Efficient Scheduling of Data Augmentation
for Deep Reinforcement Learning

Byungchan Ko* Jungseul Ok
NALBI GSAIL POSTECH
kbc@nalbi.ai jungseul @postech.ac.kr
Abstract

In deep reinforcement learning (RL), data augmentation is widely considered as
a tool to induce a set of useful priors about semantic consistency and to improve
sample efficiency and generalization performance. However, even when the prior
is useful for generalization, distilling it to RL agent often interferes with RL
training and degenerates sample efficiency. Meanwhile, the agent is forgetful of
the prior due to the non-stationary nature of RL. These observations suggest two
extreme schedules of distillation: (i) over the entire training; or (ii) only at the
end. Hence, we devise a stand-alone network distillation method to inject the
consistency prior at any time (even after RL), and a simple yet efficient framework
to automatically schedule the distillation. Specifically, the proposed framework first
focuses on mastering train environments regardless of generalization by adaptively
deciding which or no augmentation to be used for the training. After this, we
add the distillation to extract the remaining benefits for generalization from all the
augmentations, which requires no additional new samples. In our experiments, we
demonstrate the utility of the proposed framework, in particular, that considers
postponing the augmentation to the end of RL training. https://github.com/kbc-
6723/es-da

1 Introduction

Deep reinforcement learning (RL) aims at finding a neural network to represent policy or value
functions taking raw observation as input, of which the most common form in practice is visual
data or images of high-dimensionality, e.g., video games [23]], board games [29| 28]], and robot
controls [32,[18]. RL handling high-dimensional input often suffers from poor sample efficiency and
generalization capability, mainly due to the curse of dimensionality [4}[15]. To overcome these issues,
it has been widely considered to augment data based on prior knowledge that a set of transformations
preserve the meaning or context of input observations, e.g., cropping out unimportant parts of images,
and changing colors [20L[19] 121}, [14]]. On one hand, RL agent can be directly fed with the original and
augmented data so that it implicitly learns a representation with the prior and improves the sample
efficiency and generalization [20]. On the other hand, the prior knowledge in data augmentation can
be explicitly distilled via a self-supervised learning, which introduces additional regularization to
ensure consistency between responses to original and augmented inputs [25} [14].

However, data augmentation shows highly task-dependent effect in RL, and it is prone to generate
severe interference with the training even when it truly conveys a useful prior to train and test environ-
ments [20} 25 14]]. We address the problem of alleviating the interference between data augmentation
and RL training to improve sample efficiency for acquainting train tasks, and generalization capability
for unseen test environments. This problem in (online) RL is more critical and challenging than that
in supervised learning (SL) since the objective function and data distribution are time-varying in RL,

*This work was done while Byungchan Ko studied in GSAI, POSTECH.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/kbc-6723/es-da
https://github.com/kbc-6723/es-da

while they are not in SL. Indeed, according to [[1, [10], it is sufficient to partly apply data augmentation
just for a short period of SL at any time. Meanwhile, we empirically observe that the prior from data
augmentation can be easily forgotten in RL of the non-stationary nature (see Section[5.3)), i.e., the
effect of augmentation is time-sensitive.

Based on our observation about the interference and the time-sensitivity, we propose two simple yet
effective methods according to timings of data augmentation : Intra Distillation with Augmented
observations (InDA) and Extra Distillation with Augmented observations (ExDA). Data augmentation
beneficial for the sample efficiency needs to be applied over the entire RL training, i.e., InDA.
Conversely, data augmentation useful only for the generalization should be postponed to the end of
RL training, i.e., EXDA, so that we can minimize the interference in the training, while enjoying the
benefit in the testing. InDA and ExDA are equipped with Distillation with Augmented observation
(DA). DA is a stand-alone self-supervised learning which enables us to induce the prior after RL
training, and shows a relatively small interference with RL training by explicitly preserving the
response of RL agent to the original input.

The best timing (InDA or EXDA) depends on traits of train task and augmentation. We hence suggest
a framework of adaptive scheduling, named UCB-ExDA, that (i) first aims at maximizing the sample
efficiency by adaptively selecting which or no augmentation to be used during RL training; and then,
(ii) distill the priors from all the augmentations after RL training. Specifically, inspired by [25], we
devise UCB-InDA for the adaptive selection in the first part by modifying the upper confidence bound
(UCB) algorithm [3] for multi-armed bandit, where differently from [25]], the set of arms includes all
the augmentations and the option to not augment. In summary, UCB-ExDA is nothing but executing
UCB-InDA followed by ExDA. Our experiment demonstrates the utility of the proposed framework.

Our contributions are summarized as follows:

(i) We devise DA (Section[d.T)) which explicitly preserves the knowledge of RL agent so that
enables distilling the consistency prior of augmentation into RL agent not only during but
also after RL training, while other methods [20} 25 [14] need to be applied concurrently with
RL training and thus show relatively strong interference in our experiments (Section [5.2)).

(i) We identify the simple yet effective timings of data augmentation: either InDA or ExXDA
(Section4.2] Section[4.3)), based upon the discovery of the time-sensitivity (Section[5.3)) that
has not been observed in SL [10], i.e., the proposed timings are effective particularly for RL.

(iii)) We finally establish UCB-ExDA which automatically decides the best timing of augmenta-
tion, and demonstrate its superiority compared to others (Section [5.4). The advantage of
UCB-ExDA is particularly substantial when the best strategy is ExXDA postponing augmen-
tation to the end of RL training.

2 Related Works

Augmented experience in RL. To solve the problem of poor generalization and sparse data, a
popular approach is to fabricate virtual experiences and train the RL agent to learn with them.
Domain randomization is a technique to produce such experiences from a simulator of a targeted
system, [32) 24! 26]. Accurate simulators of practical systems are difficult to obtain, and it has
limited applicability. However, visual augmentation has no such limit because the method uses simple
image transformations such as cropping, tilting, and color jitter, although applications require a
careful understanding of the targeted system to guide the design of an appropriate image transformer.
A method of curriculum learning for domain randomization, in which the difficulty is gradually
increasing [26] provided insights that coincide with some of our findings. However, we provide a
further understanding of the types of visual augmentation that should be early or late during training.

Regularization from augmented data in vision-based RL has been implemented in various learning
frameworks, including but not limited to representation [14} 31]], self-supervised [25], and contrast
[30]. One proposed algorithm [25]] applies the UCB algorithm [3]] to automatically select the most
effective augmentations over RL training, where each augmentation is considered as an arm and then
evaluate the effectiveness of augmentation by using a sliding window average. The idea of adapting
augmentation concurs with our main message regarding the timing of augmentation. In [25]], 'not
augmenting’ is not an option, whereas our findings indicate that it should be. In addition, [25]] does
not consider post augmentation followed by RL training, as in ExDA.

Other time-sensitivity in deep learning. During deep learning, the early stage of training often has
a significant effect [7, [L]. Therefore, we devised time-sensitive methods that adapt to the progress of
training, such as learning rate decay [35]] and curriculum learning [33]. Golatkar e? al. [10] studied
such a time-sensitivity of regularization techniques for SL, where the effect of data augmentation
in different time does not change much. We find that the time-sensitivity of augmentation can be
significant in RL. This contrast may occur because of the non-stationary nature of RL, which SL
does not have. Although a set of techniques originally developed for SL such as convolutional neural
network, weight decay, batch normalization, dropout and self-supervised learning improve deep RL
[LL6L 6l 22,181 130, (34} [13]], a thorough study should be conducted before introducing a method from
different learning frameworks, because we find the contrasting time-sensitivities of data augmentation.
This spirit is also shared with an application [17]] of implicit bias in SL [[12} 2, 9] to RL.

3 Background

Notation. We consider a standard agent-environment interface of vision-based reinforcement
learning in a discrete Markov decision process of state space S, action space .4, and kernel P =
P(st41,7¢|8¢,a;) which determines the state transition and reward distribution. The goal of the RL
agent is to find a policy that maximizes the expectation of cumulative reward Zi;ol ~tr, where
t' is terminating time and v € [0, 1] is discount factor. At each timestep ¢, the agent selects an
action a; € A and receives a reward r; and an image 0,11 = O(s41) € R**¥" as an observation
of the next state s;4;. Data augmentation can be described by an image transformation function
¢ : RF¥K" s RF>¥K of which output is presumed to have the same or similar semantics of the input.

Baseline RL algorithm. Throughout this paper, we use Proximal Policy Optimization (PPO) [27]]
as a baseline, although we believe our findings and methods can be easily adjusted to others. PPO is a
representative on-policy RL algorithm to learn policy mg(a | 0) and value function Vy of neural agent
parameterized by 6. Storing a set of recent transitions 7; := (o, a¢, ¢, 01+1) in experience buffer D,
the agent is updated to minimize the following loss function:

Lppo(@) = —Lﬂ(e) + OéLv(a) 5 (1)

where « is a hyperparameter and canonical regularization terms are omitted. The clipped policy
objective function L, and value loss function Ly are defined as:

L (0) = B[min(pi(0) Ar, clip(pu(0), 1 — .1 + €) Ay))
Ly (6) = B[(Va(or) - V*®)*] , 3)

where the expectation [E is taken with respect to 73 ~ D, we denote by 6,4 the parameter before the

update, p;(6) is the importance ratio %, and Ay is the generalized advantage estimation [27]].
old

4 Method

In what follows, we present our methods: Distillation with Augmented observations (DA; Section,
Intra DA (InDA; Section [4.2)), Extra DA (ExDA; Section |4.3), and then the adaptive scheduling
frameworks based on UCB (UCB-InDA and UCB-ExDA; Section [4.4). DA is a stand-alone knowl-
edge distillation method, which can be used at any time to instill the underlying prior of augmentation
into a given RL agent. InDA and ExDA conduct either DA or PPO in each epoch but have different
schedules (Figure E]), where InDA interleaves PPO and DA, whereas ExDA performs PPO first then
DA. UCB-InDA adaptively decides which or no augmentation to be used in each DA epoch of InDA
based on the UCB of estimated gain from each option. UCB-ExDA performs ExDA preceded by
UCB-InDA.

4.1 Distillation with augmented observations (DA)

The underlying prior of augmentation can be infused by minimizing a measure of inconsistency
between the agent’s responses to original and augmented inputs (resp. o; and ¢(o;)). For instance,

D DA (Augmenation) V@ (Ot)

Hﬂﬂmﬂﬂﬂﬂ |:| PPO (RL training) (A) Veold (Ot)

Epoch
After RL training
—>

ntra Distillation with Augmented Observations

Extra Distillation with Augmented Observations Epoch VG (d) (ot))

Figure 1: An illustration of InDA and EXDA Figure 2: An illustration of distillation losses.

with PPO agent learning policy 7y and value Vp, Raileanu et al. [25] proposes the following measure:

Lais(0,) := Eo,~p [KL[mo(-|0r), mo(-|$(00))]] + Eorn [(Valor) = Va(d(0r)?] . @)

which uses Kullback-Leibler divergence (first term) and mean squared deviation (second term) for
policy and value inconsistencies, respectively. Noting that Ly;s(0; ¢) can be minimized to be zero by
a constant response to all inputs, the distillation with Eq (@) can distort the RL agent, in particular,
when applying it outside of RL training.

We hence devise a network distillation technique (DA) which explicitly preserves the RL agent’s
response to original input and thus is applicable even after RL training. DA distills the knowledge of
RL agent 6,4 into 6 using not only original but also augmented observations. More formally, the loss
of DA is written as:

Lpa(0, ¢;001a) := Lais(0,1; 01a) + Lais (6, ¢; o1a) -)

We here denote the identity transformation by I such that I(0) = o for all o, and extend the definition
of Lg;s in Eq (@) as follows:

Ldis((gv ¢; eold) = IAEOtN’D [KL[Treo]d("Ot)) 7r9(‘¢(0t))” + EOtND [(Veold (Ot) - ‘/:9(¢(0t)))2] Q)

In Eq (9), the first term ensures that 6 and 6,4 behave identically for the original inputs, and the
second one infuses the consistency prior. In Figure Lais(0,T; 0014), Lais (0, ¢; 001a), and Lgis (6, ¢; 0)
graphically correspond to (A), (B), and (C), respectively. From this, it follows that minimizing Lpa
in Eq (@) eventually reduces Lgis(f, ¢;6) in Eq (@). In addition, the minimization of Lpa secures the
responses of # to the original inputs (which can be pre-computed to reduce computation cost) to the
those of 6,4, while the alternatives (e.g., (A)+(C): Lgis(6,L; 0o1a) + Lais (0, ¢; 0)) does not and thus
may generate interference with RL training. Our experiments (Section [5.2} Figure [)) justifies the
design of DA by showing substantial advantage compared to the other alternatives such as DrAC
[25] using Lgis (6, ¢;) in Eq @). We note that this advantage becomes much clearer when a wrong
augmentation is given, c.f., the supplementary material.

4.2 Intra distillation with augmented observations

InDA (Algorithm@ alternates between minimizing Lppg and Lpa, i.e., PPO and DA are explicitly
separated, whereas they are often executed simultaneously in other methods [25]. Such a clear
separation reduces the interference [[14]. We can control the frequency and timing of applying
distillation with hyperparameters I, S and 7', where we perform DA after each I rounds of RL
training only if the current epoch n is in the interval of [S, T, i.e., S and T are the epochs to begin
and terminate DA, respectively. We vary .S and 7' to study the time-dependency of data augmentation.
We denote InDA[S, T to indicate the period to apply DA, while we omit the indication when DA is
applied over the entire period. We provide further details on InDA in the supplementary material.

Algorithm 1 InDA Algorithm 2 ExDA
Require: N,1,¢,5,T Require: N, M, ¢
1: Initialize 6 close to origin. 1: Initialize 6 close to origin.

2: forn=1,2,...,N do : //Pre-training phase with RL algorithm
3: //RL training :forn=1,2,...,N do

2
3
4: Store sampled transitions to D; 4: Store sampled transitions to D;
5: Optimize RL objective Lppo () with D; 5: Optimize RL objective Lppo(#) with D;
6: // Distillation 6: end for
7. if n € [S,T] and mod(n — 1,I) = 0 7:
then 8: Store Oyq < 0;
8: Store Ogq < 0 9: // Distillation at the end of RL training
9: Minimize Lpa(0) for D, 44 and ¢; 10: form =1,2,...,M do
10: endif 11: Minimize Lpa (6) for D, 044 and ¢;
11: end for 12: end for

4.3 Extra distillation with augmented observations

ExDA (Algorithm [2)) performs the distillation after the end of RL training, where the lengths of DA
and RL training are parameterized by M and N, respectively. We note that computational cost can
be reduced by removing the value inconsistency measure E,, p [(Vou (01) — Va(9(0)))?] from
Lgis in Eq (6) because the value consistency is not necessary for RL training nor distillation in the
actor-critic framework and including it has a potential risk of generating additional interference. In the
supplementary material, it is empirically verified that this reduction does not degrade RL performance.
We leave more interesting details in the supplementary. For instance, one can consider re-initializing
0 before starting DA as a part of exploiting the implicit bias [12, [17]] to improve generalization.
However, test performance is often dropped. This is mainly because the dataset to distill 7g_,, has
much less diversity than that observed along the trajectory. Thus, we use no re-initialization for the
experiments in the main paper.

4.4 UCB-based adaptive scheduling frameworks

The training benefit by augmentation differs depending on the task. This dependency complicates the
choice of whether to use InDA or ExDA for augmentation. Hence, we devise an auto-augmentation
method, called UCB-InDA, inspired by UCB-DrAC [25]], where each augmentation is corresponded
to an arm in multi-armed bandit (MAB) problem and assessed its potential gain in training with
upper confidence bound (UCB) [3]. More formally, in UCB-InDA, the set of arms is the set of
augmentations, ® = {¢1, ..., ¢k }, which must include the identity function I, i.e., the option not to
augment. The inclusion of identity function is small but makes crucial difference than UCB-DrAC
[25] since we observe that using augmentation sometimes needs to be postponed after RL training for
the sake of better sampling complexity and test performance.

A round of MAB corresponds to every I epoch of InDA, where we let ¢y,(5) € ® be the augmentation

selected at the s-th round of DA. Let G(s) be the average return, the sum of estimated advantage A
and predicted value Vjp, over (I — 1) epochs of PPO followed by the s-th DA. UCB algorithm assumes
that each arm generates reward independently drawn from a fixed distribution, and estimates the
empirical mean over the entire sampling process. However, in RL, the return G(s) is non-stationary,
so UCB-InDA computes moving average gain G/(s), instead, taken over a certain number (chosen
to be 3 in our experiment) of most recent rounds selecting ¢y, as Raileanu et al. [25]] proposed. Then,
inspired by UCBI1 algorithm [3]], UCB-InDA selects action &(s) at round s as follows:

k(s) = argmax Gg(s)+c log(s)

@)
ke(l,...K} Ni(s)

where c is the UCB exploration coefficient, and N(s) is the number of times selecting ¢y, up to round
s. We refer to the supplementary material for the hyperparameter choice. We remark that compared to
UCB-DrAC [25], the proposed UCB-InDA has subtle but important differences, summarized in two
folds: (i) the inclusion of identity transformation (i.e., no augmentation) and (ii) the distillation with

PAGrad PAGrad

Ymain

(a) non-conflicting: {Gaux, gmain) > 0 (b) conflicting: {Gaux, gmain) < O

Figure 3: An illustration of gradient conflicting and PAGrad. We here let gp,in and g,ux denote
the gradients of main (shown in red; e.g., V Lppp) and auxiliary (shown in blue; e.g., V Lg;s) losses,
respectively. In the computation of PAGrad (shown in black), the component of g,,x conflicting to
9main ONly when it exists (i.e., {Gaux, gmain) < 0).

augmentation via InDA. The gain of each component is numerically studied in Section[5] Finally, we
note that UCB-ExDA is nothing but UCB-InDA followed by ExDA.

4.5 PAGrad

Inspired by [36], we devise an alternative approach to reduce the interference by interpreting RL
training with data augmentation as a multi-task learning, where Lppo and Lgjs correspond to the
main and auxiliary task losses, respectively. In [36], the degree of conflict from task A to task B
is estimated by the inner product of the gradient of task A and the negative gradient of task B, c.f.,
Figure 3| From this, we propose PAGrad (Projecting Auxiliary Gradient) to compute a modified
gradient of Lppg excluding the conflict from the auxiliary gradient V Lg;s to the main one V Lppg.
Formally, PAGrad computes the gradient given as follows:

VLppo + (VL — “T LR tnol G Ly) (8)

min{O’H<vv f:;:”V?LP vo) } V Lppo is the components of V Lg;s opposite to V Lppo which may disturb

optimizing the main objective Lppo. Based on this, we devise DrAC+PAGrad that updates the model
parameter toward the negative direction of (§)). This is an alternative of InDA, while it concurrently
optimizes Lppg and Lg;s differently from InDA adopting the time-separation of optimizing Lppo and
Lgis. We also note that it differs from the original method proposed in [36] alternating the main and
auxiliary tasks to accomplish every task at equal priority, while we have a clear priority on RL task.

where

5 Experiment

5.1 Setups

Train and test tasks. We use the OpenAl Procgen benchmark of 16 video games [5]], where a
main character tries to achieve a specific goal, e.g., finding exit (Maze) or collecting coins (Coinrun),
while avoiding enemies given a 2D map. At each time ¢, visual observation o, is given as an image
of size 64 x 64. A train or test task is to achieve a high score on a set of environments configured
by game and mode, where a mode describes predefined sets of levels (e.g., complexity of map) and
backgrounds. Cobbe et al. [S] provide easy mode for each game, consisting of 200 levels and a
certain set of backgrounds.

We simplify easy mode and train agents in easybg mode, of which the only difference from easy
mode [3]] is showing only a single background. This is useful to investigate the case that using
visual augmentation is helpful for testing but not for training. We denote the task configuration by
game_name(mode), e.g., Coinrun(easybg). Then, we evaluate generalization capabilities using two
modes: test-bg and test-lv, which contain unseen backgrounds and levels, respectively, in addition to
easybg mode that we use for training.

Types of augmentation. For clarity, we mainly focus on two types of visual augmentation, each of
which conveys distinguishing inductive bias:

(a) Random color transforms an image by passing through either color jitter layer or random
convolutional layer proposed in [21]. From this, we can impose the consistency to color
changes, which may provide a strong generalization to diverse backgrounds of fest-bg mode.

(b) Random crop leaves a randomly-selected rectangle and pads zeros to the rest of the image
[25]. This augmentation is particularly useful in fully-observable games (e.g., Chaser and
Heist), because it imposes an efficient attention mechanism.

We also report the result with other augmentations including color jitter, random convolution, gray,
and cutout color in the supplementary material, from which the same messages can be interpreted.

Baseline methods for RL with data augmentation. We mainly compare the proposed methods
(InDA and ExDA) to the following baselines:

(a) RAD [20] simply feeds PPO with experiences of original and augmented observations.
(b) DrAC [25] is a method to simultaneously minimizing Lppo in Eq (I) and Ly in Eq ().

(c) DrAC+PAGrad is a variant of DrAC, which we devise to investigate another mechanism to
relieve the interference between RL training and augmentation in Section4.5]

The supplementary material presents further details and experiments, which we omitted for simplicity.
All results in the main paper are averaged over five runs.

0.8

0.6

0.6

0.4

Mean score

0.2
0 1 18 202122232425 0 1 18 20 21 22 23 24 25
—PPO —DrAC —InDA PAGrad+DrAC — -ExDA — -ExDrAC

Timesteps (M)

Figure 4: Benefit of separating distillation from RL training. We compare InDA, ExDA, DrAC,
DrAC+PAGrad and ExDrAC when we start to apply each of them to distill the prior of random crop
after 20M timesteps of PPO. ExDrAC is a variant of DrAC without RL training, i.e., minimizing only

Lgis in Eq (@).

5.2 Benefit of separating distillation from RL training.

In Figure] after training PPO agent up to 20M timesteps, we start to suddenly apply one of the
different distillation methods with random crop. We report averaged scores over 6 environments
(Bigfish, Dodgeball, Plunder, Chaser, Heist, Maze) after normalized by the highest train score of PPO
on each environment. After 20M timesteps, ExXDA and ExDrAC have no RL training but minimize
Lpa in Eq () and Lg;s in Eq @), respectively. The substantial gap between ExDA and ExDrAC
justifies the design of DA explicitly preserving the knowledge from RL when distilling the prior.
More importantly, it is remarkable that ExXDA promptly learns the generalization ability once it starts
to distill the prior. This validates the idea of postponing the distillation after RL training.

We now compare the distillation methods (InDA, DrAC, and DrAC+PAGrad) concurrently optimizing
the RL objective and distilling the prior in Figure[d Each method has performance degeneration due
to the interference generated by distillation. However, InDA and DrAC+PAGrad have clearly smaller
degeneration than DrAC which is the only one without any separation of optimizing the RL objective
and distillation loss. We note that DrAC+PAGrad has more interference than InDA, and it seems to
fail to impose the prior since there is not much difference to PPO in testing. Hence, this verifies the
superiority of InDA which enables distilling the prior while alleviating the interference.

Chaser] Chaser Chaser

9
sl
7} 025
st . 02
st 2
g« B o
4t » =
3
st 01
2l 2
005
1t 1
o) o
0 o 15 20 25 0 5 10 15 20 2% o 5 10 15 20 25
Timesteps (M) Timesteps (M) Timesteps (M)
(a) train (easybg) (b) test-lv (c) Policy Distance
Heist) Heist Heist

Score

b s 2 2 o s © = S 25 o s o = 20]
Timesteps (M) Timesteps (M) Timesteps (M)

(d) train (easybg) (e) test-lv (f) Policy Distance

0 5

Figure 5: Time-sensitivity of applying augmentation. We compare train and test performance of
InDA[S, T'] with random crop, where the timing of applying DA is governed by starting time S and
terminating time 7", and we evaluate four different pairs of [S,T] = [0, 0], [0, 5], [20, 25], [0, 25] up
to 25M timesteps. Furthermore, we show the change of distance between two policies on an original
observation and an augmented observation. Note that InDA with [S, T'] = [0, 0] means RL training
with no augmentation, i.e., vanilla PPO. We focus on Chaser and Heist since they exemplify two
representative time-dependencies. Each train task uses easybg mode. We present further details and
results with other games in the supplementary material.

5.3 Effective timings of distillation

In what follows, we aim to identifying effective timings of distillation. To this end, in Figure 5] we
test several schedules of applying DA on two representative environments of distinguishing traits.
The supplementary material presents the result on more environments, which is similar one of the
representatives.

An effective timing: InDA. Chaser with random crop (Figure[5(a)]and 5(b)) represents the case
when augmentation improves the sample efficiency of training and thus the generalization ability
in training. To compare the generalization ability, we measure policy distance between original
and augmented observations using Jenson-Shannon divergence (Figure[5(c)). InDA[O0, 5]’s policy
distance is increased after it stops using DA. Thus, the generalization ability is degraded, if we do
not continue to use DA. In this case, it is clear that InDA should be applied during the entire RL
training, as InDA[0, 25] shows the best performance in both training and testing. In addition, it is
also important to apply DA as soon as possible since the effect of InDAJ[0,5] applying DA in the
beginning is relatively prompt and significant comparing to that of InDA[20,25]. This suggests that
the automatic framework needs to explore more in the early stage.

An effective timing: ExDA. Heist with random crop (Figure and[5(e)) shows the opposite
use of data augmentation to what Chaser case suggests, i.e., postponing data augmentation as much
as possible. Random crop generates a slight interference, although it immediately improves the
generalization ability. We remark that the inductive bias from the random crop is easily forgotten,
as the test performance of InDA[O, 5] is saturated right after stopping the distillation. This can be
explained by the time-varying nature of sample distribution and objective in RL. Interestingly, it
is in contrast to the data augmentation in SL, where an early distillation is sufficient to impose the
prior [10]. On the other hand, the test performance curve of InDA[20, 25] soars right after DA.
Furthermore, Figure [5(f)| shows that InDA[20, 25] narrows the gap between two policies on the

original and augmented observation. Recalling the interference between RL training and distillation,
this suggests postponing the distillation at the end of RL training, and motivates our ExDA.

Performance benchmark on InDA and ExDA. In Table [l we summarize the train and test
performances of InDA and ExDA on a set of games with different augmentations and modes. ExXDA
outperforms other baselines with random color on test-bg. Moreover, we note that ExXDA consumes
only 0.5M timesteps to inject the prior at the end of RL training, whereas the others use all the training
data. ExDA in both sample efficiency and generalization ability with random crop on test-Iv. It is
worth noting that DrAC+PAGrad is slightly better than DrAC, while there is a substantial gap between
InDA and each DrAC-based algorithm. This again confirms the benefit from the separated distillation
of InDA observed in Figure] These results demonstrate that each combination of environment and
augmentation has a suitable time at which to apply augmentation, and the gain from using the right
distillation timing, i.e., online (InDA, DrAC, or DrAC+PAGrad) or offline (ExDA), is rigid regardless
of the choice of algorithms.

Augmentation Task | PPO | RAD DrAC | DrAC+PAGrad InDA ExDA
Train 1.00 0.98 0.88 0.89 0.88 0.98

Rand conv Test-bg 1.00 1.08 1.86 1.88 1.92 2.11

Rand Test-lv 1.00 0.81 0.84 0.84 0.7 0.87

color

Train 1.00 0.94 0.95 0.95 0.96 0.98

Color jitter Test-bg 1.00 1.37 1.44 1.44 1.43 1.48

Test-1v 1.00 0.83 0.86 0.86 0.84 0.88

Train 1.00 0.28 1.08 1.09 1.25 0.91

Rand crop Test-bg 1.00 0.64 0.87 0.94 0.94 0.95
Test-lv 1.00 0.46 1.52 1.53 1.80 1.09

Table 1: Benchmark of InDA and ExDA. We report normalized train and test scores of InDA, ExDA
and DrAC with PAGrad on Open Al Procgen, compared to baselines PPO, DrAC [25]], RAD [20].
Boldface indicates the best performance. We average the score among several environments [(Rand
color: coinrun, ninja, climber, fruitbot, jumper, heist, maze), (Rand crop: Bigfish, Dodgeball, Plunder,
Heist, Chaser, Maze)] after normalization considering PPO score to be 1. Every method is trained
on 200 levels, using easybg mode. We evaluate test performance on both fest-bg and test-Iv. The
results can be interpreted as an upper bound of potential gain from using data augmentation at perfect
timing.

5.4 Adaptive scheduling methods

Adaptive selecting of timings: UCB-InDA and UCB-ExDA. It is hard to know in advance
whether a certain augmentation helps the training or not [25]. We hence employ UCB-InDA which
estimates the gain or damage from each augmentation from trial and error and identifies the one

Chaser Heist
450 600
00 | [——c0lor
PR = 500 |
- identity
o ——crop @
2 am ©Q s00
o o
N
S 23 S
‘G S 300
g [}
Kol Kol
£ 1m0 £ 200
5 S
Z z
100 |
50
N N L
1] 5 10 15 2 25 o 5 0 15 -] 25
Timesteps (M) Timesteps (M)
(a) Chaser (b) Heist

Figure 6: Exploration & exploitation to find the most beneficial augmentation. We show that selected
augmentation during training with UCB-InDA for each Chaser and Heist. UCB-InDA automatically
selects the augmentation among three options, random color, identity and random crop.

Env ‘ Method ‘ PPO ‘ DrAC UCB-DrAC ‘ InDA ExDA UCB-InDA UCB-ExDA

Train 9.2 £+ 0.46 3.53 +0.3 741+ 2.09 49 +£0.79 9.14 £+ 0.56 9.67+ 0.23 9.45 4+ 0.29
Heist Test-bg 5.18+1.53 3.58 4+ 0.31 3.76+ 0.54 49 +0.87 7.05 4+ 1.29 6.23+1.29 7.86+ 0.83
Test-lv 4.13 £ 1.39 3.07 £ 0.33 3.49+40.48 1.47£0.77 5.05 4+ 0.98 4.8+ 124 5.74+ 0.67
Train 5.63+ 1.12 0.16£0.02 4.6+ 1.22 5.694+ 1.42 5.584 1.33 7.49+1.27 7.23+ 1.15
Chaser | Test-bg 0.87+£ 0.06 0.1£ 0.02 0.57£0.12 3.51+£1.33 1.024+ 0.04 1.08+£ 0.08 3. 18+ 0.79
Test-lv 4.83+ 0.88 0.14+0.01 4.14+£1.01 4.96+ 1.21 5.11+£ 1.05 6.45+ 0.8 6.43+ 1.28

Table 2: Full exploitation of augmentation to improve generalization on both test-bg and test-Iv. We
compare InDA, ExDA, DrAC, UCB-DrAC, UCB-InDA, UCB-ExDA and PPO about train, test-bg
and test-lv. Boldface indicates the best method. InDA and DrAC use both random color and random
crop during RL training. ExXDA use both augmentation after RL training. UCB-InDA and UCB-DrAC
are trained as automatically selecting the augmentation during training. UCB-ExDA trains ExDA
after UCB-InDA with both augmentation.

with most help. Recall where PPO (without augmentation) shows much better training
performance than InDA in Heist. As shown in Figure [6(b)l UCB-InDA is able to identify that no
augmentation is best for training in Heist. This implies that EXDA is more appropriate than InDA.
Conversely, random crop is selected on Chaser (Figure[6(a)). As the result, we can automatically
select InDA or ExDA appropriately for each task.

Fully exploitation of augmentation In Table[2] when both random color and random crop are used
to improve generalization on both fest-bg and test-lv, we report numerical evaluation of UCB-InDA
and UCB-ExDA with other baselines on train and test tasks. Decreased train performance of DrAC
and InDA compare to PPO show the difficulty of simultaneous training with several augmentations.
Train performance of UCB-InDA and UCB-DrAC are improved by adaptive selecting, especially,
UCB-InDA is better than UCB-DrAC. The gap is made due to the robustness about the change of
augmentation during training. In terms of generalization, UCB-ExDA clearly surpasses UCB-InDA
thanks to ExDA to extract all the priors from the complete set of data augmentations at the end of RL
training.

6 Discussion

We have identified two most effective yet simple timings (InDA and ExDA) of data augmentation for
RL, and proposed UCB-ExDA framework to adaptively select the best scheduling augmentations. We
note that the effectiveness of this framework is restricted but specialized for RL with the unique non-
stationary nature. Indeed, in SL without shift of data distribution and objective, it is sufficient to apply
data augmentation at the beginning [10]. Our framework employs the most basic multi-armed bandit
algorithm with a finite set of data augmentation. It is interesting to investigate a room to improve by
further optimizing continuous parameters of data augmentation for RL, c.f., an auto-augmentation
technique to optimize continuous augmentation parameter per sample for SL [11]. Another promising
direction is to accelerate the distillation process of DA by data condensation with augmentation [37].
This is possible with our framework clearly separating between RL training and distillation, and may
be particularly useful to train distributed RL agents since a condensed data for an agent’s distillation
is usable for the other.

Acknowledgments and Disclosure of Funding

We thank Kimin Lee for helpful discussions. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH)) and
Institute of Information & communications Technology Planning & Evaluation (II'TP) grant funded
by the Korea government (MSIT) (No.2021-0-02068, Artificial Intelligence Innovation Hub) and
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2021M3E5D2A01023887). Byungchan Ko was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded by Korea (MSIT) (2020-0-
01594, PSAI industry-academic joint research and education program).

10

References

[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep
networks. In International Conference on Learning Representations, 2018.

[2] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems, pages 7411-7422, 2019.

[3] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422, 2002.

[4] Richard E Bellman. Adaptive control processes. Princeton university press, 2015.

[5] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pages
2048-2056. PMLR, 2020.

[6] Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning, 2019.

[7] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised
pre-training help deep learning? In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 201-208. JIMLR Workshop and Conference
Proceedings, 2010.

[8] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. Generalization and regularization
in dgn, 2020.

[9] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. In Advances in Neural Information Processing
Systems, pages 3196-3206, 2019.

[10] Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing
deep networks: Weight decay and data augmentation affect early learning dynamics, matter little
near convergence. In Advances in Neural Information Processing Systems, pages 10678-10688,
2019.

[11] Denis Gudovskiy, Luca Rigazio, Shun Ishizaka, Kazuki Kozuka, and Sotaro Tsukizawa. Autodo:
Robust autoaugment for biased data with label noise via scalable probabilistic implicit dif-
ferentiation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16601-16610, 2021.

[12] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. In Advances in Neural Information
Processing Systems, pages 6151-6159, 2017.

[13] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang.
Self-supervised policy adaptation during deployment. arXiv preprint arXiv:2007.04309, 2020.

[14] Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data
augmentation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 13611-13617. IEEE, 2021.

[15] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters, 2019.

[16] Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey, Christopher P Burgess, Alexander
Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving
zero-shot transfer in reinforcement learning, 2018.

[17] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
The impact of non-stationarity on generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

11

[18] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation. arXiv preprint
arXiv:1806.10293, 2018.

[19] Tlya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[20] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

[21] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple
technique for generalization in deep reinforcement learning. arXiv, pages arXiv—1910, 2019.

[22] Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy
optimization — an empirical study on continuous control, 2020.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

[24] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542,
2017.

[25] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Auto-
matic data augmentation for generalization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862, 2020.

[26] Sharath Chandra Raparthy, Bhairav Mehta, Florian Golemo, and Liam Paull. Generating
automatic curricula via self-supervised active domain randomization, 2020.

[27] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[28] David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140-1144, 2018.

[29] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354-359, 2017.

[30] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning, 2020.

[31] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.

[32] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
23-30. IEEE, 2017.

[33] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work?, 2021.

[34] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images, 2020.

[35] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How does learning rate
decay help modern neural networks?, 2019.

12

[36] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

[37] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pages 12674—12685. PMLR, 2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We claim our three main contributions in[I]and target
on DeepRL.

(b) Did you describe the limitations of your work? [Yes] We describe the limitations of
our work about a limited set of data augmentation for UCB methods in Section 6]

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We
believe that our research will not have a negative impact on society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We read the ethics review guidelines.
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our works are
based on experimental results.
(b) Did you include complete proofs of all theoretical results? [N/A] Our works are based
on experimental results.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We describe
our training environments and include code in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe training details in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We indicate standard deviation with score in Figure 3]
and Table 2] except normalized score with several environments such as Figure 4] and
Table[ll

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] We explain about training time in
the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our experiment
environments are baed on OpenAl Procgen [3].

(b) Did you mention the license of the assets? [Yes] We include the license of the asssets
in the code.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Works
	Background
	Method
	Distillation with augmented observations (DA)
	Intra distillation with augmented observations
	Extra distillation with augmented observations
	 UCB-based adaptive scheduling frameworks
	PAGrad

	Experiment
	Setups
	Benefit of separating distillation from RL training.
	Effective timings of distillation
	Adaptive scheduling methods

	Discussion

