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ABSTRACT

Learning causal structure from observational data is central to scientific model-
ing and decision-making. Constraint-based methods aim to recover conditional
independence (CI) relations in a causal directed acyclic graph (DAG). Classical
approaches such as PC and subsequent methods orient v-structures first and then
propagate edge directions from these seeds, assuming perfect CI tests and exhaus-
tive search of separating subsets—assumptions often violated in practice, leading
to cascading errors in the final graph. Recent work has explored using large lan-
guage models (LLMs) as experts, prompting sets of nodes for edge directions, and
could augment edge orientation when assumptions are not met. However, such
methods implicitly assume perfect experts, which is unrealistic for hallucination-
prone LLMs. We propose MosaCD, a causal discovery method that propagates
edges from a high-confidence set of seeds derived from both CI tests and LLM
annotations. To filter hallucinations, we introduce shuffled queries that exploit
LLMs’ positional bias, retaining only high-confidence seeds. We then apply a
novel confidence-down propagation strategy that orients the most reliable edges
first, and can be integrated with any skeleton-based discovery method. Across
multiple real-world graphs, MosaCD achieves higher accuracy in final graph con-
struction than existing constraint-based methods, largely due to the improved re-
liability of initial seeds and robust propagation strategies.

1 INTRODUCTION

Causal discovery methods aim to recover a graph describing cause-effect relationships among a
set of variables. One prominent family—originating with the famed PC algorithm (Spirtes et al.,
2000)—are constraint-based methods. These methods conduct a series of conditional independence
(CI) tests to rule out edges in the graph, then orient the remaining edges. Orientation begins with
a “seed” set of edges determined by v-structures and proceeds by propagation rules that iteratively
orient additional edges. Constraint-based methods are widely-used in practice for their theoreti-
cal guarantees, computational efficiency, flexibility across data types, and interpretability of out-
puts (Spirtes et al., 2000). However, each step is prone to error accumulation. In theory, CI tests
must perfectly distinguish dependence from independence (Spirtes et al., 2000) across all condi-
tioning subsets (Kalisch & Bühlman, 2007), yet in practice CI tests with finite samples are noisy
and exhaustive subset search is infeasible. During the edges orientation phase, these errors can be
amplified: in order for seed edge directions to be correctly determined, the algorithm must cor-
rectly determine conditional dependencies across many different subsets of nodes (e.g., orienting a
v-structure requires proving a node never appears in any separating set for a given pair). Neverthe-
less, constraint-based methods remain state of the art, as no better alternative exists for determining
an initial seed set of oriented edges.

Recent advances in LLMs offer new opportunities for seeding edges orientations. Despite their im-
perfections, LLMs contain broad knowledge that can be used to infer pairwise causal relationships
(Kiciman et al., 2023; Vashishtha et al., 2025). Existing work has explored prompting LLMs with
causal queries (e.g., “Does A cause B?” (Kiciman et al., 2023; Vashishtha et al., 2023); “Is A con-
ditionally independent of B given C,D, . . .?” (Cohrs et al., 2024)), or using LLM information as a
causal order prior (Vashishtha et al., 2025) or constraint to be enforced (Hasan & Gani, 2023). How-
ever, existing work combining LLMs with causal discovery algorithms keeps the two components
entirely separate, either querying the LLM first and feeding the results into an existing algorithm
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as priors (Hasan & Gani, 2023), or running a standard algorithm like PC and then using the LLM
for post hoc orientation (Vashishtha et al., 2025; Khatibi et al., 2024). In both case, the discovery
algorithm itself remains unchanged.

We study how causal discovery algorithms can be themselves redesigned to take advantage of LLMs
as a complementary source of seed information (though our methods are also applicable to other
sources of information like human experts). Our main contribution is a new causal discovery al-
gorithm, MosaCD, which is designed to capitalize on this resource. MosaCD constructs a high-
confidence set of seed edges using both CI test results and LLM annotations. Empirically, this set
of seeds yields far fewer false positives than existing algorithms, reducing error cascades. We fur-
ther introduce new propagation rules tailored to prioritize orientations supported by more reliable
evidence. A central element of MosaCD is a prompting strategy that mitigates hallucinations. The
key observation is that false positives due to hallucinations or overconfidence are uniquely destruc-
tive in the causal discovery process because they cause cascading errors during propagation—the
overall algorithm will perform better if low-confidence edges are simply left un-oriented. We im-
plement a simple but effective filtering strategy which exploits LLMs’ tendency to select the first
multiple-choice option when the true answer is unknown. To this end, we design shuffled queries
that exploit LLMs’ positional bias: orientations are randomized across multiple-choice orderings,
and only consistently chosen orientations are retained as seeds. We evaluate MosaCD on 10 causal
discovery benchmark datasets of up to 76 nodes and reach new state-of-the-art performance for
constraint-based discovery, driven by more reliable seeding and robust propagation.

Our contributions are:

1. We propose MosaCD, a constraint-based causal discovery algorithm that combines CI-
based orientation with robust LLM-based seeding and a confidence-prioritized propagation
procedure.

2. We demonstrate how LLMs can be adapted for robust seeding in causal discovery with
minimal hallucination influence.

3. We evaluate MosaCD on 10 real-world datasets and and show strong, consistent perfor-
mance, particularly in information-heavy domains.

2 RELATED WORK

Constraint-based causal discovery Constraint-based learning of causal structure involves infer-
ring edges and orientations with CI relations and logical rules. The original PC algorithm (Spirtes
et al., 2000) infers a causal graph by removing edges via CI tests and orienting the remaining ones
with logical rules, assuming no hidden confounders. FCI (Spirtes et al., 2013) generalizes PC to
allow for latent confounders and selection bias, returning MAPs rather than completed partially
directed acyclic graphs (CPDAGs). PC-stable (Colombo et al., 2014) addresses PC’s variable or-
der dependency by fixing adjacency sets across each conditioning set size. To limit the influence
of false colliders (from v-structure orientations), Conservative PC (CPC) (Ramsey et al., 2012) re-
quires unanimity among observed separating sets to orient an edge, still assuming the separating
sets are comprehensive. Post-hoc consistency procedures revisit the CI test results to reconcile a
partially directed acyclic graph (PDAG) with the skeleton’s evidence. PC-max (Ramsey, 2016)
focuses on conditioning sets with the most significant p-values to avoid contradictions. These meth-
ods still fundamentally rely on v-structure orientation for seeding initial orientations, propagating
the rest of the graph from these assumed-correct edges by not creating new v-structures. We focus
on constraint-based discovery, although we acknowledge score-based methods that aim to learn an
entire optimal graph structure such as NOTEARS (Zheng et al., 2018), DAG-GNN (Yu et al., 2019),
or GES (Chickering, 2002) will have different strengths and weaknesses.

Incorporating domain knowledge to causal discovery Constraint-based methods offer the flexibil-
ity of easily adding domain constraints or priors, as opposed to score-based methods where domain
knowledge has to be tied into the global objective. Tiered orders and path constraints can prune ori-
entations after PC (or variants), then be closed under orientation rules (Meek, 2013). While scalable,
this still inherits the v-structure-first bias as knowledge is applied after initial orientations. Beyond
this paradigm, Hyttinen et al. (2014) encodes tested (in)dependences together with prior knowledge
as logical constraints and minimizes the total weight of violated constraints, which inherits NP-hard
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worst-case complexity and degrades with dense graphs. Claassen & Heskes (2012) assigns Bayesian
reliabilities to (in)dependence claims and processes them in decreasing reliability, returning a sin-
gle model with a confidence tag per decision, but it requires enumerating (parts of) the Markov
equivalence class, which is also computationally expensive.

LLMs for causal discovery LLMs have been shown to have relevant domain knowledge valuable
for causal discovery. However, it is difficult to tell when an LLM is accurately using this information,
or does not know the answer and is simply providing a response. Some methods aim to construct a
set of constraints (or even the entire graph) using LLMs in a questionnaire style, essentially asking
“Does A cause B?” (Kiciman et al., 2023; Vashishtha et al., 2023), or “Is A conditionally indepen-
dent of B given {C,D, . . .}?” (Cohrs et al., 2024), or using LLM information as a prior selector
(Vashishtha et al., 2025; Havrilla et al., 2025) or constraint (Takayama et al., 2024). However, all
existing methods implicitly assume that direct LLM outputs are reliable, without accounting for
well-documented issues such as hallucination and positional bias (see below).

Hallucination detection in LLMs LLMs often refuse to acknowledge uncertainty. Given a
multiple-choice question, they may just select the first option that is not “I don’t know” if they
are unsure. Empirical studies report positional and presentation biases and a reluctance to admit un-
certainty; simple shuffle-and-vote mitigations help but do not absolve the need for further calibration
(Wang et al., 2023; Pezeshkpour & Hruschka, 2023). Existing work addressing hallucinations typi-
cally involves either direct access to the LLM (Farquhar et al., 2024), or ability to fine-tune (Zhang
et al., 2024). Cheaper methods that work with prompts only use self-reflection prompting strategies
(Manakul et al., 2023) or LLM-generated confidence scores (Zhao et al., 2024), which requires an
LLM to reason about when it is wrong. A cheap, prompt-only method for hallucination filtering that
can be applied in scale without needing calibration would benefit causal discovery methods looking
to extract priors from an LLM.

3 PRELIMINARIES

Notations. Let G = (V,E) be the (unknown) ground-truth DAG, where V is the set of observed
variables and E is the edge set. For disjoint X,Y, S ⊆ V , write X ⊥ Y | S if S d-separates X and
Y in G, and X ̸⊥ Y | S otherwise. We use X − Y for an undirected edge, X → Y for a directed
edge, and X ⇝ Y for a (semi-)directed path i.e., a path from X to Y in which all arrows, if present,
point forward from X toward Y ). We use curly braces {X,Y, . . .} to denote an unordered node set.
A triple X−Z−Y is unshielded if X and Y are non-adjacent but both are adjacent to Z. A partially
directed acyclic graph (PDAG) is an acyclic graph whose edges may be directed or undirected.

PC-style skeleton search (PC, CPC, PC-stable). The procedure (Spirtes et al., 2000) starts from
the complete undirected graph KV and removes an unordered edge between X and Y whenever a
conditional independence (CI) test accepts X ⊥ Y | S for some S ⊆ V \ {X,Y }. The resulting
undirected graph is ŜkelΣ = (V, Ê). Along the way, we maintain a minimal sepset record Σ, where
for each nonedge {X,Y } /∈ Ê, the set Σ(X,Y ) = Σ(Y,X) ⊆ 2V \{X,Y } collects all conditioning
sets S for which X ⊥ Y | S was accepted (e.g., based on a p-value threshold). PC and PC-stable
typically record only one separating set per nonedge, while CPC records multiple.

Intuition of MosaCD. Given the skeleton, traditional PC algorithms require an initial set of seed
orientations to enable further propagation, e.g., via Meek’s rules (Meek, 2013). Colliders serve as the
seeds (also called “v-structure orientation”): for each unshielded triple X −Z − Y , if Z /∈ S for all
S ∈ Σ(X,Y ), then Z is oriented as a collider X → Z ← Y . The intuition is that if Z never appears
in a separating set, then the alternative non-collider configurations X ← Z → Y , X → Z → Y ,
X ← Z ← Y are ruled out, leaving only the collider. In practice, however, CI tests are noisy
and statistically asymmetric: a small p-value provides strong evidence for dependence, but a large
p-value may reflect limited power rather than genuine independence. Thus, identifying a collider is
less robust than identifying a non-collider: if Z /∈ S for any S ∈ Σ(X,Y ), this absence could be due
to low power rather than Z being a collider, whereas if Z ∈ S for some S ∈ Σ(X,Y ), it provides
strong evidence that Z is a non-collider. Motivated by this observation, we propose (i) replacing
collider-based seeding with LLM-based orientation seeding, and (ii) prioritizing identifying non-
colliders over colliders. This enables orientations that traditional PC algorithms cannot infer: in
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particular, even when Z is identified as a non-collider, PC alone cannot resolve the orientation
among the non-collider configurations without additional seeds.

4 METHOD

MosaCD takes as input a dataset D, the corresponding variables V with names and descriptions,
and an LLM, and outputs a fully oriented DAG (Algorithm 1). MosaCD consists of 5 steps. First,
it constructs the undirected skeleton using a constraint-based method (e.g., PC, CPC, PC-stable),
yielding Gskel and a minimal sepset record Σ with CI p-values. Second, it uses an LLM to generate
a set of high-confidence seed orientations, supplying variable names/descriptions and Σ(X,Y ), re-
ducing LLM positional bias and hallucination by shuffling the answer order and repeating. This is
more robust than collider-based seeding, which is sensitive to CI test inaccuracy, limited power and
the order of processing. Third, we propagate orientations iteratively, where for unshielded triples
X−Z−Y , we prioritize non-collider evidence (Z in all minimal sepsets of Σ(X,Y )) over collider
evidence (Z in none of the minimal sepsets of Σ(X,Y )), as the latter may instead reflect limited
power. Fourth, MosaCD resolves the remaining undirected edges by selecting the orientation that
yields the fewest conflicts with Σ with ties remaining undirected. Fifth, optionally, leftover undi-
rected edges can be oriented using a topological order derived from aggregated LLM votes in Step
2.

Algorithm 1 MosaCD
Input: Dataset D with variables V (names and descriptions)

1: Skeleton search: (Gskel,Σ)← SKELSEARCH(D) and initialize PDAG P ← Gskel ▷ PC/CPC/PC-stable
2: LLM-based orientation seeding: Query the LLM to propose high-confidence directions for undirected

edges in P using variable names, descriptions, and Σ(X,Y ) (minimal sepsets and CI p-values) ▷ Shuffle
answer order and repeat queries to reduce positional bias & hallucination

3: Repeat until P converges
4: Repeat until P converges ▷ Rule closure
5: Unsupervised propagation (Meek R2, generalized): If there exists a (semi-)directed path X ⇝ Y

in P , and X − Y , orient X → Y .
6: CI-supervised propagation: Sort unshielded partially ordered triples X → Z − Y by descending

max p in Σ(X,Y ); orient Z → Y if Z is in all minimal sepsets of Σ(X,Y ); orient Y → Z if Z is in none
7: Collider orientation: Sort unshielded unordered triples X−Z−Y by descending max p in Σ(X,Y ).

Orient X → Z ← Y if Z is in none of the minimal sepsets in Σ(X,Y )
8: Least-conflict orientation: For each undirected X − Y (in random order), choose the direction with

the fewest conflicts w.r.t. Σ; leave undirected on ties
9: (Optional) Final orientation via votes: For remaining undirected edges, orient using previous LLM votes

10: return P

Step 1: Skeleton search. MosaCD initializes a skeleton Gskel and sepset record Σ from dataset
D using a constraint-based algorithm such as PC, CPC, or PC-stable. The PDAG P is initialized
as Gskel. For each conditionally independent pair {X,Y }, Σ(X,Y ) contains at least one sepset
together with the corresponding CI p-value. Throughout, Σ(X,Y ) denotes the collection of minimal
separating sets recorded by the skeleton procedure.

Step 2: LLM-based orientation seeding. We generate a set of high-confidence seed orientations
for undirected edges by querying an LLM. For each undirected edge X − Y , we provide the LLM
with variable names, variable descriptions, and Σ(X,Y ) including minimal sepsets and CI p-values.
To reduce positional bias and hallucination, we randomize the order of candidate answers (e.g., both
“X → Y or Y → X” and the reverse) and repeat each query 5 times. Edges with consistent answers
(being the majority vote in both orders) are retained as initial seeds. We discard any proposed seed
X → Y that (i) contradicts Σ at any unshielded triple, or (ii) would create a directed or semi-directed
cycle in P .

Step 3: Iterative orientation propagation. MosaCD repeats the following steps until convergence.

3.1 Unsupervised acyclic propagation: If X − Y and X ⇝ Y in P , set X → Y .
3.2 CI-supervised propagation: For each unshielded and partially ordered triple X → Z −

Y , sort in descending order by max p in Σ(X,Y ), since larger p-values provide stronger
evidence for conditional independence. Orient Z → Y if Z appears in all saved minimal
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sepsets of Σ(X,Y ), and orient Y → Z if Z appears in none. Prioritizing by max p ensures
that orientations with stronger CI support are applied first.

3.3 Collider orientation: For each unshielded and unordered triple X −Z − Y , again sort by
descending max p in Σ(X,Y ). Orient X → Z ← Y if Z appears in none of the minimal
sepsets in Σ(X,Y ).

Step 4: Least-conflict orientation. MosaCD resolves any remaining undirected edges by choosing
the direction that conflicts least with the recorded conditional independences in Σ. For each undi-
rected pair X−Y (in random order), consider both X → Y and Y → X . For each option, close the
graph under the usual orientation rules and count how many statements in Σ would be contradicted;
pick the option with the smaller count. If the counts tie, leave X − Y undirected. Steps 3-4 are
repeated until nothing changes.

Example. After Step 3, suppose U → Y , V → Y , W → Y , X − Y is undirected, and Σ contains
X ⊥ U | {Y }, X ⊥ V | {Y }, X ⊥ W . Then X → Y opens the colliders X → Y ← W and
X → Y ← V (2 conflicts), whereas Y → X makes T → Y → X induce X ̸⊥ W (1 conflict); by
step 4, we choose Y → X .

(Optional) Step 5: Final orientation via votes. If some edges remain undirected, we further use
the LLM votes from Step 2 to complete the DAG. This is analogous to Vashishtha et al. (2025), but
our LLM procedure additionally integrates shuffled answer orders to mitigate positional bias. Votes
are aggregated into a weighted directed graph, and the weakest edges (least net support between
two directions) are removed to break cycles. A topological order is then derived from this weighted
digraph, and any remaining undirected edges are oriented according to this order, yielding the final
DAG.

5 THEORETICAL ANALYSIS

We start by verifying the correctness of MosaCD’s novel propagation strategy, showing that it recov-
ers a PDAG consistent with the true DAG under idealized assumptions similar to those used to prove
correctness of existing causal discovery algorithms. Specifically, we assume a perfect CI oracle and
a seeding oracle that never returns answers inconsistent with the true graph (though it may abstain
from answering). Although unrealistic, these assumptions establish that our propagation rules are
correct in the same sense as prior methods: given correct inputs, they recover the unique PDAG
consistent with the ground truth. We then examine departures from these assumptions, particularly
the noisiness in CI tests that motivates MosaCD. To complement our empirical results, we provide a
theoretical analysis in a stylized model, demonstrating that orienting non-colliders first (as MosaCD
does) yields fewer errors than orienting colliders first (as in PC algorithms).

5.1 CORRECTNESS

We show that the orientation procedure in MosaCD returns the completed partially directed acyclic
graph (CPDAG) of the ground-truth DAG G. The CPDAG of a DAG G is the unique PDAG repre-
senting the Markov equivalence class of G: (i) it has the same skeleton and v-structures as G; (ii) a
directed edge X → Y appears in the CPDAG iff it is compelled (i.e., oriented identically in every
DAG in the equivalence class); and (iii) an undirected edge X − Y appears in the CPDAG iff it is
reversible (i.e., can be oriented in either direction within the class) (Andersson et al., 1997, Theorem
4.1). Σ(X,Y ) stores minimal separators (as produced by PC/PC-stable/CPC under a perfect oracle).
Theorem 5.1. For any distinct nodes X,Y ∈ V and any conditioning set S ⊆ V \ {X,Y },
assume: (i) Causal Markov condition: if S d-separates X and Y in G, then X ⊥ Y | S in the
distribution; (ii) Adjacency-Faithfulness: if X and Y are adjacent in G, then X ̸⊥ Y | S for any
S ⊆ V \{X,Y }; (iii) Perfect CI oracle: the CI oracle returns whether X ⊥ Y | S in the distribution
induced by G without error; (iv) Skeleton consistency: ŜkelΣ = Skel(G); and (v) Correct seeds:
the initial seed set Eseed is Σ-consistent (no arrowhead contradicts Σ) and acyclic (no directed or
semi-directed cycles). Then running Step 3 of MosaCD until convergence returns the CPDAG of G,
and Step 4 performs no additional orientations. Furthermore, when Eseed = ∅, Step 3 returns the
same PDAG as PC, PC-stable, and CPC.

See Appendix F for the proof.
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Remark 5.2. In Theorem 5.1, conditions (i)-(ii) are standard and ensure that the DAG is consis-
tent with the underlying distribution (Spirtes et al., 2000). (iii)-(v) assume a correct initialization
(skeleton, Σ, and seeds). Under these assumptions, MosaCD’s orientation propagation is provably
correct and coincides with existing PC algorithms in the absence of seeds, justifying its design.

5.2 PRIORITIZING NON-COLLIDER OVER COLLIDER IDENTIFICATION IMPROVES ACCURACY

For an unshielded triple X−Z−Y , traditional PC-style algorithms prioritize identifying colliders by
checking whether Z is absent from the separation sets Σ(X,Y ). In contrast, our method prioritizes
non-colliders by checking whether Z is present in Σ(X,Y ). To illustrate the difference between
these strategies, we analyze a stylized model of the search over conditioning sets, focusing on a
setting in which errors from the CI test are independent across queries and the graph is sparse. We
find that when CI tests are noisy—incurring both false positives and false negatives—prioritizing
non-colliders yields higher accuracy.

Level-wise search and error events. Let ℓ = |C| denote the conditioning-set size. The search
proceeds by levels ℓ = 0, 1, 2, . . . , testing X ⊥ Y | C over all C ⊆ V \ {X,Y } with |C| = ℓ. At
level ℓ, if any candidate C is accepted as a sepset, the search stops; we declare Z a collider if Z /∈ C,
and a non-collider if Z ∈ C. Accordingly, a collider error occurs if Z is a non-collider but Z /∈ C,
and a non-collider error occurs if Z is a collider but Z ∈ C. We measure their relative frequency via

Rℓ :=
Pr(collider error at level ℓ)

Pr(non-collider error at level ℓ)
. (1)

At level ℓ, PC uses the first accepted sepset C for (X,Y ). PC-stable has the same collider/non-
collider decision as PC, but with adjacency sets frozen within level ℓ (order-invariant), soRℓ matches
PC. At the first level ℓ where independence holds, CPC gathers all minimal sepsets for (X,Y ) and
orient the collider iff Z is in none, treat as non-collider iff Z is in all, otherwise leave the triple
unoriented.

We computeRℓ for the PC (the same as that of PC-stable) and CPC rules (denotedRPC
ℓ andRCPC

ℓ ).
PC-stable has the same Rℓ as PC, since it only removes within-level order dependence. Whenever
Rℓ > 1 for a given rule set, tests of non-colliders (prioritized by MosaCD) will have a lower error
rate than test of colliders (prioritized by existing algorithms). We make the following assumptions.
Assumption 5.3. (Simple CI test model) Conditional independence (CI) tests act independently
across candidates/levels given truth labels, with false positive rate α and false negative rate β that
do not vary with ℓ or C. Thus, a true sepset rejects dependence with probability 1 − β, while a
non-sepset does so with probability α.
Assumption 5.4. (Z controls the X − Y path) (a) All X − Y paths of length at most 2ℓ + 1 pass
through Z; (b) whether the X − Y path is open is determined fully by whether Z is conditioned on.

While these assumptions are deliberately simplified, they are designed to illustrate the core dynamic
by isolating the impact of the single node Z (intuitively, Assumption 5.4 describes a locally sparse
graph without redundant X − Y paths) and imposing a single set of parameters describing the
performance of the CI test.

In this model, we obtain exact analytical expressions for RPC
ℓ and RCPC

ℓ , derived and shown in the
appendix. These expressions involve a number of combinatorial quantities, but in the asymptotic
regime where the error rates of the CI test are small relative to the graph size (a necessary condition
for the algorithm to not be overwhelmed with errors), we can further simplify and show that RPC

ℓ

and RCPC
ℓ must be strictly above 1.

Theorem 5.5. Let M = |V \ {X,Y }|. Suppose that α, β = o
(

1
M

)
and ℓ = Θ(1). For M

sufficiently large compared to ℓ, the error ratios satisfy

RCPC
ℓ = β(

M−1
ℓ−1 )−(

M−1
ℓ ) · M − ℓ

ℓ
+ o

(
1

M

)
> 1

RPC
ℓ =

(
M

M − ℓ

)2

(1− o(1)) + o

(
1

M2

)
> 1

so that for both algorithms, the error rate among colliders will be higher than noncolliders.
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See Appendix G for the proof. The intuition is that there are more candidate subsets that do not
contain Z than subsets that do contain Z, so collider-first strategies have more opportunities to make
a mistake. MosaCD flips the ordering, starting with candidates that do contain Z, since this set is
smaller and the total number number of mistakes made in early stages will be limited. Numerical
experiments (Appendix H) also show substantially lower FPRs under the non-collider first strategy
across three standard skeleton learners, consistent with the theory.

6 EXPERIMENTAL RESULTS

We consider 10 benchmark datasets from the BNLearn repository (Scutari & Denis, 2014): Cancer,
Asia, Child, Insurance, Water, Mildew, Alarm, Hailfinder, Hepar2, and Win95pts. These datasets
range from 5 to 76 nodes and include both real and simulated graphs. For simulated datasets, we
generate 20,000 samples each. We measure performance using the F1 score for detecting true edge
orientations.

Baselines. We consider 3 skeleton search methods: PC (Spirtes et al., 2000), PC-stable (Colombo
et al., 2014), and CPC (Ramsey et al., 2012), which are compatible with all downstream orientation
strategies. Given a skeleton, we apply 5 baselines: (i) PC, which follows the standard procedure
of the corresponding skeleton method to orient edges (PC, PC-stable, or CPC); (ii) Meek (Meek,
2013), which applies Meek’s rules after PC to the skeleton to orient remaining edges; (iii) Shapley-
PC (Russo & Toni, 2023), which orients edges using a Shapley-value-based feature importance pro-
cedure; (iv) ILS-CSL (Ban et al., 2023), an LLM-based method that incorporates statistical knowl-
edge; -and v) SCP (Cohrs et al., 2024), another LLM-based orientation method. These baselines
represent both state-of-the-art LLM-based and non-LLM methods. All methods are given access to
the dataset, while LLM-based methods are additionally supplied with identical variable names and
dataset metadata, and all use the same LLM backbone (GPT-4o-mini). Please see more details in
Appendix I.

6.1 BENCHMARKING EXPERIMENTS

We applied MosaCD and baseline methods to 10 benchmark datasets. Results based on PC skele-
tons are reported in Table 1 and those based on PC-Stable and CPC skeletons are in Appendix A.
We reached 2 main conclusions. First, MosaCD outperformed all baselines, achieving the best per-
formance in 9 out of 10 datasets; MosaCD similarly outperformed baselines using PC-Stable and
CPC skeletons (Appendix A). Second, MosaCD consistently outperformed other LLM-based meth-
ods (ILS-CSL and SCP), suggesting that MosaCD makes better utility of available LLM knowledge.
We validate the LLM’s strong tendency towards positional bias in Appendix C.

PC Meek Shapley-PC ILS-CSL∗ SCP∗ MosaCD∗

Cancer (5) 0.50 0.50 1.00 0.50 0.50 1.00
Asia (8) 0.67 0.67 0.53 0.93 0.67 0.93
Child (20) 0.70 0.78 0.67 0.83 0.78 0.90
Insurance (27) 0.62 0.70 0.67 0.70 0.68 0.87
Water (32) 0.45 0.57 0.47 0.60 0.57 0.59
Mildew (35) 0.63 0.69 0.75 0.89 0.69 0.90
Alarm (37) 0.85 0.90 0.84 0.85 0.87 0.93
Hailfinder (56) 0.38 0.40 0.38 0.44 0.39 0.49
Hepar2 (70) 0.36 0.39 0.44 0.54 0.38 0.72
Win95pts (76) 0.59 0.64 0.65 0.69 0.63 0.81

Table 1: BNLearn evaluation. F1 score for each dataset and method using the PC skeleton. Number
of nodes is provided in the bracket. Best in bold, second-best underlined. “*” denotes LLM-based
methods.

We further evaluated the effectiveness of MosaCD’s LLM-based orientation seeding (Step 2) com-
pared to the standard PC procedure (orienting v-structures). Results are reported in Figure 1, aver-
aged across using PC, PC-Stable, and CPC skeletons. First, MosaCD’s seeding procedure identified
substantially more true directions (avg MosaCD vs. PC true seed ratio 1.69) and markedly fewer
false directions (avg 4.8% vs. 26.7%) than PC across the 10 datasets. Second, even in datasets with
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less informative variable descriptions (Hailfinder, Win95pts), MosaCD remained robust: it detected
relatively few true directions but did not introduce excessive false seeds compared to PC (average
16.3% vs. 21.7% across such datasets), likely due to the hallucination filtering procedure. Full
results are reported in Appendix B.

Figure 1: Accuracy of orientation seeds. Number of true and false directions discovered by
MosaCD LLM-based orientation seeding (Step 2) and the standard PC procedure (orienting v-
structures). Results are reported for in each dataset averaged across using PC, PC-stable, and CPC
skeletons.

6.2 SECONDARY ANALYSES AND ABLATION STUDIES

First, we assessed the robustness of MosaCD’s LLM inference by replacing a proportion of variable
descriptions in the “insurance” dataset with uninformative ones. Results are reported in Figure 2.
While MosaCD’s performance and the number of true orientation seeds declined expectedly as the
proportion of uninformative variables increased, it consistently generated only a small number of
false seeds and remained competitive or superior to the baseline, demonstrating robustness.

Figure 2: Experiments with a proportion of uninformative variable descriptions. F1 score,
number of true seeds, and number of false seeds for MosaCD, PC, and Meek as the proportion of
uninformative variable descriptions varies. Results are reported for using PC, PC-Stable, and CPC
skeletons

Second, we evaluated the robustness of MosaCD’s propagation procedures (Steps 3-5) through ab-
lation studies on the “Insurance” dataset. Specifically, we removed the LLM seeding step (Step
2), varied the number of true seeds, and adjusted the proportion of false seeds, comparing against
Meek’s propagation rules. Results are reported in Figure 3. MosaCD consistently outperformed
Meek both when varying the number of true seeds (with false seeds fixed at 0) and when varying the
proportion of false seeds (with total seeds fixed at 20), demonstrating its effectiveness. We repeat
this analysis in the Asia and Hepar2 datasets and achieve similar results (Appendix E).
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Figure 3: Experiments varying number of true and false seeds. F1 score for MosaCD (using PC,
PC-Stable, and CPC skeletons) and Meek. (A) Varying the number of true seeds with false seeds
fixed at 0. (B) Varying the proportion of false seeds with total seeds fixed at 20).

Third, we varied the LLM backbone used in MosaCD, from efficient models (Claude-3.5-Haiku,
GPT-4o-mini) to frontier reasoning models (GPT-5, Claude-Sonnet-4), as well as the open-source
GPT-oss-120b, analyzing 3 representative datasets (Asia, Insurance, Hepar2). Results are reported
in Figure 4. MosaCD maintained consistent performance across backbones, with the exception of
GPT-oss-120b, which exhibited slightly weaker results.

Figure 4: MosaCD performance across LLMs. F1 scores on the Asia, Insurance, and Hepar2
datasets across five different LLMs (using original PC skeletons).
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A RESULTS WITH DIFFERENT PC SKELETONS

PC Meek Shapley-PC SCP MosaCD
Cancer (5 nodes) 0.50 0.50 1.00 0.50 1.00
Asia (8 nodes) 0.75 0.93 0.53 0.93 0.93
Child (20 nodes) 0.90 0.90 0.67 0.90 0.90
Insurance (27 nodes) 0.65 0.74 0.73 0.72 0.86
Water (32 nodes) 0.47 0.57 0.47 0.59 0.63
Mildew (35 nodes) 0.64 0.71 0.74 0.71 0.87
Alarm (37 nodes) 0.85 0.90 0.84 0.87 0.93
Hailfinder (56 nodes) 0.42 0.43 – 0.44 0.47
Hepar2 (70 nodes) 0.42 0.44 0.45 0.43 0.72
Win95pts (76 nodes) 0.64 0.69 0.66 0.70 0.80

Table 2: BNLearn evaluation (CPC). F1 score using CPC’s skeleton. “–” indicates method timed
out after 12 hours.

PC Meek Shapley-PC SCP MosaCD
Cancer (5 nodes) 0.50 0.50 1.00 0.50 1.00
Asia (8 nodes) 0.67 0.67 0.53 0.67 0.93
Child (20 nodes) 0.70 0.78 0.67 0.78 0.86
Insurance (27 nodes) 0.65 0.72 0.73 0.69 0.84
Water (32 nodes) 0.48 0.58 0.47 0.59 0.63
Mildew (35 nodes) 0.69 0.73 0.74 0.75 0.87
Alarm (37 nodes) 0.85 0.90 0.84 0.87 0.96
Hailfinder (56 nodes) 0.39 0.41 – 0.39 0.57
Hepar2 (70 nodes) 0.40 0.43 0.47 0.42 0.71
Win95pts (76 nodes) 0.64 0.69 0.66 0.69 0.73

Table 3: BNLearn evaluation (PC-Stable). F1 score using PC-Stable’s skeleton. “–” indicates
indicates method timed out after 12 hours.
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B ORIENTATION CORRECTNESS BY SKELETON

Figure 5: Initial orientation correctness. The average number of true and false seeds discovered
by MosaCD and PC variants in each dataset, aggregated across PC, PC-stable, and CPC.
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C POSITIONAL BIAS

Figure 6: Average count of total votes in each direction for a given prompt. Forward appears
before backward, and thus is chosen more frequently by the LLM. Shaded bars indicate votes in the
wrong direction. Of note, I don’t know was the first option, which was never selected.
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D VARYING SAMPLE SIZE

Figure 7: Varying sample size. Results showing F1 score, true seed counts, and false seed counts
for MosaCD, PC, and Meek’s rules for sample size from 100 to 10000.
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E PROPAGATION ABLATIONS

Figure 8: Experiments varying number of true seeds. F1 score for MosaCD (using PC, PC-Stable,
and CPC skeletons) and Meek.

Figure 9: Experiments varying number of false seeds.F1 score for MosaCD (using PC, PC-Stable,
and CPC skeletons) and Meek.
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F PROOFS FOR 5.1

Lemma F.1 (Collider/non-collider soundness w.r.t. Σ). Consider an unshielded triple X − Z − Y
with X nonadjacent to Y . Under a perfect CI oracle, exactly one of the following holds:

1. Z /∈ S for all S ∈ Σ(X,Y ), which compels X → Z ← Y ;

2. Z ∈ S for all S ∈ Σ(X,Y ), which forbids a collider at Z.

Proof. Standard separator consistency for unshielded triples implies exclusivity of Z across minimal
separators of (X,Y ); (a) and (b) are the two mutually exclusive cases, see Spirtes et al. (2000,
Lemma 5.1.3).

Lemma F.2 (Confluent closure of the CI-guarded orientation phase). Start from the PDAG on the
true skeleton after inserting the seed arrows Eseed, assuming these seeds are Σ-consistent and in-
troduce no directed or semi-directed cycles. With a perfect CI oracle, Step 3 terminates and returns
a unique maximally oriented PDAG compatible with the skeleton and with Σ ∪ Eseed. The result is
independent of the order in which Steps 3.1-3.3 are applied.

Proof. Define G0 as the PDAG obtained from the correct skeleton by adding the acyclic, Σ-
consistent seeds Eseed. Steps 3.1-3.3 apply only sound implications guarded by Σ.

1. Step 3.1 instantiates Meek’s R2-type (Spirtes et al., 2000, Section 2.1.2) acyclicity propa-
gation.

2. Steps 3.2-3.3 decide collider/non-collider at unshielded triples using the exclusivity of Z
across minimal separators (either Z ∈ S for all S ∈ Σ(X,Y ) or Z /∈ S for all such
S). By Lemma F.1, under a perfect oracle, this step yields the complete and correct set
of compelled v-structures and forbidden ones for unshielded triples (Spirtes et al., 2000,
Lemma 5.1.3).

Consider the operator that applies one CI-guarded implication of Step 3 at a time. This operator
is monotone (it only adds arrowheads) and preserves consistency; hence termination follows by
finiteness. To establish uniqueness of the limit, observe that the CI guards restrict rule applications to
those that are sound under Σ, but do not introduce any new rule beyond Meek’s rules. Consequently,
the set of reachable PDAGs by exhausting Steps 3.1-3.3 from G0 coincides with the set of Meek’s
rule completions of (G0, C(Σ)). By the confluence and maximality of Meek’s rules (Meek, 2013,
Theorems 2-3), this completion is unique and maximally oriented given the skeleton and the fixed
collider set; therefore every fair application order of Steps 3.1-3.3 converges to the same CPDAG.

Proof of Theorem 5.1 With a perfect CI oracle under Markov and Adjacency-Faithfulness, the
skeleton stage returns the true skeleton and records minimal separators in Σ (Spirtes et al., 2000,
Section 5.1). By Lemma F.1, for each unshielded triple, Σ fixes whether the center is (non-)collider.
By Lemma F.2, implementing Steps 3 from the seeded PDAG terminates and yields a unique maxi-
mally oriented PDAG compatible with the skeleton and Σ ∪ Eseed, independent of rule order. This
PDAG therefore has exactly the skeleton and v-structures of G, hence equals the CPDAG (essential
graph) of G (Andersson et al., 1997, Theorem 4.1). Consequently, any remaining undirected edges
are reversible, so Step 4 performs no orientations.

If Eseed = ∅, Step 3 applies the same set of rules on the same skeleton and Σ as PC/PC-stable/CPC;
by confluence of Meek’s rules, the closure matches theirs.

G PROOFS FOR 5.2

Let SZ,ℓ and UZ,ℓ denote the numbers of true sepsets and true non-sepsets in incZℓ, and let S¬Z,ℓ

and U¬Z,ℓ denote the same counts for notZℓ, and Sℓ = SZ,ℓ + S¬Z,ℓ, Uℓ = UZ,ℓ + U¬Z,ℓ.
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Lemma G.1 (First-hit filtration across levels). Define event D “there is at least one independence
hit at some level”. Define Fℓ as the event “no hit on levels k < ℓ, and at least one hit on level ℓ”.
Under 5.3 (independent CI tests, FPR = α, FNR = β), we have

Pr(D) = 1−
∏
ℓ

βSℓ(1− α)Uℓ

PrevNoHitℓ := Pr(no hit on k < ℓ) =
∏
k<ℓ

βSk(1− α)Uk

Pr(Fℓ) = PrevNoHitℓ ·
(
1− βSℓ(1− α)Uℓ

)
where {Fℓ} is a disjoint partition of D.

Proof. Under Assumption 5.3 each candidate on level k hits (declares independence) with probabil-
ity 1 − β if it is a true sepset and with probability α if not; candidates and levels are independent.
Thus “no hit anywhere” has probability

∏
ℓ β

Sℓ(1 − α)Uℓ , giving Pr(D). The rest is by indepen-
dence across levels and the definition of Fℓ.

Assumption G.2 (No short detours; Z-only control up to order ℓ). Fix integers ℓ ≥ 0 and L ≥ 2ℓ+1.
(a) (No short detours) Every X ⇝ Y path of length ≤ L contains Z. (b) (Z-only control) For any
conditioning set C with |C| ≤ ℓ, the segment X−Z−Y is open/blocked iff Z /∈ C/Z ∈ C when Z is
a non-collider, and blocked/open iff Z /∈ C/Z ∈ C when Z is a collider; in particular, conditioning
on any other node (including descendants on the segment) cannot change the segment’s status for
|C| ≤ ℓ.

Lemma G.3 (Bucket counts and collider/non-collider separation). Assume Markov and Faithfulness
and Assumption G.2 (with 2ℓ+1 ≤ L), at level ℓ = 0, if Z is a non-collider, S¬Z,0 = 0, U¬Z,0 = 1;
if Z is a collider, S¬Z,0 = 1, U¬Z,0 = 0. In both cases, incZ0 = ∅, hence SZ,0 = UZ,0 = 0.

For all ℓ ≥ 1, if non-collider truth, SZ,ℓ = incZℓ, UZ,ℓ = 0, S¬Z,ℓ = 0, U¬Z,ℓ = notZℓ; if collider
truth, SZ,ℓ = 0, UZ,ℓ = incZℓ, S¬Z,ℓ = notZℓ, U¬Z,ℓ = 0.

Proof. D-separation rules are that, a non-collider blocks a path iff it is in C; a collider blocks unless
it or a descendant is in C.

When ℓ = 0, for a non-collider chain X − Z − Y , the path is open unconditionally, so ∅ is a
non-sepset; for a collider, it is blocked unconditionally, so ∅ is a sepset.

When ℓ ≥ 1: by Assumption G.2(a), all short X − Y paths pass through Z; by Assumption G.2(b),
with |C| ≤ ℓ the local segment’s status is controlled only by the inclusion of Z. So for a non-
collider, if Z ∈ C (bucket incZℓ), the local segment is blocked and, since every short path uses Z,
all paths are blocked, thus sepset; if Z /∈ C, the local segment is active and cannot be blocked by
other vertices with |C| ≤ ℓ, thus non-sepset. For a collider, if Z ∈ C, the local segment is opened
and cannot be re-blocked by |C| ≤ ℓ, thus non-sepset; if Z /∈ C, the local segment remains blocked
and no short detour exists, thus sepset.

Lemma G.4 (Order-averaged first-hit factor within a level). Fix a level containing m true sepsets
(each hits with prob. a = 1− β) and n non-sepsets (each hits with prob. b = α). Under a uniformly
random within-level permutation (independent of outcomes by Assumption 5.3), the average no-hit-
from-predecessors factor for a fixed candidate equals

Im,n(a, b) =

∫ 1

0

(1− au)m(1− bu)n du =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
(−a)i(−b)j

i+ j + 1

with Im,0 = 1−(1−a)m+1

a(m+1) and I0,n = 1−(1−b)n+1

b(n+1) .

Proof. Let N := m + n + 1 be the number of candidates on the level including a fixed target k.
Write pj ∈ {a, b} for the hit probability of candidate j ̸= k and, for a random permutation π, define
Xπ =

∏
j≺πk

(1−pj), the product of “no-hit” factors over predecessors of k. We average Xπ over
all permutations.
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If r candidates precede k, then (i) r is uniform on {0, . . . , N − 1} with probability 1/N ; (ii) condi-
tional on r, the predecessor set S is uniform over the

(
N−1
r

)
subsets of {j ̸= k} of size r. Hence

Eπ[Xπ] =
1

N

N−1∑
r=0

1(
N−1
r

) ∑
S⊆{j ̸=k}
|S|=r

∏
j∈S

(1− pj).

Insert
1

N
(
N−1
r

) =
r!(N − 1− r)!

N !
=

∫ 1

0

ur(1− u)N−1−r du

and swap sum/integral (justified since the sums are finite), we have

Eπ[Xπ] =

∫ 1

0

[
N−1∑
r=0

er u
r(1− u)N−1−r

]
du

where er =
∑

|S|=r

∏
j∈S(1− pj) are elementary symmetric sums of {1− pj}j ̸=k.

The generating function is
N−1∑
r=0

ert
r =

∏
j ̸=k

(
1 + (1− pj)t

)
With t = u

1−u and factoring (1− u)N−1 we obtain
N−1∑
r=0

er u
r(1− u)N−1−r =

∏
j ̸=k

(1− pju)

so

Eπ[Xπ] =

∫ 1

0

∏
j ̸=k

(1− pju) du

There are m terms with pj = a and n with pj = b, hence

Im,n(a, b) =

∫ 1

0

(1− au)m(1− bu)n du

Expanding (1− au)m(1− bu)n and integrating termwise yields the stated double sum. The special
cases follow by taking n = 0 or m = 0.

For a specific candidate k with hit probability pk ∈ {a, b},

Pr(k is first hit) = pk · Eπ

 ∏
j≺πk

(1− pj)

 =

{
a ISℓ−1,Uℓ

(a, b), k a true sepset,
b ISℓ, Uℓ−1(a, b), k a non-sepset.

Lemma G.5 (Level-ℓ identification probabilities). Condition on the partition {Fℓ} from Lemma
G.1. Under Assumption 5.3,

Pr(E | D) =
∑
ℓ

Pr(E ∩ Fℓ)

Pr(D)
=

∑
ℓ

PrevNoHitℓ
Pr(D)

· Pr(E via level ℓ | level ℓ has a hit).

For CPC (bucket exclusivity within a level) and PC (first hit within a level),

Pr
CPC

(identified as collider | D) =
1

Pr(D)

∑
ℓ

PrevNoHitℓ β
SZ,ℓ(1− α)UZ,ℓ︸ ︷︷ ︸

no Z-hits at ℓ

(
1− βS¬Z,ℓ(1− α)U¬Z,ℓ

)︸ ︷︷ ︸
some non-Z hit

,

Pr
CPC

(Z in all saved sepsets | D) =
1

Pr(D)

∑
ℓ

PrevNoHitℓβ
S¬Z,ℓ(1− α)U¬Z,ℓ

(
1− βSZ,ℓ(1− α)UZ,ℓ

)
,

Pr
PC

(identified as collider | D) =
1

Pr(D)

∑
ℓ

PrevNoHitℓ [S¬Z,ℓ (1− β) ISℓ−1,Uℓ
((1− β), α) + U¬Z,ℓ α ISℓ,Uℓ−1((1− β), α)] ,

Pr
PC

(Z in saved sepsets | D) =
1

Pr(D)

∑
ℓ

PrevNoHitℓ [SZ,ℓ (1− β) ISℓ−1,Uℓ
((1− β), α) + UZ,ℓ α ISℓ,Uℓ−1((1− β), α)] .
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Proof. Condition on Fℓ and apply CPC’s exclusivity or PC’s first-hit rule with the order-averaged
factors from Lemma G.4.

Proofs for Theorem 5.5 For CPC, under non-collider truth (sepsets in incZℓ), Lemma G.3
gives SZ,ℓ = m, UZ,ℓ = 0, S¬Z,ℓ = 0, U¬Z,ℓ = n. Plugging into Lemma G.5 yields
PrCPC(collider at ℓ) = PrevNoHitℓ β

m
[
1 − (1 − α)n

]
; under collider truth (sepsets in notZℓ),

the symmetric expression is PrCPC(Z in saved sepset at ℓ) = PrevNoHitℓ β
n
[
1 − (1 − α)m

]
.

Take the ratio to cancel PrevNoHitℓ. For CPC, with the same bucket counts and Lemma G.4,
PrPC(collider at ℓ) = PrevNoHitℓ · n · b · Im,n−1(a, b), and PrPC(Z in saved sepset at ℓ) =
PrevNoHitℓ ·m · b · In,m−1(a, b). Divide to cancel PrevNoHitℓ and b.

For Level-ℓ (ℓ ≥ 1), the wrong-orientation odds under Assumptions 5.3,5.4 can be obtained as

RCPC
ℓ = βm−n 1− (1− α)n

1− (1− α)m

RPC
ℓ =

n

m
· Im,n−1(1− β, α)

In,m−1(1− β, α)

where Ip,q(a, b) =
∫ 1

0
(1− au)p(1− bu)q du, m = incZℓ and n = notZℓ.

Therefore, for early levels ℓ ≥ 1 and ℓ≪ M
2 :

CPC:RCPC
ℓ ≈ βm−n n

m
= β(

M−1
ℓ−1 )−(

M−1
ℓ ) · M − ℓ

ℓ
(α small)

PC:RPC
ℓ ≈ n(n+ 1)

m(m+ 1)

[
1 + α

(m− n)(m+ n+ 1)

(m+ 2)(n+ 2)

]
(α, β small),

Taking α, β = o
(

1
M

)
completes the proof for Theorem 5.5. As

(
M−1

ℓ

)
grows with ℓ up to M/2,

n > m, βm−n > 1 as β < 1, so RCPC
ℓ > 1. At zeroth order RPC

ℓ ≈ n(n+ 1)

m(m+ 1)
≈

(M − ℓ

ℓ

)2
when m,n are large, soRPC

ℓ > 1 for ℓ < M/2.

Corollary G.6 (small-α approximation for CPC). For ℓ ≥ 1 and small α, as 1 − (1 − α)t =
tα+O(α2), we have

RCPC
ℓ = βm−n 1− (1− α)n

1− (1− α)m
≈ βm−n n

m
= β(

M−1
ℓ−1 )−(

M−1
ℓ ) · M − ℓ

ℓ
,

with relative error O(α).

Corollary G.7 (small-α and small-β approximation for PC). For ℓ ≥ 1 and small α, β,

Im,n(1− β, α) ≈ 1

m+ 1
+

β

m+ 1
− nα

(m+ 1)(m+ 2)
+ O(α2, αβ, β2).

Using the ratio expansion (x+ δx)/(y + δy) ≈ (x/y) [1 + (δx/x)− (δy/y)], we have

RPC
ℓ ≈ n(n+ 1)

m(m+ 1)

[
1 + α

(m− n)(m+ n+ 1)

(m+ 2)(n+ 2)

]
+ O(α2, αβ, β2).

Zeroth order (ignore α, β) is

RPC
ℓ ≈ n(n+ 1)

m(m+ 1)
=

M − ℓ

ℓ
· n+ 1

m+ 1
.

and n+1
m+1 has no tidy closed form in M, ℓ. For large m,n, n+1

m+1 ≈
n
m , giving RPC

ℓ ≈
(
M−ℓ

ℓ

)2
.

Proof.

Im,n(1− β, α) =

∫ 1

0

(
1− (1− β)u

)m(
1− αu

)n
du.
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Write (
1− (1− β)u

)m
= (1− u)m

(
1 +

βu

1− u

)m

≈ (1− u)m
(
1 +m

βu

1− u

)
,

(1− αu)n ≈ 1− nαu,

keeping terms up to O(α, β) and dropping O(α2, αβ, β2) then multiplying (and ignoring the αβ
cross-term):(

1− (1− β)u
)m

(1− αu)n ≈ (1− u)m +mβ u(1− u)m−1 − nαu(1− u)m.

Integrate termwise, we have

Im,n(1− β, α) ≈ 1

m+ 1
+

β

m+ 1
− nα

(m+ 1)(m+ 2)
+ O(α2, αβ, β2),

Since

RPC
ℓ =

n

m
· Im,n−1(1− β, α)

In,m−1(1− β, α)
, m = incZℓ, n = notZℓ.

Apply the expansion:

Im,n−1(1− β, α) ≈ 1

m+ 1
+

β

m+ 1
− (n− 1)α

(m+ 1)(m+ 2)
,

In,m−1(1− β, α) ≈ 1

n+ 1
+

β

n+ 1
− (m− 1)α

(n+ 1)(n+ 2)
.

Use the first-order ratio expansion x+δx
y+δy

≈ x
y

[
1 + δx

x −
δy
y

]
, where x = 1

m+1 , y = 1
n+1 . As

δx
x = β − (n−1)α

m+2 , δy
y = β − (m−1)α

n+2 , the ratio is approximated by n+1
m+1

[
1 + α

(
m−1
n+2 −

n−1
m+2

)]
.

Therefore

RPC
ℓ ≈ n(n+ 1)

m(m+ 1)

[
1 + α

(m− n)(m+ n+ 1)

(m+ 2)(n+ 2)

]
+O(α2, αβ, β2).

At zeroth order (ignore α, β),

RPC
ℓ ≈ n(n+ 1)

m(m+ 1)
=

( n

m

)( n+ 1

m+ 1

)
.

Since n/m =
(
M−1

ℓ

)
/
(
M−1
ℓ−1

)
= M−ℓ

ℓ ,

RPC
ℓ ≈ M − ℓ

ℓ
· n+ 1

m+ 1
,

and n+1
m+1 has no tidy closed form in M, ℓ. For large m,n, n+1

m+1 ≈
n
m , giving RPC

ℓ ≈
(
M−ℓ

ℓ

)2
.

H NUMERICAL EXPERIMENTS ON NON-COLLIDER / COLLIDER
IDENTIFICATION FPRS

We set max searching layer as l = 3, α = 0.05 and β = 0.1, plugging in the number of nodes, arcs
and average degrees of datasets, we can accordingly compute the expected FPRs as Table 4.

I PROMPTING TEMPLATES AND PARSING RULE

I.1 ANSWER TAG PARSING

We extract the final choice using the following case-insensitive regular expression, which returns a
single capital letter in {A,B,C,D,E}:

Listing 1: Regex for parsing the <Answer> tag.
_ans_re = re.compile(r"<\s*answer\s*>\s*([ABCDE])\s*<\s*/\s*answer\s*>",

re.I)
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Table 4: Expected false positive rates (FPRs) during identifications.
network PC (colliders-first) PC (nonc-first) CPC (colliders-first) CPC (nonc-first)

asia 0.177849 0.000926 0.071491 5.× 10−8

alarm 0.583846 0.000159 0.128392 5.× 10−37

cancer 0.102895 0.001906 0.059310 6.× 10−5

child 0.399529 0.000309 0.105279 5.× 10−20

hailfinder 0.700605 0.000103 0.138733 5.× 10−56

hepar2 0.755133 0.000082 0.141944 5.× 10−70

insurance 0.488650 0.000222 0.117261 5.× 10−27

mildew 0.567216 0.000168 0.126597 5.× 10−35

water 0.540173 0.000185 0.123536 5.× 10−32

win95pts 0.773360 0.000075 0.142753 5.× 10−76

I.2 PROMPT TEMPLATES

Placeholders in braces are programmatically substituted (e.g., {u}, {v}, {data_desc}).

Listing 2: Full chain-of-thought selection template.
You are a senior researcher in causal discovery. We are studying the

following dataset:

{data_desc}

The two target variables under review are {u} and {v}.

Conditional-independence tests mentioning these variables:

{ci_bullets}

Neighbour chain(s) that must normally remain non-collider:

{chains}

The nodes involved are described as below:

{node_desc}

Choose one explanation that best fits domain knowledge and/or decides a
CI test is unreliable (avoid selecting D or E unless other options
are strongly against common sense):

A. Undecided. We don’t know enough to confidently pick a directionality.
B. Changing the state of {u} causally affects {v}, and {v} causally

affects {u_theOther_2v}.
C. Changing the state of {v} causally affects {u}, and {u} causally

affects {v_theOther_2u}.
D. Changing the state of {u} causally affects {v}, and {u_theOther_2v}

also causally affects {v}, **violating corresponding CI tests**.
E. Changing the state of {v} causally affects {u}, and {v_theOther_2u}

also causally affects {u}, **violating corresponding CI tests**.

Think step-by-step before selecting:
1. Mechanisms - What known causal pathways (biological, physical, etc.)

support each direction?
2. Counterfactual test - What would happen if we intervened on one node?

What would we expect?
3. Empirical check - Point to one key piece of information that favors/

weakens a direction.
4. Comparison - Briefly weigh A vs B vs C vs D vs E and choose the most

plausible.
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Return exactly three lines:
1. Reasoning in support of one direction.
2. Reasoning against the weaker/less plausible direction.
3. Final choice: <Answer>A/B/C/D/E</Answer>

I.3 TEMPLATE WHEN ONLY v → u ANCILLARY EDGE IS POSSIBLE
(_CHAIN_PROMPT_TMPL_NONE2U)

Listing 3: Restricted template (None2u).
You are a senior researcher in causal discovery. We are studying the

following dataset:

{data_desc}

The two target variables under review are {u} and {v}.

Conditional-independence tests mentioning these variables:

{ci_bullets}

Neighbour chain(s) that must normally remain non-collider:

{chains}

The nodes involved are described as below:

{node_desc}

Choose one explanation that best fits domain knowledge and/or decides a
CI test is unreliable (avoid selecting D unless other options are
strongly against common sense):

A. Undecided. We don’t know enough to confidently pick a directionality.
B. Changing the state of {u} causally affects {v}, and {v} causally

affects {u_theOther_2v}.
C. Changing the state of {v} causally affects {u}.
D. Changing the state of {u} causally affects {v}, and {u_theOther_2v}

also causally affects {v}, **violating corresponding CI tests**.

Think step-by-step before selecting:
1. Mechanisms - What known causal pathways (biological, physical, etc.)

support each direction?
2. Counterfactual test - What would happen if we intervened on one node?

What would we expect?
3. Empirical check - Point to one key piece of information that favors/

weakens a direction.
4. Comparison - Briefly weigh A vs B vs C vs D and choose the most

plausible.

Return exactly three lines:
1. Reasoning in support of one direction.
2. Reasoning against the weaker/less plausible direction.
3. Final choice: <Answer>A/B/C/D</Answer>

I.4 TEMPLATE WHEN ONLY u→ v ANCILLARY EDGE IS POSSIBLE
(_CHAIN_PROMPT_TMPL_NONE2V)

Listing 4: Restricted template (None2v).
You are a senior researcher in causal discovery. We are studying the

following dataset:
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{data_desc}

The two target variables under review are {u} and {v}.

Conditional-independence tests mentioning these variables:

{ci_bullets}

Neighbour chain(s) that must normally remain non-collider:

{chains}

The nodes involved are described as below:

{node_desc}

Choose one explanation that best fits domain knowledge and/or decides a
CI test is unreliable (avoid selecting D unless other options are
strongly against common sense):

A. Undecided. We don’t know enough to confidently pick a directionality.
B. Changing the state of {u} causally affects {v}.
C. Changing the state of {v} causally affects {u}, and {u} causally

affects {v_theOther_2u}.
D. Changing the state of {v} causally affects {u}, and {v_theOther_2u}

also causally affects {u}, **violating corresponding CI tests**.

Think step-by-step before selecting:
1. Mechanisms - What known causal pathways (biological, physical, etc.)

support each direction?
2. Counterfactual test - What would happen if we intervened on one node?

What would we expect?
3. Empirical check - Point to one key piece of information that favors/

weakens a direction.
4. Comparison - Briefly weigh A vs B vs C vs D and choose the most

plausible.

Return exactly three lines:
1. Reasoning in support of one direction.
2. Reasoning against the weaker/less plausible direction.
3. Final choice: <Answer>A/B/C/D</Answer>

I.5 TEMPLATE WITHOUT CI/NEIGHBOUR CONTEXT (_CHAIN_PROMPT_TMPL_NONE)

Listing 5: Minimal template (None).
You are a senior researcher in causal discovery. We are studying the

following dataset:

{data_desc}

The two target variables under review are {u} and {v}.

The nodes involved are described as below:

{node_desc}

Choose one explanation that best fits domain knowledge:

A. Undecided. We don’t know enough to confidently pick a directionality.
B. Changing the state of {u} causally affects {v}.
C. Changing the state of {v} causally affects {u}.
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Think step-by-step before selecting:
1. Mechanisms - What known causal pathways (biological, physical, etc.)

support each direction?
2. Counterfactual test - What would happen if we intervened on one node?

What would we expect?
3. Empirical check - Point to one key piece of information that favors/

weakens a direction.
4. Comparison - Briefly weigh A vs B vs C and choose the most plausible.

Return exactly three lines:
1. Reasoning in support of one direction.
2. Reasoning against the weaker/less plausible direction.
3. Final choice: <Answer>A/B/C</Answer>
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