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ABSTRACT

In recent years, Artificial Intelligence has undergone a paradigm shift with the
rise of foundation models, which are trained on large amounts of data, typically
in a self-supervised way, and can then be adapted to a wide range of downstream
tasks. In this work, we propose the first foundation model for Error Correction
Codes. This model is trained on multiple codes and can then be applied to an
unseen code. To enable this, we extend the Transformer architecture in multiple
ways: (1) a code-invariant initial embedding, which is also position- and length-
invariant, (2) a learned modulation of the attention maps that is conditioned on
the Tanner graph, and (3) a length-invariant code-aware noise prediction module
that is based on the parity-check matrix. The proposed architecture is trained on
multiple short- and medium-length codes and is able to generalize to unseen codes.
Its performance on these codes matches and even outperforms the state of the
art, despite having a smaller capacity than the leading code-specific transformers.
The suggested framework therefore demonstrates, for the first time, the benefits
of learning a universal decoder rather than a decoder optimized for a given code.

1 INTRODUCTION

Reliable digital communication relies on the design of codes that can be accurately decoded when
transmitted over noisy channels. The optimal decoding is defined by the NP-hard maximum likeli-
hood rule, and the efficient decoding of codes remains an open problem.

Recently, powerful learning-based decoders have been introduced, borrowing from the architecture
of well-proven deep models. For example, a Transformer-based decoder that incorporates the er-
ror correction code (ECC) into the architecture has been recently proposed by Choukroun & Wolf
(2022a), outperforming existing methods by sizable margins and at a fraction of their time complex-
ity. This architecture has been subsequently integrated into a denoising diffusion models paradigm,
further improving results (Choukroun & Wolf, 2022b).

A major drawback of current ECC neural decoders is the dedicated adaptation of the architecture
and optimization of the model with respect to each single code of interest. This major challenge
prevents a trained neural decoder from being employed for the decoding or fine-tuning of other
codes or settings, even for the same family of codes and settings but with different lengths.

Large models known as foundation models (Bommasani et al., 2021) have revolutionized deep learn-
ing by addressing multiple complex downstream tasks that pose a challenge to alternative methods.
These models are typically initiated through training on extensive unlabeled datasets, primarily by
employing self-supervised pretext tasks. Subsequently, transfer learning to new tasks utilizes strate-
gies such as zero-shot learning, prompt-engineering, or fine-tuning (Brown et al., 2020).

In this work, we consider the design and training of a foundation neural decoder for error correction
codes based on the Transformer architecture of Vaswani et al. (2017), which is capable of adapting
and generalizing to any code. As far as we can ascertain, this is the first time a universal neural
decoder has been presented. Beyond the conceptual novelty, we make three technical contributions:
(i) we adapt the Transformer input embedding in order to remain invariant to code length (ii) the
positional embedding, as well as the code, are added as relative positional encoding that is integrated
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into the self-attention via a learned mapping of the node distances in the Tanner graph, and (iii) a
size-invariant prediction module that is conditioned on the parity-check matrix and is based on a
learned aggregation function. Applied to a wide variety of codes, our method is able to reach and
even surpass the performance of state-of-the-art per-code learning-based solutions on the zero-shot,
pretrained, and fine-tuned settings. This is obtained despite remaining entirely code-invariant and
employing an extremely shallow architecture.

2 RELATED WORKS

Previous work on neural decoders was divided by Raviv et al. (2020) into two main classes: model-
based or model-free. Model-based decoders implement parameterized versions of classical Belief
Propagation (BP) decoders, where the Tanner graph is unfolded into a neural network in which
weights are assigned to each variable edge. This results in an improvement in comparison to the
baseline BP method for short codes (Nachmani et al., 2016; Nachmani & Wolf, 2019; 2021). Model-
based decoders benefit from a strong theoretical background, but the architecture is overly restrictive.

Model-free decoders employ general types of neural network architectures. Earlier approaches
(Cammerer et al., 2017; Gruber et al., 2017; Kim et al., 2018) employed stacked fully connected
networks or recurrent neural networks that have difficulties in learning the code. However, some
of the training approaches are still in use. For example, our work employs the preprocessing of
Bennatan et al. (2018), which transforms the channel output such that the decoder remains prov-
ably invariant to the codeword. This allows the training of generic neural decoders without the
risk of codeword overfitting. Choukroun & Wolf (2022a) introduced the Error Correction Code
Transformer (ECCT), obtaining SOTA performance. The model embeds the signal elements into a
high-dimensional space where the analysis is more efficient, while the information about the code
is integrated via a masked self-attention mechanism. Subsequently, Choukroun & Wolf (2022b) ex-
tended the denoising diffusion paradigm to ECC, iteratively applying an ECCT, further improving
the SOTA by a large margin.

We note that neural decoder contributions generally focus on short and moderate-length codes for
two main reasons: (i) classical decoders are proven to reach the capacity of the channel for large
codes, preventing any potential enhancement, and (ii) the emergence of applications driven by the
Internet of Things created the requirement for optimal decoders of short to moderate codes. For
example, 5G Polar codes have code lengths of 32 to 1024 (ESTI, 2021).

Recently, the ML community has been focusing intensively on large foundation models trained on
internet-scale datasets, which achieve state-of-the-art performance on a diverse range of learning
tasks. Rather than learning task-specific models from scratch, the foundation models are adapted
via fine-tuning or few-shot/zero-shot learning strategies and subsequently deployed on a wide range
of domains (Brown et al., 2020; Radford et al., 2021). Such foundation models enable the transfer
and sharing of knowledge across domains, mitigate the need for task-specific training data, and
have been applied to several fields, such as Natural Language Processing (LLM)(Wei et al., 2022;
Touvron et al., 2023; Brown et al., 2020), computer vision (Saharia et al., 2022; Rombach et al.,
2022; Ramesh et al., 2022), multimodal analysis (Radford et al., 2021; Li et al., 2022; Awadalla
et al., 2023; OpenAI, 2023), and even reinforcement learning (Reed et al., 2022).

3 PROBLEM SETTING AND BACKGROUND

In this work, we assume a standard transmission protocol using a linear code C. The code is defined
by a generator matrix G ∈ {0, 1}k×n and the parity check matrix H ∈ {0, 1}(n−k)×n defined such
that GHT = 0 over the order 2 Galois field GF (2). The parity check matrix H entails what is
known as a Tanner graph, which consists of n variable nodes and (n − k) check nodes. The edges
of this graph correspond to the on-bits in each column of the matrix H .

The input message m ∈ {0, 1}k is encoded by G to a codeword x ∈ C ⊂ {0, 1}n satisfying
Hx = 0 and transmitted via a Binary-Input Symmetric-Output channel, e.g., an AWGN channel.
Let y denote the channel output represented as y = xs + ε, where xs denotes the Binary Phase
Shift Keying (BPSK) modulation of x (i.e., over {±1}), and ε is a random noise independent of
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the transmitted x. The main goal of the decoder f : Rn → Rn is to provide a soft approximation
x̂ = f(y) of the codeword.

We follow the preprocessing of Bennatan et al. (2018); Choukroun & Wolf (2022a), in order to
remain provably invariant to the transmitted codeword and to avoid overfitting. The preprocessing
transforms y to a 2n− k dimensional codeword invariant vector defined as ỹ = h(y) = [|y|, s(y)] ,
where, [·, ·] denotes vector concatenation, |y| denotes the absolute value (magnitude) of y and
s(y) ∈ {0, 1}n−k denotes the binary code syndrome. The syndrome is obtained via the GF (2)
multiplication of the binary mapping of y with the parity check matrix such that

s(y) = Hyb := Hbin(y) := H
(
0.5(1− sign(y))

)
. (1)

The induced parameterized decoder fθ : R2n−k → Rn with parameters θ aims to predict the multi-
plicative noise denoted as ε̃ and defined such that y = xs ⊙ ε̃. The prediction of the multiplicative
noise instead of the additive physical one is used in order to remain invariant to the transmitted code-
word, since the syndrome is codeword-invariant and |y| = |xsε̃| = |ε̃|, thereby avoiding the risk of
code overfitting, as described by Bennatan et al. (2018) and the proof of lemma 1 of (Richardson &
Urbanke, 2001). The final prediction takes the form x̂s = sign(y ⊙ fθ(|y|, Hyb)). An illustration of
the coding procedure under the foundation model setting is given in Appendix A.

3.1 ERROR CORRECTION CODE TRANSFORMER

The state-of-the-art ECCT (Choukroun & Wolf, 2022a) has been recently proposed for neural error
decoding. It consists of a transformer architecture (Vaswani et al., 2017) with several modifications.
Following Bennatan et al. (2018), the model’s input h(y) is defined by the concatenation of the
codeword-independent magnitude and syndrome, such that h(y) := [|y|, 1− 2s(y)] ∈ R2n−k. Each
element is then embedded into a high-dimensional space for more expressivity, such that the initial
positional embedding Φ ∈ R(2n−k)×d is given by Φ =

(
h(y) · 1Td

)
⊙W where W ∈ R(2n−k)×d is

the learnable embedding matrix and ⊙ is the Hadamard product.

The interaction between the bits is performed naturally via the self-attention modules coupled with
a binary mask derived from the parity-check matrix in order to integrate information about the code

AH(Q,K, V ) = Softmax(d−1/2(QKT + g(H)))V, (2)

where g(H) is a fixed binary masking function designed according to the parity-check matrix H ,
and Q,K, V are the classical self-attention projection matrices.

The masking g(H) : {0, 1}(n−k)×n → {−∞, 0}(2n−k)×(2n−k) is defined by the adjacency matrix
of the Tanner graph extended to two-ring connectivity: the mask’s on-bits exist between adjacent
nodes (distance one) and secondary neighbors (distance two).

Finally, the transformed embedding is projected onto a one-dimensional vector for the noise predic-
tion with a linear layer, such that with Wo ∈ R(2n−k)×n and Wd→1 ∈ Rd×1, we have

ˆ̃ε =WT
o (Wd→1Φ) (3)

4 THE ECC FOUNDATION MODEL

We present the elements of the proposed Foundation Error Correction Code Transformer (FECCT)
decoder, the complete architecture, and the training procedure

4.1 CODE-INVARIANT INITIAL EMBEDDING

Traditional Transformers encode each token according to the model’s vocabulary embedding; the
positional embedding is added at a later stage. In ECCT, a unique model is crafted for every code and
length. The initial embedding is designed such that each input bit possesses its distinct embedding
vector, providing, as a byproduct, a learned positional encoding.

In our length-invariant context, we propose a new code-invariant embedding, where a single embed-
ding is given for all magnitude elements, and two embeddings are given for every element of the
binary syndrome.
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Figure 1: For the Hamming(7,4) code: (a) the parity-check matrix, (b) the induced Tanner graph, (c)
the ECCT binary masking, (d) the distance matrix G(H).

Formally, by considering each dimension of {ỹi}2n−k
i=1 separately, we define the projection of each

element to a high, d dimensional embedding {ϕi}2n−k
i=1 ∈ Rd as:

ϕi =

{
|yi|WM , if i ≤ n

WS
(s(y))i−n+1

, otherwise
(4)

where {WM ,W
S
0 ,W

S
1 } ∈ Rd denote the magnitude encoding and one-hot encoding of the binary

syndrome elements, respectively, and (s(y))j denotes the j element of the syndrome vector. Note
that unlike ECCT, in which 2n − k different embeddings are learned (for a specific code), FECCT
learns only three embedding vectors (which are used for all codes). This substantially reduces the
number of learned parameters.

Since ECCT has a different embedding for each bit, this fixed embedding is capable of capturing the
bit position. In contrast, our method enables the embedding of arbitrary codes of any length, at the
price of losing the positional encoding. This is addressed next, using a code-conditioned modulation
of the self-attention maps.

4.2 TANNER GRAPH DISTANCE MASKING AS CODE AND POSITIONAL ENCODING

For a given algebraic code defined by the matrix H , ECCT integrates its information by designing a
binary masking function, thresholding the attention between nodes with distances greater than two
on the Tanner graph.

In FECCT, the masking serves two purposes. First, similar to ECCT, it integrates the code structure
into the transformer. Second, since, unlike ECCT, the initial embedding is position-invariant, the
learned masking adds the relative position information to the processed elements.

Based on the notion that the Tanner graph captures the relations between every two bits in the code,
we consider the distance matrix G(H) ∈ N(2n−k)×(2n−k), which is constructed from the Tanner
graph of the parity-check matrix H . Specifically, each element (i, j) in this matrix is defined as the
length of the shortest path in the Tanner graph between node i and node j. An illustration of G(H)
on the Hamming(7,4) code is presented in Figure 1(d).

In order to incorporate the positional information into the self-attention mechanism, we learn a
parameterized mapping ψ : N → R from the elements of the distance matrix G(H) to a value that is
used to modulate the self-attention maps:

AH(Q,K, V ) =
(

Softmax
(
QKT

√
d

)
⊙ ψ

(
G(H)

))
V. (5)

This H-dependent attention mechanism generalizes that of Eq. 2, where the latter may be approx-
imated as a special case in which ψ((G(H)i)) = 1(G(H))i≤2 is applied in a non-differentiable
manner. The general form of modulation in Eq. 5 captures more information from the Tanner graph,
and, therefore, about the code. This allows us, for example, to reconstruct the entire graph from the
values used to modulate the self-attention maps, whereas ECCT’s binary thresholding function is
often not informative enough for reconstruction, as shown in Appendix B.
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(a) (b) (c)

Figure 2: For the LDPC(96,48) code: (a) the parity-check matrix, (b) the cropped ECCT binary
masking, (c) the learned fully connected output layer. One can observe that the small dynamic range
reduces the fully connected dot-product to a sum of few signed elements

4.3 PARITY-CHECK AWARE PREDICTION

After the initial encoding, the (2n−k) embeddings are propagated through multiple normalized self-
attention and feed-forward blocks towards the output module to provide the final noise prediction.

To obtain the prediction, ECCT makes use of two fully-connected layers, as described in Eq. 3. The
first layer Wd→1 shrinks each of the (2n − k) embedding vectors from d to 1 and the second Wo

reduces the output from ỹ’s dimensions (2n− k) to y’s dimensions (n).

As can be seen in Fig. 2(c), the learned Wo is sparse and each bit of the prediction is a linear
combination of the corresponding bits in ỹ (the diagonal line in the figure) and of its related elements
according to the parity-check matrix or induced mask (see the (n − k) rightmost columns). This
behavior is not enforced; it emerges organically during training.

Motivated by this phenomenon, in FECCT, we explicitly enforce a similar dependency structure.
Since the FECCT is required to be code- and length-invariant, it cannot use a fully connected layer,
and this structure is obtained by directly considering the parity check matrix as follows.

We first transform the magnitude and the syndrome parts of the learned embedding separately. The
syndrome part is resized from (n− k) embeddings to n embeddings according to an aggregation in-
duced by the parity-check matrix. Then, the n magnitude embeddings are added to the transformed
syndrome elements. Finally, the d-dimensional embedding is shrunk to one dimension for the pre-
diction. This way, we are able to incorporate the residual information of the syndrome embeddings
into the final prediction bits.

Specifically, let us denote the final Transformer’s embedding ϕo ∈ R(2n−k)×d, and WS ,WM ∈
Rd×d two learnable affine transforms matrices. We define by ϕo[1:n] = ϕo,M ∈ Rn×d and
ϕo[n+1:2n−k] = ϕo,S ∈ R(n−k)×d the magnitude and syndrome parts of the embedding, respectively.
The output module performs the following projections

ˆ̃ε =
(
ϕo,MWM +HT (ϕo,SWS)

)
Wd→1 (6)

where ˆ̃ε denotes the predicted noise, and Wd→1 denotes the final embedding shrinkage. The pro-
posed aggregation provides both (i) code-awareness in the sense that the aggregation is induced by
the parity-check matrix, and (ii) code-invariance in the sense that the aggregation is invariant to code
size and can be performed with any code.

4.4 ARCHITECTURE AND TRAINING

An illustration of the entire model is given in Figure 3. The initial encoding is performed with a d
dimensional one-hot encoding for the syndrome part and a single d-dimensional vector for the mag-
nitude part, for a total of three d-dimensional parameters. The decoder is defined as a concatenation
of N = 6 decoding layers composed of self-attention and feed-forward layers interleaved with nor-
malization layers with d = 128. The distance embedding is a learned integer-to-scalar mapping, for
mapping values 1, . . . , 10, where 10 is the maximal distance encountered in a Tanner graph. See
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Figure 3: Illustration of the proposed Foundation Transformer architecture.

Appendix C for the histogram of distances in the training dataset. Note that self-attention is turned
off by mapping the diagonal (distance of zero) to infinity.

The dimension of the feed-forward network of the transformer is four times that of the embedding
d, following Vaswani et al. (2017), and is composed of GEGLU layers (Shazeer, 2020), with layer
normalization set to the pre-layer setting, as in Klein et al. (2017); Xiong et al. (2020). An eight-head
self-attention module is used in all experiments. We note that while larger architectures and longer
training times would enable better performance, deepening the accuracy gap from other methods
(e.g., GPT-3 (Brown et al., 2020) operates successfully on 2K inputs with a similar Transformer
model, but with N = 96, d = 12K), error correction requires rather light and shallow models that
can be deployed on edge devices. The output module is described fully in the previous section.

The training objective is the cross-entropy function, with the goal of learning to predict the mul-
tiplicative noise ε̃ (Bennatan et al., 2018). Denoting the soft multiplicative noise as ε̃s, such that
y = xs⊙ ε̃s, we obtain ε̃s = ε̃s⊙x2s = y⊙xs. Thus, the binary multiplicative noise to be predicted
is defined by ε̃ = bin(y ⊙ xs), such that the loss computed for a single received word y is

L = −
n∑

i=1

ε̃i log(fθ(y)) + (1− ε̃i) log(1− fθ(y)). (7)

The estimated hard-decoded codeword is straightforwardly obtained as x̂b = bin(sign(fθ(y)⊙ y)).

The Adam optimizer (Kingma & Ba, 2014) is used with 512 samples per minibatch, for 3000 epochs,
with 1000 minibatches per epoch. We note that while using more epochs can improve performance
as demonstrated with large foundation models, the current shallow setting already reaches SOTA
performance. We initialized the learning rate to 10−4 coupled with a cosine decay scheduler down
to 10−6 at the end of the training. No warmup was employed (Xiong et al., 2020).

The code database from Helmling et al. (2019) was web-scraped in order to extract all possible
binary codes. Due to our modest computational resources, we limited our training to codes with
lengths no longer than 150. A full description of the codes used for training and testing as well
as general statistics is given in Appendix C. It is important to note that the training set is highly
unbalanced between code families.

Due to the construction of the model and its input preprocessing, the zero codeword is sufficient
for training for every code. The additive Gaussian noise is sampled randomly per batch in the
{2, . . . , 8} normalized SNR (i.e. Eb/N0) range. Other types of noise can also be used to increase
the generalization to noise (e.g., Rayleigh channel), but this is beyond the scope of this paper. Each
training batch is constructed as the concatenation of randomly sampled code and noise, with adapted
masking of the different elements (e.g., y, self-attention mask, distances, etc.).

Training time is around 12 days, without any coding optimization of the self-attention mechanism.
The acceleration of the proposed method (e.g. pruning, quantization, distillation, low-rank approx-
imation) (Wang et al., 2020; Lin et al., 2021) is beyond the scope of this paper and is left for future
work. Training and experiments are performed on four 12GB GeForce RTX 2080 Ti GPUs. The
training time is approximately 320 seconds per epoch. Testing time depends on the code, rang-
ing from 10ms to 30ms per sample using one GPU. While the complexity is similar to the ECCT
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Table 1: A comparison of our method to the baselines on codes seen during pretraining. Higher is
better. BP and learned BP results are provided for either 5 (50) iterations in the first (second) line.

Method BP Hyp BP ARBP ECCT Ours

Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH(63,36) 3.72
4.03

4.65
5.42

5.66
7.26

3.96
4.29

5.35
5.91

7.20
8.01

4.33
4.57

5.94
6.39

8.21
8.92 4.56 6.37 8.85 4.53 6.38 9.10

BCH(127,120) NA NA NA NA NA NA NA NA NA 4.70 6.37 8.95 4.62 6.33 8.95
Reed Solomon(21,15) NA NA NA NA NA NA NA NA NA 5.71 7.42 9.11 5.71 7.28 9.12
Reed Solomon(60,52) NA NA NA NA NA NA NA NA NA 5.53 7.54 9.98 5.47 7.59 10.21
POLAR(32,16) NA NA NA NA NA NA NA NA NA 6.57 8.94 11.91 6.36 8.36 11.49

POLAR(64,48) 3.52
4.26

4.04
5.38

4.48
6.50

4.25
4.59

5.49
6.10

7.02
7.69

4.77
5.57

6.30
7.43

8.19
9.82 6.21 8.32 10.71 6.06 8.21 10.90

(
O(N(d2(2n − k) + n2d))

)
, the number of parameters of the FECCT is much smaller, since it is

independent of the code’s length, contrary to the ECCT, which requires O((2n− k)d+ n(2n− k))
more parameters for the input and output encodings.

5 EXPERIMENTS

To evaluate our method, we train one model of the proposed architecture with four classes of linear
codes: Low-Density Parity Check (LDPC) codes (Gallager, 1962), Polar codes (Arikan, 2008), Reed
Solomon codes (Reed & Solomon, 1960) and Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose
& Ray-Chaudhuri, 1960). All parity check matrices are taken from Helmling et al. (2019).

We compare our method with the BP algorithm (Pearl, 1988), the recent Autoregressive hyper-
network BP of (Nachmani & Wolf, 2021) (AR BP), and the SOTA ECCT (Choukroun & Wolf,
2022a) with the same number of layers. Note that LDPC codes are specifically designed for BP-
based decoding (Richardson et al., 2001).

The results are reported as negative natural logarithm bit error rates (BER) for three different normal-
ized SNR values (Eb/N0), following the conventional testing benchmark, e.g., Nachmani & Wolf
(2019); Choukroun & Wolf (2022a). BP-based results are obtained after L = 5 BP iterations in the
first row (i.e. 10-layer neural network) and at convergence results in the second row are obtained
after L = 50 BP iterations (i.e., 100-layer neural network). During testing, at least 105 random
codewords are decoded, to obtain at least 50 frames with errors at each SNR value. We trained and
tested all reported ECCT results to ensure that the models were trained on the same parity-check
matrices. All the other baseline results were obtained from the corresponding papers, omitting the
codes that have not been tested by these baselines (NA). We refer the reader to Choukroun & Wolf
(2022a;b) for complexity and performance comparisons with specialized decoders such as BP and
SCL Tal & Vardy (2015).

In Table 1 we present the performance of our model on codes seen during training. As can be seen,
our method can outperform the state of the art or remain very close to it.

Table 2 depicts the zero-shot performance of our model, i.e., the performance on unseen codes.
Evidently, our method outperforms the state of the art even on some of the unseen codes. However,
for codes from families that are underrepresented in the training set, such as Polar codes, a per-code
transformer may outperform our zero-shot performance. Reassuringly, the results for BCH(255,163)
show that our model is able to generalize to an unseen length that exceeds the length of the longest
training code by a factor of two. We also provide zero-shot generalization performance on the
BCH(1023,1013) code (seven times longer than the larger code in the training set) in Appendix H.

Finally, in Figure 4, we present the performance improvement when we fine-tune a given code, i.e.,
train on the code of interest for 500 epochs. Other fine-tuning strategies can also be more beneficial.
As can be seen, the proposed fine-tuning enables us to further outperform or close the gap with the
state of the art, where needed. We provide BER curves on several codes in Appendix F.
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Table 2: A comparison of our method with literature baselines on zero-shot learning, i.e., the per-
formance of the FECCT is provided on new codes only. Higher is better. BP and learned BP results
are provided for either 5 (50) iterations in the first (second) line.

Supervision Unlearned Fully supervised Zero-Shot

Method BP Hyp BP ARBP ECCT Ours

Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH(63,45) 4.08
4.36

4.96
5.55

6.07
7.26

4.48
4.64

6.07
6.27

8.45
8.51

4.80
4.97

6.43
6.90

8.69
9.41 5.18 7.24 10.20 5.18 7.32 10.31

BCH(63,51) 4.34
4.50

5.29
5.82

6.35
7.42

4.64
4.80

6.08
6.44

8.16
8.58

4.95
5.17

6.69
7.16

9.18
9.53 5.63 7.96 11.22 5.71 8.07 11.31

BCH(127,92) NA NA NA NA NA NA NA NA NA 4.10 5.71 8.38 4.11 5.84 8.79
BCH(255,163) NA NA NA NA NA NA NA NA NA 3.34 4.13 5.80 3.34 4.13 5.76

CCSDS(128,64) 6.55
-

9.65
-

13.78
-

6.99
-

10.57
-

15.27
-

7.25
-

10.99
-

16.36
- 6.77 10.51 15.90 6.52 9.67 15.01

CCSDS(32,16) NA NA NA NA NA NA NA NA NA 5.93 7.77 10.02 5.23 7.00 9.21

POLAR(128,86) 3.80
4.49

4.19
5.65

4.62
6.97

4.57
4.95

6.18
6.84

8.27
9.28

4.81
5.39

6.57
7.37

9.04
10.13 6.39 9.08 12.70 5.53 7.90 11.29

POLAR(64,32) 3.52
4.26

4.04
5.38

4.48
6.50

4.25
4.59

5.49
6.10

7.02
7.69

4.77
5.57

6.30
7.43

8.19
9.82 6.91 9.18 12.34 5.88 7.91 10.76

Figure 4: A comparison of our method with the SOTA ECCT, the pretrained FECCT and the fine-
tuned FECCT (Ours-FT) on the code of interest. Higher is better.

5.1 ABLATION STUDY

Architectural contributions: we present in Table 3 the impact of the multiple architectural proposi-
tions on performance. Besides the method’s invariance to code and length, these results demonstrate
the beneficial impact of each of the contributions on the obtained accuracy. Most crucially, without
the suggested distanced-based masking (using ECCT’s mask on bits for distances smaller than 3), the
performance drops when both the input and output are invariant, since there is no position encoding.
Interestingly, the invariant initial embedding inductive bias provides better accuracy while having
less parameters. Finally, we provide in Figure 5 the illustration of the fine-grained learned mapping
of the graph distance. It is interesting to observe that the model seems to assign the most impact-
ful mapping for the elements distanced by one and two nodes, remarkably matching the ECCT’s
two-ring heuristic. Illustrations of typical self-attention maps are given in Appendix G.

Generalization contribution: We provide a generalization analysis of the framework in Appendix
E where we show the advantage of the proposed training strategy for generalization.

6 DISCUSSION AND LIMITATIONS

The proposed framework permits the efficient integration of a single code-invariant neural decoder
into base stations and error correction system on chips, correcting multiple code families at different
rates. This can potentially save die space as well as storage and memory usage while matching or
even outperforming the state-of-the-art neural decoders. Also, the development of universal neural
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(a) (b) (c)

Figure 5: Absolute values of the learned mapping of the proposed FECCT with respect to distance
for three layers of the model among the six. The mapping of all the layers is given in Appendix D.

Table 3: A comparison of the impact of each one of the presented contributions on the performance.
All the models have a N = 2, d = 32 architecture and follow the same ECCT’s training setting of
1000 epochs. DM refers to the proposed Distanced-based Masking strategy, II refers to the proposed
code Invariant Initial embedding, and IO refers to the suggested Invariant Output parity-check aware
aggregation scheme. We note the ECCT has 15% more parameters than the FECCT.

Method POLAR(64,32) BCH(63,45)

4 5 6 4 5 6

ECCT 4.12 5.22 6.67 4.45 5.81 7.65
ECCT + II 4.27 5.54 7.14 4.52 5.98 7.92
ECCT + IO 4.44 5.73 7.40 4.41 5.76 7.62
ECCT + II + IO 4.09 5.26 6.80 4.31 5.62 7.41
ECCT + DM 4.44 5.73 7.37 4.74 6.34 8.53
ECCT + DM + II 4.44 5.73 7.37 5.17 7.07 9.59
ECCT + DM + IO 4.36 5.64 7.32 4.53 6.01 8.03
FECCT: ECCT + DM + II + IO 4.36 5.64 7.32 4.52 5.98 8.05

decoders allows for the differentiable optimization of codes. For example, existing or new codes can
be improved iteratively to enable more effective decoding in higher SNRs.

It is important to note that the proposed universal decoding architecture can be improved further
by applying it together with other neural decoding algorithms, such as the denoising diffusion ECC
paradigm (Choukroun & Wolf, 2022b), which was evaluated with the ECCT architecture backbone.

As our experiments reveal, dataset diversity is important for generalization and performance. Cur-
rently, the framework we trained on codes obtained from the dataset of Helmling et al. (2019) which
are highly unbalanced, with an overrepresentation of BCH codes. We also note that the parity check
matrices of the Polar codes have been standardized following Choukroun & Wolf (2022a) which,
besides the under-representation of Polar codes, may be why the FECCT is less performant than
ECCT on zero-shot tasks for these specific codes.

7 CONCLUSION

We present a novel foundation model based on the Transformer architecture for the decoding of
algebraic block codes. The proposed model allows effective representation of interactions between
the code’s elements in an invariant fashion, and the processing of any code of any length. The
proposed method reaches and even outperforms the state of the art, while having fewer parameters
and being code- and size-invariant, enabling the potential efficient deployment of a single universal
decoder for ECC. The next steps should focus on the deployment of the method on existing error
correction embedded systems via the utilization of Transformer acceleration methods along with
extensive tuning and training of the codes and channels of interest. Additionally, the definition of a
universal differentiable neural decoder may open the door to the optimization of codes and even to
the learning of new families of codes.
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A ILLUSTRATION OF THE COMMUNICATION SYSTEM

We provide in Figure 6 an illustration of the proposed communication and decoding setting.

Figure 6: Illustration of the communication system. In the suggested foundation model setting, a
single decoder fθ is proposed, capable of correcting any code at any length, given the code’s parity-
check matrix. Here, D denotes the number of different samples and noises, indexed by i, to be
processed by the decoder.

B LOSS OF ADJACENCY INFORMATION IN ECCT

To illustrate the loss of connectivity information from the ECCT’s mask we provide in Figure 7 a
description of the graph reconstruction from the ECCT’s mask for the (3, 1) repetition code. As
can be seen, the Tanner graph reconstructed from the mask cannot describe graph connectivity ac-
curately because of the hard distance (one and two-ring) thresholding. For this code, assuming no
connectivity between the variable nodes prior would allow faithful reconstruction.

Figure 7: For the (3, 1) repetition code: (a) the original Tanner graph, (b) the induced ECCT’s mask,
(c) the ”Tanner” graph derived from the mask.

C DESCRIPTION OF THE CODES

We present in Figure 8 the statistics of the codes used in this work. The codes were randomly
sampled for the creation of the datasets.

• TRAIN: BCH 127 106 3 strip.txt

• TRAIN: BCH 127 113 2 strip.txt

• TRAIN: BCH 127 120 1 strip.txt

• TRAIN: BCH 127 64 10 strip.txt

• TRAIN: BCH 127 71 9 strip.txt

• TRAIN: BCH 127 78 7 strip.txt

• TRAIN: BCH 127 85 6 strip.txt

• TRAIN: BCH 127 99 4 strip.txt

• TRAIN: BCH 15 11 1 strip.txt

• TRAIN: BCH 31 11 5 strip.txt

• TRAIN: BCH 31 16 3 strip.txt

• TRAIN: BCH 31 21 2 strip.txt

• TRAIN: BCH 63 30 6 strip.txt

• TRAIN: BCH 63 36 5 strip.txt

• TRAIN: BCH 63 39 4 strip.txt

• TRAIN: BCH 63 51 2 strip.txt

• TRAIN: BCH 7 4 1 strip.txt

• TRAIN: Hopt BCH 127 64 10 1400ones.alist
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(a) (b)

(c) (d)

Figure 8: We present statistics regarding the codes used in this work: the codes’ lengths (a), the
codes’ rates (b), the Tanner graph distances (c), and the distribution of the code types.

• TRAIN: Hopt BCH 127 71 9 1292ones.alist
• TRAIN: Hopt BCH 127 78 7 1372ones.alist
• TRAIN: Hopt BCH 127 85 6 1344ones.alist
• TRAIN: Hopt BCH 127 99 4 1232ones.alist
• TRAIN: Hopt BCH 63 36 5 384ones.alist
• TRAIN: Hopt BCH 63 39 4 336ones.alist
• TRAIN: Hopt BCH 63 45 3 288ones.alist
• TRAIN: Hopt RS 15 11 2 272ones.alist
• TRAIN: Hopt RS 15 13 1 192ones.alist
• TRAIN: Hopt RS 15 3 6 208ones.alist
• TRAIN: Hopt RS 15 5 5 272ones.alist
• TRAIN: Hopt RS 15 7 4 288ones.alist
• TRAIN: Hopt RS 15 9 3 308ones.alist
• TRAIN: Hopt RS 7 3 2 54ones.alist
• TRAIN: Hopt RS 7 5 1 48ones.alist
• TRAIN: LDPC N128 K64 GF256 UNBPB bi.alist
• TRAIN: LDPC N128 K64 GF256 bi.alist
• TRAIN: LDPC N96 K48 GF256 d1 bi.alist
• TRAIN: LDPC N96 K48 GF64 BI.alist
• TRAIN: LDPC N96 K48 GF64 bi.txt
• TRAIN: LDPC N96 K48 P8 set0 dmin10.txt
• TRAIN: PolarCode N128 K43.txt.bz2

• TRAIN: PolarCode N128 K96.txt.bz2
• TRAIN: PolarCode N32 K11.txt.bz2
• TRAIN: PolarCode N32 K16.txt.bz2
• TRAIN: PolarCode N32 K22.txt.bz2
• TRAIN: PolarCode N32 K24.txt.bz2
• TRAIN: PolarCode N64 K22.txt.bz2
• TRAIN: PolarCode N64 K32.txt.bz2
• TRAIN: PolarCode N64 K43.txt.bz2
• TRAIN: PolarCode N64 K48.txt.bz2
• TEST: BCH 127 92 5 strip.txt
• TEST: BCH 15 7 2 strip.txt
• TEST: BCH 31 26 1 strip.txt
• TEST: BCH 63 45 3 strip.txt
• TEST: BCH 63 57 1 strip.txt
• TEST: CCSDS ldpc n128 k64.alist
• TEST: CCSDS ldpc n32 k16.alist
• TEST: Hopt BCH 127 92 5 1148ones.alist
• TEST: Hopt BCH 63 30 6 396ones.alist
• TEST: Hopt BCH 63 51 2 288ones.alist
• TEST: PolarCode N128 K64.txt.bz2
• TEST: PolarCode N128 K86.txt.bz2
• TEST: eBCH 128 64 strip.txt
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D LEARNED MAPPINGS VISUALIZATIONS

We present in Figure 9 the values of the learned mapping of the Tanner graph distances for all the
layers of the proposed FECCT. In all layers, we see a prominence to the mapping of distance 1 or
distance 2, with layer 1 being the only case in which these two do not have the highest values. This
is reminiscent of the fixed map in ECCT, where the first two values are mapped to one, and the rest
to zero.

Figure 9: Absolute values of the learned mapping of the proposed FECCT with respect to distance
for the six layers of the model.

E GENERALIZATION ANALYSIS

To illustrate the importance of dataset diversity, we provide in Table 4 a comparison with a FECCT
trained on a single code only (POLAR(64,48)). The lack of generalization capacity of the model
compared to the proposed training strategy is evident. The performance on the code of interest is
only slightly better for the single code version.

Table 4: A comparison between the proposed fully trained FECCT and a FECCT trained on the PO-
LAR(64,48) code only (FECCT-single), demonstrating the generalization benefits of the proposed
method. Zero-shot codes are marked by a star. Higher is better.

Method FECCT - single FECCT

4 5 6 4 5 6

POLAR(64,48) 6.35 8.50 11.12 6.06 8.21 10.96

POLAR(128,86)∗ 3.90 5.36 7.57 5.53 7.90 11.29
BCH(63,36) 4.01 5.42 7.30 4.53 6.38 9.10
BCH(63,51)∗ 4.65 6.35 8.73 5.71 8.07 11.31
Reed Solomon(21,15) 4.25 4.62 4.97 4.56 6.83 10.51
Reed Solomon(60,52) 3.68 3.81 3.77 5.47 7.49 10.24
CCSDS(128,64)∗ 2.90 3.42 4.30 6.52 9.67 15.01
CCSDS(32,16)∗ 4.10 4.54 4.43 5.23 7.00 9.21
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F BER CURVES

We depict in Figure 10 the BER curves of the ECCT, the zero-shot FECCT, and the fine-tuned
FECCT.

Figure 10: BER curves of the ECCT, the zero-shot FECCT, and the fine-tuned FECCT for four
different codes.

G SELF ATTENTION MAPS

We depict in Figure 12 the self-attention maps at the different layers of the model for differentEb/N0

values averaged over a 2048 sample batch. At each layer, we present the original self-attention map
as well as the distance-filtered one as described in Eq (7). In Figure 11, we present the sefl-attention
maps for a given sample. We can observe that the attention is mostly focused on the syndrome
values in order to perform the decoding, while in the final layer, the focus is also transferred to the
information bits.

H EXPERIMENT ON LARGE CODE

We provide in Figure 13 the zero-shot performance of the pretrained FECCT on the
BCH(1023,1013) code. This code is seven times the size of the largest code in our training set,
and 13 times the mean code length in the training set. The baseline is taken from Helmling & Scholl
(2016). Evidently, the zero-shot decoding is approximately one dB worse than maximum-likelihood
decoding and better than the Hard Decision Decoding baseline.
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Figure 11: Absolute values of the self-attention maps at the six different layers of the model for two
differentEb/N0 values for the BCH(63,51) code. At each layer, we provide the self-attention before
and after the Tanner graph distance filtering. The self-attention tensor is averaged over the batch and
head dimensions.
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Figure 12: Absolute values of the channel output values y followed by the corresponding absolute
values of the self-attention maps at the six different layers of the model for two different Eb/N0

values for the BCH(63,51) code. At each layer, we provide the self-attention before and after the
Tanner graph distance filtering. The self-attention tensor is averaged over the head dimension.
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Figure 13: Zero-shot FER performance of the pretrained FECCT, Hard Decision Decoder and
Maximum-likelihood decoders on the BCH(1023,1013) code
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