/lower confidence bound (UCB/LCB) to efficiently
balance the exploration vs. exploitation trade-off. We prove both instance-dependent and instance-
independent upper bounds for PC-CapUL, which match the lower bounds up to some acceptable
model-dependent factors. These results provide the first instance-independent upper bound, and
have the same dependency on my, and uy as|Wang et al.|(2022a)) in respect of the instance-dependent
upper bound. But there is less information about arm capacity in our aggregate reward setting. Nu-
merical experiments validate the data efficiency of PC-CapUL. The main idea of PC-CapUL has
four folds: (1) Preventing excessive UEs.At each time slot, ensure that the number of individual
exploration (IE), is no less than the number of united exploration (UE), where UE/IE means that the
the number of plays assigned to an arm equals its capacities’ UCB/LCB. (2) Balancing UE and IE.
At each time slot, let as many arms as possible to do UEs, inspired by the insight from Lemma 3]
revealing that both UE and IE are required to reach their corresponding limits. (3) Favorable arms
win UE first. At each time slot, in cases when multiple plays compete for UEs, we resolve this
competition via larger-empirical-reward-mean-first rule. The insight is that it is easier to learn the
capacity my, if the unit utility uy is larger. (4) Stop learning when converges. At each time slot,
once an arm’s capacity upper bound and lower bound meet with each other, there should be no more
exploration on that arm.

2 RELATED WORK

To the best of our knowledge, MP-MAB was first studied by Anantharam et al. |Anantharam et al.
(1987a), where an asymptotic regret lower bound was established and an algorithm achieving the
lower bound asymptotically was proposed. The regret lower bound in the finite time is achieved
by et al. |[Komiyama et al.|(2015) via Thompson sampling. Markovian rewards variant of MP-
MAB wa studied in |/Anantharam et al.| (1987b). Some recent generalization of MP-MAB include:
cascading MP-MAB where the order of plays is captured into the reward function |[Lagrée et al.
(2016); Komiyama et al.|(2017), MP-MAB with switching cost |Agrawal et al.| (1990); Jun| (2004),
MP-MAB with budget constraint |Luedtke et al.| (2019); |Xia et al.| (2016); [Zhou & Tomlin| (2018])
and MP-MAB with a stochastic number of plays in each round Lesage-Landry & Taylor (2017,
sleeping MP-MAB et al. [Yuan et al.| (2023), MP-MAB with shareable arm capacities |(Chen & Xie
(2022); |Wang et al.| (2022a); | Xu et al.| (2023)).

Our work falls into the research line of MP-MAB with shareable arm capacities|Chen & Xie|(2022);
Wang et al.| (2022ajb); [Xu et al.|(2023)); Mo & Xie|(2023)). The shareable arm capacities models can
be categorized into two types: (1) stochastic arm capacity but with feedback on the realization of arm
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capacity |Chen & Xie| (2022); Mo & Xie| (2023); (2) deterministic capacity without any realization
of the arm capacity Wang et al.| (2022a:b)); Xu et al.[(2023). Though the difference looks small, the
two settings lead to fundamentally different research problems and techniques for address it. For the
stochastic arm capacity line, Chen et al. [Chen & Xie|(2022) models the arm capacity as a random
variable, but in each round the sample of the arm capacity of all arms are revealed to the decision,
i.e., expert feedback on arm capacity. One can directly estimate the distribution of arm capacity
from the capacity samples. Mo & Xie| (2023)) generalizes this model to the distributed setting, and
uses the realization of the arm capacity as a signal for coordination. However, the deterministic
arm capacity is technically different. Though the capacity is deterministic, it is unknown and on
the decision maker can only access samples from the reward function, while no samples on the
arm capacity can be observed. [Wang et al.| (2022afb); Xu et al.| (2023). | Xu et al.| (2023) considers
the setting in which multiple strategic agents compete for the resource. Nash equilibrium in the
offline setting is established. Our work revisits this research line. Our work is motivated by the
observation that the condition u? /o2m? > 2 that guarantees the sample complexity lower bound
and regret lower bound of [Wang et al. (2022a) implies that theses two bounds reduces to Q(log 5 1)
and (>, log T'), namely trivial lower bound. This implies a huge gap between the upper and lower
bound. We thus revisit this problem, aiming for a deeper understanding of this problem. We close
the sample complexity gap and narrow the regret gap (please refer to introduction for details).

3 MODEL & PROBLEM FORMULATION

Notation: By default, for any integer N € N: [N]:={1,...,N}.

Consider K € N arms indexed by [K] and N € N plays to be assigned to these arms. Each arm
k € [K] is characterized by a tuple (my, pi, o), where my, € [N] and p, € R and o € R. Here, my,
models the capacity of arm k, i models the per-unit reward mean of arm k, and o € R, models
tail property of the reward, i.e., o sub-Gaussian. Both my, and p, are unknown to the learner, and
the capacity my is deterministic. We consider the scarce arm capacity setting, such that N > M,
where M := Zle my, denotes the total amount of capacities across all arms. For every play there
is a constant movement cost ¢ to an arm, which is known to the learner. The movement cost can
model the charge of each query in LLM inference serving applications, the transmission cost in edge
intelligence application, etc. From a learning perspective, it adds a cost constraint to exploration.
Let aj, € [IN] denote the number of plays assigned to arm &k € [K]. The reward function associated
with ay, is stated in (3).

Consider T € N, time slots. Let ar: € [N] U {0} denote the number of plays assigned
to the arm k at time slot ¢, and the action made in the slot ¢ is characterized by the vector
a; = (a1,4,a2¢, ..., ax ). The action space A is:

A= {(al,ag,...,ak) S INK‘ Zke[K] ap < N} .

Denote the utility of the action a; at time slot ¢ on arm & as U}, ¢, which is defiend as the reward
minus movement cost:

Ukt (art) == Ri(ak¢) — cap ¢

We then define the expected utility for action a; as f (a):
fa)=E {Zke[K] Uy (ak)] = Zke[K] (min {ag, mg} - pp — - ag)

Let a* denote the optimal action a that maximizes the expected utility f (a),i,e.:

a* :=argmax f (a)
a

And it is obvious that the optimal action is a* = (my, ma, ..., my). The difficulty then lies on how
to distinguish the capacities of all the arms and the order is important in this problem. The objective
is to minimize the regret over 7" time slots, which is defined as Reg; (T'):

Regy = |77 (@) = 3, /(a0

4
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4 SAMPLE COMPLEXITY OF ESTIMATING ARM CAPACITY

4.1 SAMPLE COMPLEXITY LOWER BOUND

We focus on understanding the hardness of inferring the arm capacity, since this determines the
optimal allocation of plays. We consider the setting that given a fixed arm k, an inference algorithm
Tinf generate samples by assigning ay,, € [IN] plays to it.

Definition 1 (Wang et al.| (2022a)). An action ay, ¢ is United Exploration (UE) is ay+ > my. An
action ay, ; is individual exploration (IE) if aj, < my.
Note that 1 < my < N is taken as a prior, thus both UE and IE are possible for 7,s. We consider a
space of all the inference algorithm 7y, that can adaptively vary the numbers of UE and IE.
Theorem 1. For any inference algorithm myy, there exists an instance of arm k such that:
202 1
P|n < —1 — >1-96
o= ()] 1

where My, ; denotes the estimator of arm capacity produced by mp.

Remark. Theorem [1| establishes a minmax lower bound Q(loii‘ifl) for the sample complexity
k

of estimating arm capacity. It significantly strengths the lower bound (log6—1) of Wang et al.
(2022a). The new finding here is that the difficulty of learning the arm capacity is determined by the
per-capacity reward mean and it is independent of the arm capacity my. This theorem is proved by
applying the Le Cam’s method with a careful tracking of the number of UEs.

4.2 SAMPLE EFFICIENT ALGORITHM

Uniform confidence interval for arm capacity. First we formally define 7, ; and ¢, ; as the number
of IE and UE on arm k up to time slot ¢:

t t
Tkt = 2521 Hak,s < myh,  tpp = 25:1 Hak,s > my}

And since in training process the real capacity my, is unknown, we should use the confidence interval
rather than the capacity itself to calculate an empirical version of 7, ; and ¢ ;. Then we define the
empirical version of 7y ¢ and ¢y, ; as Ty ; and iy ¢

t t
~ 1 ~
Tt = 2521 Wag,s <mps1hs fee = 2521 Haks 2 mics}
Another term we need is the scaling factor of IE:
1 t N
= — a ]1 a m =
Pkt Do anslans <mu}, dig

Tkt

1 ot l
Zs:l ak,sHan,s <my, 1}

The estimator of 1, up to time slot ¢ is defined as fi, ¢, and the estimator of s, up to time slot ¢
is defined as Oy, 4:

Pkt = (Zz_l (Uk,s (ar,s) + ¢ ags) 1 {ag,s < mﬁc,sq}) /(%k,t'l[}k,t% (6)

Ot = (Zt ) (Uk,s (ar,s) + ¢ ags) 1 {an,s > m}i’sfl}) /ik,t- 7

s=

Tkt

To simplify notation, we denote the function :

¢ (x,0) = \/<1 + 1) 2log (2v/z +1/9)

x x

Lemma 1. Then the confidence intervals of the estimator [ii,; and Uy, ; can be calculated as:

Qe € [Mk — ¢ (T, 0) [kt i + 06 (Th.1, ) /7[11“] ®)

’Ok,t S [Uk - U¢ (%k,ta (5) , Uk + U¢ (%k,h 6)} (9)
For fixed k, these confidence intervals are correct for all t € [T with probability at least 1 — §
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Noticing that vy, = my /i, we rearrange the terms in the confidence interval (8) (9) and get:
Mkt € [ﬂk,t — 0 (Th,t,9) /7/;k,t, fik,t + 0 (Ti,t, 6) /%/Afkt}
Mmipti € Okt — 0@ (T, 0), Okt + 00 (Tht, 0)]

Use the endpoints of the interval above and then we can get the lemma about the arm capacity
confidence interval.
Lemma 2. For any adaptive algorithm thus uses first K time slots for initialization. If

0¢ (Th,t,9) /l/AJk,t < [ig,1, the event Ay:

Ay, ::{Vte [T],t>K,my €

Okt — 0P (lk e, 0) Okt + 0P (ik e, 0)
[k + 0D (Trts0) [Urt ikt — b (T, 0) [thrs

N {v&k,t eNL, |, | <o (m,a)} N {vem €N, |2 | < 06 (ins, 5)}

holds with a probability of at least 1 — §, where:
t

t
G, =D il {ani Smi o} [P &5, =) el {ang = mi o} ik

These lemma implies that our confidence intervals are correct during the learning process for large
probability. Let A = ﬂle Ay A simple union bound inequality shows that A holds with a probabil-
ity of at least 1 — K'§. When the event A happens, all estimators’ confidence bounds are correct and
the capacity confidence bounds are correct for all k£ € [K] and ¢ € [T'], and thus one arm’s capacity
should be no more than the sum of lower bounds of other arms’ capacities. We now can define the
capacity confidence lower bound mfm and the upper bound mj; , as the end points of the capacity
confidence interval of my, and refined the bounds with the assumption when A happens as:

mh = max | | — Ot =00 (ned) | L (10)
At + 0P (Trts0) [V
N . K
— i Okt + U? (ik,t5 5)A N - Z mi,t (1
Mkt — U¢ (Tk,t7 5) /¢k,t i=1,i#k

Now we compare the arm capacity estimator confidence interval with [Wang et al.| (2022a)):
Wang et al] (2022a): mj, , = max {[0k+/ (fiks + 0¢ (Frt, ) + 0¢ (int,6))], 1}
Wang et al.| (2022a): mj; , = min {[0x ¢/ (frt — 0P (Tht,0) — 0 (ik1,0))], N — K + 1}

Compared withe UCB and LCB in [Wang et al.| (2022a)), one can observe that the key difference
between theirs and ours lies in handling the estimation error of UE, i.e., the term o¢ (i, ¢, §). [Wang
et al.| (2022a)) put it in the denominator, however, we put it above denominator. The reason is that the
denominator of the UCB is already subtracted by o¢ (7% ¢, d). Subtracting one more term o¢ (iy ¢, 9)
in the denominator would make the more unstable.

Algorithm [I] states Act InfCap, which estimates the arm capacity by adaptively probing the arm
with different number of plays for generating samples. More specifically, Act InfCap uses the
UCB and LCB to generate samples from an arm. The core of Act InfCap is the above new con-
fidence interval of arm capacity which it tighter than Wang et al.| (2022a). In Act InfCap, the UE
and IE are conducted in an alternating way and the UCB and LCB of arm capacity approach each
other with more utilities returned.

Theorem 2. The output ofAlgorithm Le, my , satisfies:

N 202 1
where £ is a universal constant factor independent of model parameters.

Remark. Theorem [2] states that Algorithm [T has a sample complexity exactly matches the lower
bound. This closes the sample complexity the gap.
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Algorithm 1 ActInfCap(k,T)

1: Initialize: t < 0, m} , + 1, m}, < N.

2: Do two rounds of initialization, with one UE and one IE respectively.
3: Observe Uy 1 and Uy p. mjt 5 < N,mj , = 1,t < 2.

4: whilet < Tandm! , , <m¥, | do

50 t+t+1

6: if ¢ is an odd number then

7: Assign ay, < mj, ,_, plays to arm k

8: | Observe Uy ;.  Update méc’t, my, , via Equation and ||
9: else

10: Assign ag,; <~ my,  playstoarmk
11: Observe Uy ;.  Update mﬁmt, my, , via Equation and
12:  endif

13: end while
14: Return my ,

5 REGRET LOWER BOUNDS AND SAMPLE EFFICIENT ALGORITHMS

5.1 REGRET LOWER BOUNDS

Theorem 3. Given K and M, for any learning algorithm or strategy T, its instance-independent
minmax regret lower bound is:

E [Reg (T, )] VTK.

> _ 7
~ 64ev2

Remark. Theorem [3] fills in the blank that previous works Wang et al (2022a) failed to prove
instance-independent regret lower bound. It indicates that the minmax regret lower bound has a
dependency v/K in the number of arms K and a dependency of v/7 in learning horizon 7. There
is no dependency on the arm capacity myg, which aligns with the sample complexity lower bound
stated in Theorem (2) and Algorithm[I] Though Theorem 3]is proved by the conventional paradigm
Lattimore & Szepesvari (2020), it is technically non-trivial. The key idea is to carefully balance the
trade-off between the per-time-slot regret and the difficulty to learn the capacities. If the utility is
small, the per-time-slot regret is small. But it is difficult to distinguish the capacities with returned
utilities, since the expected returned utilities’ gaps are small with the same capacity gaps.

Theorem 4. K € N, {my}reix) € N¥, and {pr}reir) € R+™, for any consistent learning
strategy m, it holds

K
E T 2
lim inf 229 (o] 2y
T—oo log (T') —

Remark. Theorem (4] states that the instance-dependent regret lower bound has a dependency of
;L,ZQ in the per-unit capacity reward mean, and logrithmic in the learning horizon. It implies that
the smaller uy, is, the harder it is to learn the optimal action. Again, it has no dependency on the
arm capacity my. This does not contradict with Wang et al.| (2022a)), whose instance-dependency
lower bound’s dependency on the arm capacity my, is O((c*m3 logT)/u3). In fact, the above
dependency holds under the assumption 7 /(o?m3) > 2. This condition implies that (02m3) /3 <
1/2, yielding (6*m3 log T') /ui < 1/2logT'. In other words, their instance-dependent regret lower
bound has no dependency on p and my, and therefore is quite loose. The key idea in the proof is
to find a lower bound of the expected number of bad actions during the whole 7" time slots. .

5.2 EFFICIENT EXPLORATION ALGORITHM

Efficient exploration algorithm. Algorithm |2|outlines PC-CapUL, which is the abbreviation of
Prioritized Coordination of Capacities’ UCB and LCB. Its key idea is summarized into four folds.
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(1) Preventing excessive UEs(Line 11). At each time slot, we ensure that the historical number
of UE is not larger than the number of IE, i.e., 7 > i . The UE is play-consuming compared
with IE, especially at the early time slots when the capacity confidence interval is not learnt well.
During the training process, both iy, ; and 7y, ; are required to reach their corresponding limits for
the algorithm to learn the capacity my, and these limits is of similar scale as we will show in the
proof of the Lemma[5] But if there are not enough plays for all the arms to played with UE, then
some of them are force to be played with IE, despite the fact that there are already enough IEs on
these arms. This kind of compulsory IEs is an important source of regret in our problem setting.
So it is not wise for us to play an arm with excessive UEs, and the number of IEs is a natural good
limit of the number of UEs according to Lemma 5] (2) Balancing UE and IE(Line 13). At each
time slot ¢, we tend to let as many arms as possible to be played with UEs. The same insight from
Lemma [S|reveals that both 7y, ; and i) ; are required to reach their corresponding limits. And it is
always easier to do IEs because 1Es require fewer plays than UEs. So we should try to focus on
meeting the requirement of UEs and make sure that there is at least one UE on certain arms. And
this guarantees the ultimate convergence of our algorithm. (3) Favorable arms win UE first(Line
14-20). At each time slot ¢, we should let the arms with larger empirical unit utility to have higher
priority when deciding the arms to be played with UE if there is not adequate plays for UE on all
arms. This design derives from the insight we discussed in Theorem 4] and this insight is further
verified in Lemma 5] The insight is that it is harder to learn the capacity mj, if the unit utility s,
is smaller. So we tend to focus on the arms with larger empirical unit utility and play UEs more
often on them, in the hope that 7 ; and iy ; reach their limits within fewer time slots then there
would be no more regret generated on those arms. Another reason is that the larger unit utility of
one arm is, the more regret will be generated by IEs on that arm. By rapidly completing learning
the capacity of arms with large empirical unit utility, there is less IE on these arms and consequently
less number of potential large amount of regret derived from excessive IEs on these arms. (4) Stop
learning when converges (Line 12, and Line 24-27). At each time slot ¢, once an arm’s capacity
upper bound and lower bound meet with each other, there should be no more exploration on that
arms. The probability that the estimated capacity is correct can be guaranteed by Lemma[2] And
furthermore, we can do explorations more freely on other arms, since there will be no more UE on
the arms that we learn well. And this contributes to sooner convergence of all arms.

Regret upper bounds. The following theorems state the regret upper bounds of Algorithm
Theorem 5. The instance-dependent regret upper bound for Algorithm|2|is:

230402m2 1152m2
E[REG(T Z <<Z %m log (T)> (ke — ) my, + ?m’“o? log (T) cN)

i=1 g

K
+ Z (2K max (pgmy, Nc))
k=1

Remark. This upper bound matches the finding we get in the Theorem 4] that an arm’s unit utility is
an important characteristic modeling the difficulty to learn the arm’s capacity. That is, the larger the
unit utility is, the more explorations should be done on that arm. The regret upper bound of [Wang
et al.[(2022a)) shares the similar terms in our upper bound when bounding the capacities of optimal
arms in their setting. This is because we both use UEs and IEs and confidence interval to estimate the
arms’ capacities. However, in our setting, it is impossible to distinguish the capacities via variance
because the perturbations of the returned utility of all arms follow the same distribution. While in
their setting, the variance of the returned UE utilities on the arm k£ and arm ¢ is different even if
mpp, = mgip; as long as my, # m;. With more complicated setting and less usable information
in returned utilities, we design the algorithm [2] which shares similar regret upper bounds as those in
Wang et al.| (20224), and this implies that their upper bound is loose.

Theorem 6. Upper bound The instance-independent regret upper bound for Algorithm[2]is:

E[REG(T)] < 20+/(9216M3 + 128K M + 1152M2N) M (T log (T))

K K
+ Z 2K max (ugpmy, Nc) + Z Kppmy,
k=1 k=1
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Algorithm 2 PC-CapUL

1: Notation: m} := (mj, : k € [K]),m} := (m}, : k € [K]),Uy; := (Ups : k € [K]).
7A't = (7A']€,t 1k e [K])7l:t = (Zk:,t 1k € [K]),[.Al.t = (,ljtk;yt 1k € [K]),’{)t = (ﬁk,t k€ [K])
Cndt := (Cndty, : k € [K]) is a binary vector indicating continue exploration (1) or not (0).
w := (wg, k € [K]) is a binary vector with entry 1 indicating do IE and 0 indicating do UE.
©® denotes the Hadamard product, e;, denotes a unit vector with k-th entry being 1.

2: Initialization: m), + 1,m¥% « (N — K + 1)1,7 + 0,i + 0,Cndt + 1.

3: forl <t < K do

4:  The t-th arm do UE and all others do IE: w + 1 — e;

5. Set the arm assignment as: a; < (1 —w) ©mY ;| +woOm!_,.

6:  Observe U,.

7: Update: mi<—m}_,, mi«mi | F4F_1+w,ip—i_1 +1—w, fu with (6). 0, with (7)
8: end for

9: while K +1 <t <T do
10:  if Cndt # 0 then

11: Record the arms whose IE rounds no more than UE rounds: wg+1{7; ;—1 < ix¢—1}, V.

12: Record the converged arms: wy, < I{Cndt; = 0}, Vk.

13: Calculate the capacity needs: Myccqs < (1 —w) - m¥ | +w-m}_,.

14: £ < sort arms based on mean estimation fi; ;1 in descending order with Cndt;, # 0

15: fork=1,...,Kdo

16: if M,,ccqs > N then

17: The ranked k-th arm (with index ¢;) do IE, and update it to the vector w < w + ey,

18: Update capacity needs: Myceqs < (1 —w) -m¥ | +w-ml_,.

19: end if

20: end for

21: Set the arm assignment as: a; < (1 —w) O©m¥ | + w O ml_,.

22: Observe U;.

23: Ty 4= Tpo1 Fw, by 4 B—1 + 1 —w, fi, with (6), D, with (7), m! with (10), m¥ with
Cndty, + ]I{mﬁw <mi,},Vk

24:  else

25: Observe U;.

26: Set the arm assignment as: a; + m._;,m! < ml | m¥ <« m¥ .

27:  end if

28: end while

Remark. This upper bound is derived from refining the bound of number of IEs and UEs one
arm demanded before it converges. The design of the arms’ priority for UEs, which is ranked by
empirical unit utility, improves our estimation on the number of IEs a lot. As it is displayed in the
figures of the experiments, K and my, are positive related to the expectation of the regret. There is
not significant changes as /N varies. And this is not a conflict because we set the movement cost
c a small value as 0.1. [Wang et al.| (2022a) only proved an instance-depended regret upper bound,
because they fail to find the technique we use in our proof.

6 EXPERIMENTS

6.1 EXPERIMENT SETTING

This section states the experiment setting, including the number of plays, arms, comparison baselines
and parameter settings, etc. The capacity of each arm setting: mj, = 10+[¢xRand(0, 1)], where £ =
5,10,15,20. Number of arms: K = 10,20, 30,40. Number plays: N = M, M + 0.1M, M +
0.2M, M +0.4M . We consider the default parameters unless we mention to vary them explicitly £ =
10, K =20, N = M +0.1M. We conduct simulations to validate the performance of our algorithm
and compare it to other algorithms adapted from MAB. We consider three baselines: MP-MAB-SA,
Orch proposed in [Wang et al.| (2022a)), and a variant of our proposed algorihtm PC-CapUL-o01d,
which replaces the our arm capacity estimator with that of Wang et al.|(2022a)). 1, is sampled from
an even distribution on the interval [1,11]. And the movement cost c is set to be 0.1 so that the
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movement cost is much smaller than the unit utility but not negligible in the regret. The utility
perturbation e is set to be of the same Gaussian distribution A/ (0, 02) for all arms with all settings,
and o = 0.5. We changed the returned utility function in both Orch and MP-MA-SE algorithm to
match our problem setting and compare their performances with ours. We conduct simulations on
both versions of our algorithm and the only difference is the estimator of the capacity confidence
interval. For every setting we conduct simulations for 20 times and the regret is averaged.

6.2 IMPACT OF NUMBER OF ARMS

In figure [lalIb]Icliidl we set K as 10,20, 30,40 respectively. It is rather obvious that as there is
more arms, it takes more exploration for all algorithm to find the true capacities of each arm, as
it is indicated in both the lower and upper bound theorems. And for all K values, our algorithms
outperform the other two baselines and the one with better estimators converges much quicker than
others. In our simulation of 2000 time slots, the regret of Orch in [1a| converges to around 4 x 10°
after 700 time slots, which is much slower than ours.

x10% x10%
—— PC-CapUL_old
PC-CapUL_new
—— Orch
—— MPSESA

—— PC-CapUL_old

1.4 PC-CapUL_new
—— Orch

129 wpsesa

1.0+

£ 0.8

0.6

0.4
0.2+

0.0
0 20 40 60 80 100 0 20 40 60 80 100
Times slots Times slots

() K=10 (b) K =20

x10% x10°
—— PC-CapUL _old 3.01 — pc-capuL old
PC-CapUL_new PC-CapUL_new
2.04 — orch 2.51 — Orch
—— MPSESA —— MPSESA

0 20 40 60 80 100 0 20 40 60 80 100
Times slots Times slots

(c) K=30 (d) K =140

Figure 1: Impact of number of Arms.

7 CONCLUSION

This paper revisits multi-play multi-armed bandit with shareable arm capacities problem. Our re-
sult closes the sample complexity gap left by previous works. We also prove new regret lower
bounds significantly enhancing previous results. We design an algorithm named PC-CapUL, in
which we use prioritized coordination of arm capacities upper/lower confidence bound (UCB/LCB)
to efficiently balance the exploration vs. exploitation trade-off. We prove both instance-dependent
and instance-independent upper bounds for PC-CapUL, which match the lower bounds up to
some acceptable model-dependent factors. Numerical experiments validate the data efficiency of
PC-CapUL.

10
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A ADDITIONAL EXPERIMENTS

A.1 IMPACT OF TOTAL CAPACITY

In figure [al2bl2cf2d] we set the interval that my; 1is evenly sampled from as
[10,15],[10,20],[10,25],[10,30] respectively. We find that as the capacities of arms in-
crease, the regret is larger at the same time slot. There are mainly two reasons:(1) the IEs with only
1 play generates larger regret as the actual capacities increase, and these kind of IE is inevitable in
all four algorithms when the capacity confidence intervals are not learnt well.(2) It is harder and
takes more explorations to learn an arm’s capacity as it is bigger according to the upper bound we
get. No matter in what setting , our algorithms outperform the Orch and MP-SE-SA significantly,
and the improvement of new estimator is also significant, which leads to much quicker convergence
of capacity confidence intervals. In our simulation of 2000 time slots, the regret of Orch in 23]

converges to around 1.4 X 106 after 1750 time slots, which is much slower than ours.

x10%
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1.24{ — PC-CapUL_old —— PC-CapUL_old
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10 — Orch 12— Orch
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© ©
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gos g
0.6
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0'07 T T T T T T 007 T T T T T T
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1.509 ___ orch 175 —— Orch
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§ 1.001 ‘9_'5
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¥ 0.754 x
0.751
0.50 0501
0.254 0.251
0.001_; ‘ ‘ ‘ ‘ ‘ 0.001 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Times slots Times slots
(c) m; € [10,25] (d) m; € [10,30]
Figure 2: Impact of capacities of Arms.
A.2 IMPACT OF NUMBER OF PLAYS

In figure we fix M as Zszl my, and set the ratio N/M as 1,1.1,1.2, 1.4 respectively.
We find that as N varies, our algorithms outperform the Orch and the MP-SE-SA in all four settings.
The main reason is that the more number of plays, the more UEs we can do at the same time in our
algorithm, and consequently the less time slots demanded for the capacity confidence interval to
converge.

13
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Figure 3: Impact of number of plays

B TECHNICAL PROOFS

B.1 SAMPLE COMPLEXITY PROOF

Proof of Theorem [I; Consider there is an arm with capacity my, and unit utility value 5. Assume
that there is only two possible value for my: {m, m + 1} where m is a positive integer, and the
perturbation on the arm follows N (0, 02). Let T be the exploration times we do on this arm.

For any strategy 7 that can calculate the capacity after several times of explorations, we consider the
probability that the capacity is mistakenly judged,i.e. we consider the probability:

IPQ[TATL:T)’L]

where m is the estimator given by the strategy 7, and IP1,IP, are the probability measure defined on
the whole T' exploration times when the real capacities are m and m + 1 respectively.

Since there are only two possible values of my, we have {/ = m + 1} = {1 = m}“, meaning

that these two events are complementary to each other. This meets the condition of lemma:() and
we have:

Py [fh =m + 1] + Py [fh = m)
Zéexp (—KL (IPl,]PQ))

14
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As for the KL-divergence, we use the result we get in . Let N (T') be the number of actions
assigned by 7 that a; > m + 1, and then we have:

KL(Py,Py) =, [N (1)) L5 <17t

If w works well for probability at least J, then we have:

Pi[m=m+1]+Py[h=m] <26

And consequently we get:

26
>Py [ =m + 1] + Py [rih = m]

1

25 exp (—KL (P,,Py))
1 w2

25 oxp (‘%z)

Rearranging the terms we get:

202 1
T>—71 —
= R (45>
[ |

Proof of Theorem [2; We first assume that the capacity falls into the confidence set, to ensuring that
the counter is correct. This lead to the confidence set for reward mean:

PIVE, i — 06 (7.1, 0) [kt < fie < i + 0 (Frt, 0) [pe] > 1 =06
PVt, mypr — 06 (ikt,0) Okt < My + 0@ (Lge,0)] > 1—0

If the reward means satisfies

fik — 0O (Tr.t50) [thrs < fint < fix + 00 (Trots 0) /bt
Myt — 0@ (Lit,0) Okt < Mppir + 0@ (Ek e, 0)

It lead to that
my € [mém, m%,t]'
The chicken-egg problem with reward to reward mean and capacity is resolved by that
my € [1, N].

Thus, we use then to initialize m!, ,, m! , respectively
l U
mk’o = 1,mk,0 =N

This makes the estimation of reward means falls into the above inequalities with the reward gathered
by the intialized correct lower and upper bound of capacity. Then the new estimated reward mean
leads to that the update of the upper and lower bound of capacity is also valid, which enables to
collect new observations. Doing this recursively, we resolve the chicken-egg problem. We next focus
on the case that all the reward mean and capacity inequalites hold and ignore the samll probability
of 20 that at least one of them fails.

15
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We first derive a lower bound for m!, , as

[ {’V f)k,t—fﬂb(ik,t;a) —‘ }
my, ; = max = 1
' et + 0G (T, 0) [kt
Oy — 0P (Zk,t; 5)
ik + 09 (Tr, 6) /@k,t
mppr — 200 (Lkt,0)

T pg + 200 (Trt, 6) /1Z)k,t
M1,0¢ (F1,,6) [Vt + 06 (i, 0)

fi, + 200 (P4, 0) [Pns
M0 $ (71,0,6) [bre + 06 (Bh,1,0)

Kk

=my — 2

ka72

‘We next derive an upper bound on m} , as:

m, = min | | - Ot + Utf)(ik,t,CS)A N
Pt — 0P (T, 0) [V

< Opt + 0 (Zk’t’é)A

N ﬂk,t -0 (’f_k,t7 5) /7/1kt
Mppty + 200 (ig.4,0)

T ik — 200 (P14, 0) [Pk

Mo (P, 0) [Une + 0 (k. 0)
pk = 200 (F.1,8) /U

The above inequality holds when py, — 20¢ (744,0) / @k,t > 0. A sufficient condition to guarantee
is:

<mp + 2

@ ('f_k,h 5) < 0.25uk/0. (12)
We will discuss how to guarantee (I2)) later. Suppose (I2) holds, then it follows that

u l
Mgt — Mgy

B 2mk0¢ (74,6, 0) [Urt + 06 (int, 0) 2mk0¢ (T3,t50) [kt + 06 (Lk1,0)

fik — 200 (7.4, 8) /Wiy HE
< PR (7,85 0) [Ur + 06 (int, 0) n oY (Trts 0) [kt + 06 (ki t, )
Mk Hok
_ Gmk0¢ (7h.,0) [Vrt + 0¢ (is, )

Kk
To reveal the true arm capacity, a sufficient condition is:
M0 $ (71,t6) [Yre + 06 (Bn,t,9)

Pk
Under our alternating of UE and IE algorithm, we have that when ¢ is an even number, 73, ; = iy .

This implies that
¢ ('f_k,taé) =¢ (Zk,tv 5).

6 <1 (13)

Then, (T3) is equivalent to

A 1 g 1[)kt
G (i, 0) < = —=————. (14)
' 6 0 my +

‘We next prove that ﬁk,t has nice lower bound under certain conditions. Given an arbitrary constant
v € (0,1), a sufficient condition to guarantee m} , > ymy, is:

2mk0¢ (Thyt,0) /ﬁk,t + 0¢ (ix1,9)
Kk

< (1 —=~)my

16
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When ¢ is an even number, this is equivalent to

. 1=y e Y . I—ype mg
lg.t,0) < — = P (I, ) < ——— )
¢ (i, 0) P ——— ¢ (g, 0) 6 o mptl
A refined sufficient condition is:
. 1= p
) < ———. 15
¢ (Lk,h ) 12 p ( )
Let ¢, denote the minimum ¢ satisfying (T5):
,_ . L= p
ty 1= argrg1>1(1)1¢(t,(5) <13 o

Consider a positive number 3 > 0, it holds that

ty +ympfty 1+ yfmy - B
— m
(B+1)t, 6+1 — B+1

t> Q(ﬂ + 1)t’y = 7J}k,t > k-
If the true capacity is identified before 2(/5+ 1)t., rounds, then we have that the sample complexity is

2(8 + 1)t,. If not, then applying the lower bound of 1&1@5 implies a refined sufficient condition
to identify the true capacity

1 Femy, 1
6 (ik.t,0) < 6?77&%@“2’““5) < 6%6-}-?764—73' (16)
Thus the sample complexity is
arg rtn>1(r)1 ¢ (lkt,0) < %f
where ¢ is a constant defined as
= 5>0I,316I%0,1) ax {éﬁ —&-?6—1— B’ = 1)6(1 = ’ 0'25}
This proof is then complete. |

B.2 REGRET LOWER BOUND PROOF

Proof of Theorem [3;: To avoid unnecessary mathematical subtleties and simply the proof, we focus
on the case that M /K is an integer and K /4 is also an integer. We first contract two instances of the
problem as follows:

* Instance E;: each arm whose index is an odder number has (% — ) units of capacity and
each of the remaining arms has (% + 1) units of capacity. The per unit reward mean of
each arm follows a normal distribution whose mean is fixed to y, i.e., i1 = ... = g = i,
and variance is fixed to 0, i.e., 01 = ... = o0 = o. Formally,

arm 1 arm 2 arm K — 1 arm K
Instance £: M/K -1 M/K+1 .- M/K—-1 M/K+1
N(p,0)  N(p,o0) N(p,o)  N(p,o0)

« Instance FE»: each arm whose index is an even number has (42 — 1) units of capacity and

each of the remaining arms has (% + 1) units of capacity. The per unit reward mean of

each arm follows a normal distribution whose mean is fixed to y, i.e., i1 = ... = px = i,
and variance is fixed to 0, i.e., 01 = ... = o0 = o. Formally,
arm 1 arm 2 arm K — 1 arm K
Instance E,: M/K+1 M/K-1 ..- M/K+1 M/K-1
N(p,0)  N(p,o) N(p,o)  N(p,o)

17
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For an arbitrary learning algorithm or strategy 7, let Ry (7, E1) and Ry (w, E2) denote its regret in
instance F/; and F» respective. Let T denote the number of time slots that at least % arms with odd
index are assigned exactly (% - ) plays. Let A denote the event that 77 > %T:

e

We can use event A to bound the expectation of the regret in £ as follows:
E[Ry (m, E1)]
=E [Ry (7, E1) 1{A}] + E [Ry (7, E1) 1 {A°}]

TK
>0+ ?min(u —c¢,c)Ppg, (AC) .
And similarly we have

E[Ry (7, E2)] >

T 2oy, (4).

Note that the Theorem 14.2 in|Lattimore & Szepesvari (2020) indicates:

1
IPE'1 (AC) + IPEz (A) > 5 exp (7KL (IPEUIPEQ)) .

Then, the sum of the regret of 7 in two instances can be lower bounded as:

E [RT (71'7 El)} + E [RT (71', EQ)}

2% min (4 — ¢,¢) (Pg, (A°) +Pg, (4))

TK
ZTG min (u —¢,c)exp (=KL (Pg,,Pg,)).

Note that the probability measure IP g, is defined on the entire learning process of 7" time slots,i.e.

=

Pg, a1, x1,....,ar,z7] = | | ¢ (at|lar, @1, ...,ar—1, Tr-1) Pg, e, (T¢),

t

1

where a; is the action chosen at the time slot ¢ and vector x; is the individual resulting reward on
the K arms after playing a;. 7 is the probability measure of the action a; after the observation of
the past ¢ — 1 sets of action and reward, and Pg, 4, is the probability measure of the reward vector
x; for fix action a; in instance F;. As for the calculation of the KL-divergence, we can separate it
into 7" actions.

KL (Pg,,Pg,)

dlP
=Eg, {log (dIP? )}
2

:ZEEl [KL (PE11ﬂzt7PE27at)]

t=1

where in the last equality we use that under P g, (-|a;) the distribution of x; is Pg, q, .

18
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Because the measure Pg, q, is a product of K independent probability measures, we can decompose
the KL divergence as follows:

K

KL (PEha/t’PEant) = ZKL (PELak,,HPEQ,ak,f,)
k=1

where Pg, 4, , and Pg, 4, , follow normal distribution:

; (1) 2
Pg, ay., ~ J\/( min (ak,t,mk W—agi-¢c , O

PEQ,ak,t ~ N( min (akyt,mf)) W—agi-c o? ) ,
and mg) and m,(f) denote the capacities of arm k in the F; and E5 respectively. There is a formula
about the KL-divergence of two Gaussian distribution:
Lemma 3. Foreachi € {1,2}, let i; € R,0? > 0and P, = N (ui, U?). Then we have:

1 2 2 . 2
KL(P,Py) =5 (log (Zz) +24- )+<u1ﬂ2>

2
1 2 203

Applying lemma 3] we have:

(min (o) e i (s 00" )
1ty My, " ) o — TN\ Q1 g, T, " ) [
202

‘We want to find the action a; ; maximizing KL (PEWM , PEQ,GM) at time slot ¢ on the first arm. It

is easy to find that a; ; should be no less than mf) = % +1sothat KL (PEWM , PEMM) reaches
its maximal. The same is true for other arms k£ with odd k. And similarly we should let the action

KL (PEhaLUPEZvaLt) =

ag; > mél) = % + 1in order to let KL (Pg, a, ,, PE, .05, ) teaches its maximal. The same is true
for other arms k with even k. So we get that:
212
KL (PEl,al,uPEz,al,t) < ol
212
KL (PEI,GQ,HPEz,az’t) < 2

It should be noted that it is possible a; ¢, a2 ¢, ..., a i+ can not be taken at the same time in real world.
But there is no conflict since we are only interested in the upper bound of the KL-divergence.

Note that [E [X] < max [X], then we get:
KL (]PE1 ) IPEz)

T
:ZEEl [KL (PE17at7PE27at)]
t=1
<T. max (KL (Pg,,a; Pr,.a)]
K
=T . I;leajl( ZKL (PEl,akvaz,ak)
k=1
K

<T. max [KL (Pg, ay,PE,.a)]
—1 ax€[N]

=
[N
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And furthermore, by letting ¢ = % 1, we have that:

E Ry (m, E1)] + E [Br (7, E2)]

TK
Zﬁ min (u — ¢,c)exp (—KL (Pg,,Pg,))

TK
ZQHQXP (_KL (IPE1 s ]PEz))

TK u?

We let © = 0/+/2T K and then we get

max( E[Rr(r,E1)], E[Rr(r, E)| )232:\&\@7{

This proof is then complete. |

Proof of Theoremd} Here we only consider the set of algorithms that is consistent over the class of
MP-MAP £ we described in section 2, and we further require that the perturbation of the returned
utility follows the Gaussian distribution A" (0, o) for simplicity, where 0% < 1/2.
A policy 7 is defined as consistent over a class of bandits £’ if for all E € £ and p > 0 that :
EG(T
lim BEGT) _
T—o00 Tp

First we choose a consistent policy 7. Let E'; € £ be an instance, and there are 1, units of capacities
with unit utility py, on the arm k. Next we will consider the number of time slots T'By, (T') when the
arm k is assigned with more than my, plays by 7 in the T time slots, i.e.

T
TBy (T) := Z 1{ap: > my + 1}
t=1

For fixed k € [K], let E5 € & be another instance, and for j # k, there are m,; units of capacities
with unit utility z; on the arm j. On the arm k in F5, there are my, + 1 units of capacities with unit

utility 11;. Let A be the event that "B, < %:

A= {TBk S Z}

Let Ry (w, Er),Rr (7, E3) denote the policy 7’s regret in instance E; and Es. Then by similar
analysis in previous subsection, we have:

E [Rr (7, Ey)]
=E [Rr (7, E1) L{A}] + E [Rr (7, E1) 1 {A°}]

T c
Then similarly we have :

E[Rr (7, E2)] 2 o (i — ¢) P, (A)

no|

Then the sum of the regret of 7 in two instances can be lower bounded as:
E [Ry (7, E1)] + E[Rr (7, E2)]

>—min (ux — ¢, c) (P (A9) + P (4))

v
o] N

min (pug — ¢,c)exp (KL (Pg,,Pg,))

20
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As for the KL-divergence, we can decompose it by time slots and arms as it is shown in the previous
subsection:

KL (IPEN]PEz)

T

:Z]EEI [KL (PE1,ataPE2,at)]
t=1
T

:ZEEl

t=1

K
Z KL (PEl,ai,t;PEz,ai,t)‘|

i=1
And note that F'; and E» are the same only except the arm k. Thus the above equality can be reduced
to:
T
> Ex
t=1
T
= Z ]EEl [KL (PElyak,t ) PEZyak,t)}
t=1
T
=Y Eg, [KL(Pp, .y, Pesar,) L{are > my +1}]

t=1

K
Z KL (PEl,ai,“PEz,ai,t)‘|

i=1

T
JrZ]EE1 [KL (Pg,a,. Peyap,) L{aks < my}]
t=1
T

= Eg, [KL(Pg,a,,> Prya,,) 1{ake > me+1}] 40

t=1

According to lemmaEI, when ay ¢+ > my, + 1:

2
I
KL (PE17ak,t7PE27ak,t) = 272
Thus we have :
T
Z EEl [KL (PEl,ak,mPEz,ak,t) 1 {ak,7t Z my + 1}]
t=1
T 2
= Ep, [1{ar: > my +1}] %
20
t=1
T /,[,2
=Eg, Z 1{ag,: > my + 1} ﬁ
t=1
1,
=Eg, [TBy (T)] 202
Consequently we calculate the KL-divergence as :
12
KL(Pg,,Pg,) =Eg, [TBy (T)] ﬁ (17)

Then we have:

E [Rr (7, E1)] + E [Ry (7, E»)] >

=14

2
win o — . exp (~E, (153 (7] 25
Rearranging the taking the limit inferior on 7" leads to:
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9 lo ( T min(pur—c,c) )
.. Eg [TB,(T)] _20% . “O%\ {ER:(r.E)+ERr (7. B2)])
liminf —— -~~~ 72 2—2hm1nf
T—o0 log (T) Wi T—oo log (T')
202 log (IE E E E
22 (8B LR (. B+ B (R . )
T T o0 log (T)

Since the policy 7 is consistent, then for any p > 0 there is a constant C), that for sufficiently large
T:E[Ry (7, E1)] + E [Rr (7, E2)] < CpTP, which implies that:

log (E [Rr (m, E1)] + E [Rr (7, E2)])

i
T log (T)

< limsup plog (T') +log (Cy)
T—o0 IOg (T)

=p

Since p can be arbitrarily small, we have
log (E [Rr (m, E1)] + E [Rr (7, E»)))

li =0
Ton log (7)
And consequently,
2
lim inf Eg, [T'By (T) 2%
T—o0 I g (T) My
It should be noted that
E [Ry (m, E1)]
rT
=Eg, Z(f (@) — [ (a))
Lt=1
T K
=Eg, Z Z [(mgpr — emy) — (min {ag,e, me} - pp —c- ak-,t)}]
t=1 k=1

K T
=Epg, Z Z [(mypr — emy) — (min {ag ¢, me} - pr — ¢ - ak,t)]]

K T
>Ep, [ DD [(mip — emy) — (min {ag o mp} - g — ¢ - ag)] T{ag, > my, + 1}

K T
>EEg, ZZC'I{ak,t > my + 1}

k=1 t=1
K
=c- Y Eg, [TBy (T)]
k=1
Taking the limit inferior on 7" leads to:
lim inf 7]]3 (B (m, )]
T—o0 log (T)
K
Eg, [TB; (T
>c lim inf — 22 [TB (T)]
T—c0 log (T")
k=1
> 3 20°
C . —
= 2
=1 Mk
And the proof is complete. |
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B.3 REGRET UPPER BOUND PROOF

Before proving Theorem[5} we need to prove two Lemmas first.
Proof of LemmalIl
Consider the confidence interval for ;. Because

Pkt — [k

22:1 (Uk,s (ak,s) + ¢ ak,s) 1 {ak,s < mgc,s—l}
= —_ /*Lk?
Zi:l ak,s]]- {ak,s < m%c,s—l}

Yemy (min{ags, mp} - g — - ap s+ s +coags) 1 {ak,s < mi,sfl}

= P . — Mk
Zs:l a’kvs]l {ak’:S S mk,sfl}

When the event A, defined in Lemmahappens, then for s satisfying ay . < mﬁc <_1» we have that
the action ay s < my.

And thus we get

[t — Lk
t . 1
Yooy (min{ag,s,mp} - p — - ags +eps +coags)l {ak,s < mk,s—l}
= ; l — Lk
Zs:l akvs]l {ak,s < mk,sfl}

Semi (s ik + €xs) 1 {ak,s < mfc,s_l}

= ; . —_ /’Lk
Zs:l ak751 {ak73 § mk,s—l}
S erslans <ml
s=1 %k,s k,s > k,s—1
3 1 < ml
Zs:l Ak,s Ak,s = mk,sfl
t 1
Fhot o=t s 1 {%s < mk7s_1}
t l T
D ey ksl {ak,s < m,mfl} Kt
Th,t AIE

t
Zs:l ak,s]]- {ak,s

IN

€k, tae
mk,s—l}

By rearranging the the equality above, we get the following statement if A happens:

2221 ag,s1 {ak,s < mgc,s—l} (

Tkt

ﬂk,t - /ffk) S [_J(b (%k,tv 5) va(b (%k,tv 6)]

Note that @ZA)M is defined as:

¢ !
Dsmt Gkl {ak,s < mk,sq}

Tkt

Upp =
We get that

(i = ) € |06 (Frs8) /106 (7, 8) ]
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and consequently we get the confidence interval for puy, as:
pr € [,&k,T* — 00 (7r.1+,0) [Vrts fere + 06 T+, 0) /@k,t}

Next we consider the confidence interval of my u; when Ay happens:

O, 7% — Mk

Sy (min {ag o, mp} -k — C - ags + s + 0o ags) 1 {ak,s > m}i,s_l}

= = - mkuk
Lk, T+
ZT* (mk,uk + € )]1 {ak > my }
s=1 »S S = k,s—1
= r — Mk
Lk, T~
T u
Zs:l ekas]l {ak75 Z mk,sfl}
L, T~
_UE
=k, ip,

And similarly we get the confidence interval of my pu:

mipr € [0k« — 0@ (L 7+,0) , O+ + 0@ (i, 1+, 0)]

Thus we know that for fixed &, for all ¢, these confidence intervals are correct with probability
P {A}, and in the proof of Lemma[2] we will show that P {A;} > 1 — 4.

Proof of Lemmal[2l
We first display the concentration inequality we use:

Lemma 4. (Bourel et al., 2020,Lemma 5) Let Y5, ..., Y; be a sequence of t i.d.d real-valued random
variables with mean p, such that Y; — u is o-sub-Gaussian. Let p; = % Zizl Y, be the empirical
mean estimate. Then, for all o € (0, 1), it holds

1.21 t+1/6
P ateN,m_m,wHtp@ -

The key challenge is to handle the chicken-egg problem that the confidence interval of the arm
capacity relies on the estimation of the utility mean and the estimation of the utility mean relies on
the estimation of the arm capacity to distinguish UEs and IEs. Misleading UEs as IEs would make
the reward mean estimation incorrect.

To understand the chicken-egg problem, let us consider a simple problem sharing the essence of our
problem:

Xi = qip + €,

where €;’s are independent o-sub-Gaussian random variable. Let ¢} denote our guess of ¢;, which
may or may not equal to ¢;. We use ¢; to estimate y. The estimator aligned with us is:

P XX
t — t -
>
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Then it follows that

) gt e
Pe—p =", =
Zi q;
. Z;%M‘Fﬁi —MZEqé
= 3
Zi q;
t t t
Y — > N Di€i
= T t
>4 >4
t t t
BV Tl DV SRV
; ; :
Zi q§ Zz qg ¢
Then it follows that
A _E o t ZZ €; o t Zf €;
lfie — p Iry| = Vi ==, . )
> 0 > G

where
_ ik~ mYid;
> d;
denotes the mis-classification error. Then letting Y; < ¢; ,t < 7% and § < 6/2 in LemmaE], and
applying Lemmaf4] we have that

Errt :

S e

P |Vt,
Tkt

< U¢(%k7t,5)‘| >1-4/2.

This implies the following confidence interval:
]P)[Vt, |/lt i EI'I't| S U¢(%k,t75)] Z 1-— 6/2
This implies that under mis-classification of ¢; a uniform confidence interval still holds, but one

needs to adjust the bound of the interval with the mis-specification error Err;,.

With the above argument in mind, we know that if there are mistakes in the confidence bounds of
capacity, the following uniform confidence interval should hold by adjusting the bound with mis-
classification error.

PV, i, — 06 (Fi,t,0) [t — Brry < fuey < pin + 00 (710, 0) [ + Erry] > 1—6/2,
Where Err} denotes the mis-specification error.

Let us now go back to the chicken problem. With the analysis above, let us consider the good event
falls into to the 1 — /2 probability region, such that

(e — 0 (P4, 0) [re — Brty < funy < pg + 06 (P, 8) /trs + Exr
holds for all ¢. We next solve the chiken-egg problem by showing that Err, = 0. Note that my, €

[1, N — K + 1] is known as a prior. In the initialization rounds, the UE is conducted by N — K + 1
and IE is conducted by 1, namely.

mio=1m{o=N—-K+1.

This initialization generates no initialization error. Thus, with the reward obtained from the ini-
tialization to update the confidence, we would have Errff = 0. This zero error, would lead to the
updated estimation of the confidence interval of the arm capacity being correct, as it is implied from
the confidence of the utility mean estimation. Thus with the updated confidence interval, we would
do correct UE and IE. Doing this recursively, we would have Err} = 0.

And with similar analysis we know that there is also no mis-classifications of UEs if the sampled
perturbations e ; on the UE utilities satisfy the condition we desctibed in Lemma [2] that for
Vire € Noo6fF | < 06 (ire,0). And we know that according to Lemma {4 this condition
holds with probability more than 1 — §/2 as well. Thus by Union-Bound inequality we know that
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P {Ax} > 1 — 6. Then the Lemma[2|and Lemmal|I|are proved [
Proof of Theorem 5]

Before proving the upper bound of the regret, we first find the maximal number of UEs and IEs for
an arm’s capacity to converge in another form.

Lemma 5. For any arm k, time slot t, and 0 < 6 < min (Qexp (—1152m%02//¢i) , 20T + 1), if
1152m2 o log(2/9)
2

k

the number of IEs Ty, . and UEs Uy, + are both no less than , then

1152m202 log (2/4
1P<m§€t:m;;t|fk7t7[k7t2 ka’QOg( /))21_5
: , i

Since is a sufficient condition for the confidence interval to converge when ¢ (7 ;,0) <
0.25u /6, and notice that ¢, ; > 1, then we have that:

Mo $ (Th,t,0) + ¢ (i1, 6)
Kk
is also a sufficient condition. And a simple case to meet this condition is that:

A Pk R Mk
< < —
¢(Tk,t76) = 120mk ’ ¢(Lk}7t76) = 120

6 <1

And this case also meets the requirement that ¢ (75, ) < 0.25u /6 because my > 1. Solving the
inequalities above, we get that:
) 11520 m% log (2/0) . 115202 log (2/6)
bt 22—

Tkt = ’ y
Uk Mk

is a sufficient condition for the capacity confidence interval to converge with the assumptions that

Ve +1 < 2/6 and \/ix, +1 < 2/§. This assumption is right naturally since we will set
d = 2/T eventually.

It should be noted that ¢ (¢, 0) is monotonically decreasing for ¢ > 0, and thus excessive explorations
will not make a converged capacity confidence interval contain more than two integers at future time
slots.

When most of the arms’ capacities are learnt, the rest of the arms can freely be played with UEs
or IEs because there are probably enough plays. Since in PC-CapUL [Jit is only required that
ikt < Tr,t, there may be excessive UEs because the the requirement of number of UEs is m, times
smaller than the number of IEs for arm k.

115207 "Lk 106(2/%) Es and IEs, we have m, = mj,. And the lemmals proved.

k

So after

When the event A happens, the capacity confidence intervals on all arms at all time slots ¢ > K are
correct. Here we define an IE or UE at at time slot ¢ as an “effective” one when

. 1152m202 log (2/8 . 1152m202log (2/6
s < k'ui g(2/9) s < kui g (2/ )7
and as a "wasted” IE or UE when
1152m202log (2/6 1152m2o2log (2/6
Fea > mk020g(/) or ins > mkUQOg(/)7
M Hi;

And there is no wasted UEs in our algorithm: since iy ; < 7, if there is a wasted UE, there should
also be a wasted IE, and then the requirement of lemmaE] is met, which means there should be no
increase in iy, ; and leads to a contradiction. Let

ZK: 1152mk02 log (2/6)

k=1
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be the number of most time slots we need to meet the requirement of iy, ; for all k according to
lemmal[5] Assume that there is no effective IEs in these G (4) time slots, and thus we need at most
another G (9) time slots to do effective IEs. So after 2G (¢) time slots, we have both

1152m20? log (2/6)
1

which meets the requirement of lemma And there will be no more UE or IE attempt after 2G (¢)

time slots because all the confidence intervals converge to integer values.

Uty Thyt = )

For an arm k, there is at most 2G (¢) time slots for IE and at most w time slots for
k

UE.

We now know the maximal numbers of both IE and UE for the capacity confidence interval to

converge to an integer for each arm. Next we will see how the numbers of IE and UE affect the
regret REG (T).

We can recalculate REG (T') arm by arm:
REG (T)
T

= Z (Z (mkuk - ka:)) - (Z (min{ak,tamk} Uk —C- ak,t)))
t=1 k=1 k=1

T
Z (mppoe — cmy — min{ag ¢, mp} - o + ¢+ akvt)>

K
<Z (myp — emy — min {ag,, my} -y +c- ak,t))
R

where REGy, (T') := Z?:l (mppue — cmy —min{ag ¢, me} - e + ¢ k)
And then the expectation of REG, (T) can be divided by the event A:
E[REGy (T))
=E[REG) (T)1{ A} + E[REG, (T) 1{ A° }]
<E[REGy(T)1{A}+P (AC) max (E [REG (T))])

The second term can be bounded by 7" multiply the maximum of the per-time-slot regret on the arm
k, which can be generated by either IE with only one play or UE with all N plays. So let Regmaxy,
be the maximal per-time-slot regret we get on arm k, so we have Regmaxy, =< max (my g, Nc)
is a constant value. And thus the second term can be bounded by (K6) T - Regmax,.

As for the first term, we know that as A happens, the algorithm works well and the capacity confi-
dence interval converges to the true capacity my, after 2G (9) time slots, and there will be no regret
for the following time slots. Thus we can bound the first term if the numbers of UE and IE on arm k
is bounded. For the UE on arm k, the regret is at most (N — my,) ¢ when all the plays are assigned to
arm k, and for the IE, the regret is at most (my — 1) (ur — ¢) when there is only one play assigned
to arm k. Then we can relate the first term with the expectation of numbers of IE and UE as:

E[REG, (T)1{ A}]
<E [, 7] (my, = 1) (i — ¢) + E[ig,7] (N —my) c
<E [Ty, 7] my (ur, — ¢) + E[ix 7] Ne
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Then consequently we can bound the expectation of the regret with the following lemma:

Lemma 6. In our problem setting, the expectation of regret is related with the expectation of num-
bers of IE and UE on each arm as:

E[REG (T)]

K
= E[REG, (T)]

i
I

(E[REG (T) 1{ A}] + P (A°) max (E [REG}, (T)]))

=
Il
—

(E [#,7] mk (ux — ¢) + E [ik, 7] Nc + P (A9) max (E [REGy, (T)]))

=

>
Il
—

(E [f,1] mk (1 — ¢) + E [ig 7] Ne + KTdRegmaxy,)

=
Il
—

We first consider a rough bound derived from the above inequality, where we set the expectation of
2 2
both 7% 7 and iy, 7 to the maximum as 2G (&) and %{Og@/‘”. By letting § = %, M be the

number of plays and c be the movement cost, the sum of the regret is bound by:

K K 2.2 2
E[REGT)] <Y ((Z 230407y | g <T>> (e — ) g + “iﬁmk o2 log (T) CN>

i=1 i k

+

M T

2
(TKT . Regmaxk>

K K K
2304m? 1152m;
E ukmk> ( g 2 : ) o?log (T) + E (2’“02 log (T) CN)

k=1 i=1 @ k=1 M

<

N

M=

+ 2K - Regmazy,
k=1
Then the Theorem [3]is proved. |
Proof of Theorem[6l

As it is shown in the regret expectation upper bound above, for the arm k, if the average reward py,
is significantly small, then the regret can be outrageously large. The main reason is that the IE [7, 7]
of the arms with large average reward should be much smaller than 2G (9) according to PC-CapUL
since the capacity confidence intervals on these arms should converge more rapidly than others,
and then there should be no more UEs or IEs on these arms in subsequent time slots. Following the
idea we mention above, we will refine the bound of IE |7, 1| with the following lemma:

Lemma 7. Fixed arm k, and for another arm i with p; < py. consider the number of time slots in
the training process of PC—~CapUL[2|when the arm i is played with UE but the arm k is played with
IE and the IE on arm k is not compulsory because of the lack of IEs. We let Acy, ; be the number of
such time slots, and then we have :

3202 log (T

Acy,i < 5
(Mk - Mi)

+1
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We first prove the Lemmal[7]

Let 7™ be the last time slot that the arm ¢ is played with UE but the arm k is played with IE and the
IE on arm k is not compulsory because of the lack of IEs. Then we know that from the K + 1 time
slot to the T — 1 time slot, there is at least Acy, ; — 2 time slots at which the arm ¢ is played with
UE and arm k is played with IE. Since we know that the arm ¢ is played with UE at time slot 7™,
and in PC-CapUL[2]the arm ¢ cannot be played with more UEs than IEs, then there must be at least
Acy,; — 2 time slots at which the arm i is played with IEs. Summing up these Acy, ; — 2 time slots
with the at least 1 time slots in initialization phase when the arm ¢ is forced to be played by IEs. We
know that before T, the arm i is played with at least Acy, ; — 1 IEs. And the same is true for arm k.

Then at time slot T, since the arm k is not forced to be played with IE, then we must have the arm
1 is chosen to be played with UE for its higher empirical unit utility fi; 7-. Consequently we have
fLi 7= > fix, 7, which is only possible when the lower bound of fij, 7~ is not larger than the upper
bound of ji; 7«. Then we have:

2 N 2 .
i — 0 (Ack,i -1, T) /wk,t <pi+o¢ (Ack,i -1, T) /1/%,75

Notice the fact that 1[);@,75 > 1. By solving the above inequality we get the lemma:

3202 log (T)

Ack,i S 2
(o — 1)

+1

The lemma is then proved.

For the arm k, we now divide the IE into 3 groups:(1) the IEs caused by the UEs of other arms with
unit utility no less than % 1i-(2) the IEs caused by the UE of other arms with unit utility less than

% x.(3) the compulsory IEs caused by the UEs on the arm k itself as it is required iy, < 7 in
PC-CapUL[Z

As for the first group of IE, we have the number of these IE is less than

K
230402m2
S B e

i=1,itk, >4 g !

according to the analysis in Theorem[5] And similarly the number of the third group can be bounded

by 2 - 1152## log (T"). We have the number of the first and the third group of IE bounded as:

K
23040%m? 230402m?
Z 721 log (T) + Tl log (T)
=102k, pni > o ’ ’
K 230402m2
< Z Tl log (T)
i=1,0> 5 pg ¢
K
921602m?
< Y T——5—log(T)
i=Lpi> L, k
9216M20?
< 720 log (T')

k
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As for the second group of IE, we can employ the lemma[7]to bound them:
K

202 log (T
Z 320 og()_i_1

2
i=1,0:< (i = )

K

Z 12802 1og (T')

<K+ 2
k

i=1,u: <5
128 Ko?
<K + 720 log (T')
M
Then we reach the lemma that gives the upper bound of E [74; 7]:

Lemma 8. In our algorithm, the expected number of IE on arm k is limited with an upper bound as:

. 9216 M 252 128 K o2
E [#,7] < T" log () + T" log (T) + K
k k

By replacing the IE [7, 7] in lemma [6| with upper bound of IE [, 7] in lemma [8] and replacing the

E [ ] with the maximal value 11‘:2m’“ a?log (T), we get that:
L

E

REG(T)]

1152m?
2mk o?log (T) cN)

IN

9216 M2 + 128K
( 21<>g(T)+K> (x =€)y, +
k

_|_

e EM» iMw iMx

9216M? + 128K 1152m?
i o2 log +7mka2l

IN

(T) m

(
( ;KT Regmaxk>
( og (T) N)

K
+ (2K - Regmaxy) + Z Kmy )
k=1

>
Il
—

In the second inequality we use px > c for all k.

For arbitrary A:

E[REG(T)]
K
9216 M2 + 128K 1152m?
< Z (+ o2 log (T) my, + Mk 52 log (T) N + K ugmy, + 2K - Regmaxk>
A Mk
Hi =
+ Z (pu — €) k)
pe <A
K /921602 + 128K 1152m2 K
< Z ( 210g(T)mk+Ak'0210g(T)N> + Z TAmy,
e >A <A
K K
+ Z (2K - Regmaxy) + Z (Kmy )
k=1 k=1
216M3 + 128 KM + 1152M2N
<. D216M7 8A + 115 o2log (T) + TMA + O (1)

—0 (M%m)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

The last step is letting A = \/9216M3+128711{J\2/I+1152M2N0'2 log (7).
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