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Abstract

Real-world systems often exhibit complex behaviors and are
influenced by various external factors, making the integration
of exogenous variables essential for accurate and robust time
series forecasting. However, modeling time series with ex-
ogenous variables remains challenging due to dynamic cross-
variable dependencies and the semantic gap between numeri-
cal time series data and external contextual knowledge. Large
language models (LLMs) have demonstrated powerful lan-
guage understanding and knowledge representation capabil-
ities in real-world systems, offering a promising solution to
bridge this gap. Motivated by this, we propose ExoTimer,
a framework that deeply integrates LLMs for time series
modeling with exogenous variables. We begin by introduc-
ing an Exo-Aware Endogenous Encoder to dynamically in-
corporate important exogenous variable information and gen-
erate patch-level representations for endogenous variables.
To leverage the rich knowledge in LLMs, a Multi-Attribute
Prompt Embedding module is elaborately designed to convert
heterogeneous temporal features, contextual information and
task specifications into LLM-interpretable textual prompts.
Additionally, we propose Bi-Hash Alignment, a lightweight
cross-modal alignment mechanism that bridges textual and
temporal modalities in a shared hash space. Finally, a Dual-
Branch Predictor with a learnable coefficient is employed to
obtain the final time series prediction by integrating temporal-
text and text-temporal representations. Extensive experiments
on twelve real-world datasets demonstrate that ExoTimer
achieves state-of-the-art performance and exhibits generaliz-
ability and scalability in both few-shot and zero-shot scenar-
ios.

1 Introduction
Time series forecasting plays a crucial role in real-world ap-
plications in various domains, including climate modeling
(Schneider and Dickinson 1974), energy management (Liu
et al. 2023) and traffic analysis (Liu et al. 2022; Miao et al.
2024). Although deep learning models have shown remark-
able success in time series forecasting, most existing ap-
proaches (Liu et al. 2024b; Nie et al. 2023; Wu et al. 2023)
limit their scope to the target series (endogenous variables).
Due to the complex and non-stationary nature of real-world
systems, time series are often affected by external factors,
such as traffic flow (Lv et al. 2014), economic trends (Niu
et al. 2020) and social events (Huang et al. 2025). Thus, in-

corporating exogenous variables becomes indispensable for
reliable and robust time series forecasting.

The core challenge in forecasting with exogenous vari-
ables lies in modeling the correlations and causal relation-
ships between external factors and target (endogenous) vari-
ables. Recent works such as CATS (Lu et al. 2024) and
TimeXer (Wang et al. 2024) employ attention mechanisms
to capture inherent dependencies between observed exoge-
nous and endogenous series. Considering complex intricate
influences from external environments, ExoLLM (Huang
et al. 2025) argues that relying solely on the time series
modality is insufficient to capture external influences and
may lead to spurious correlations. Instead, it introduces
LLMs to leverage language knowledge for better compre-
hension of external factors. However, pre-trained LLMs are
built based on static training corpora, failing to adapt to
the ever-changing real-world knowledge and dynamic evo-
lution of cross-variable correlations (Huang et al. 2023). To
deal with the complex and dynamic influences of exoge-
nous series, it is essential to leverage LLM-derived linguistic
knowledge for contextual interpretation of external factors,
while integrating time-series strategies that dynamically pri-
oritize influential exogenous variables for downstream tasks
and mitigate noise from irrelevant external factors.

However, integrating LLMs with temporal modeling
poses two major challenges. The first challenge lies in cross-
modal knowledge transfer. LLMs are trained based on tex-
tual corpora and demonstrate significant semantic disparities
when processing numeric time series data (Sun et al. 2024;
Pan et al. 2024; Liu et al. 2025c). To effectively activate
LLMs’ capability for temporal forecasting, elaborately de-
signed prompts are required to bridge the modality gap and
facilitate the interpretation of temporal features. The second
challenge is the cross-modal alignment caused by the in-
herent distribution discrepancy between textual embeddings
and temporal representations. Existing approaches (Liu et al.
2025a; Huang et al. 2025; Liu et al. 2024a) typically rely
on attention mechanisms for cross-modal alignment, which
calculate attention scores between different modalities to re-
trieve and fuse relevant information. However, these meth-
ods face two key limitations: 1) divergent feature space dis-
tributions impair retrieval accuracy; 2) quadratic compu-
tational complexity of attention mechanisms limits perfor-
mance on long sequences.



In this paper, we proposes a framework called Exo-
Timer to leverage LLMs for Time Series Forecasting with
Exogenous variables (ExoTimer) to address the above is-
sues. Technically, ExoTimer first introduces an Exo-Aware
Endogenous Encoder to discover interrelationships between
exogenous and endogenous variables by modeling their
frequency-domain correlations, which adaptively identifies
key exogenous variables and mitigates the adverse effects
of noisy external factors. The encoder then yields com-
prehensive global embeddings and patch-level representa-
tions for endogenous variables, providing robust and in-
formative sequence embeddings for downstream tasks. To
help LLMs understand the characteristics of time series and
leverage prior knowledge, a Multi-Attribute Prompt Em-
bedding module is elaborately designed to populates het-
erogeneous temporal features, contextual information and
task specifications into a structured prompt template. Addi-
tionally, ExoTimer proposes Bi-Hash Alignment to facilitate
mutual interaction between textual and temporal modalities,
which aligns their representations in a shared hash space. Fi-
nally, a Dual-Branch Predictor with a learnable coefficient is
employed to obtain the final time series prediction by inte-
grating temporal-text and text-temporal representations. In
summary, Our main contributions are as follows:
• By introducing an Exo-Aware Endogenous Encoder, Ex-

oTimer adaptively prioritizes task-beneficial exogenous
variables while suppressing irrelevant external factors,
enabling effective modeling of complex and dynamic
exogenous-endogenous variable interactions.

• A Multi-Attribute Prompt Embedding module is de-
signed to leverage the knowledge of LLMs via context,
task instruction and time series analysis prompts.

• Bi-Hash Alignment is proposed to bridge the semantic
gap between textual and temporal modalities in a shared
hash space. To the best of our knowledge, this is the first
work to introduce Locality Sensitive Hashing (LSH) for
cross-modal alignment between LLMs and time series.

• ExoTimer consistently achieves state-of-the-art perfor-
mance in mainstream forecasting tasks, including few-
shot and zero-shot scenarios, while maintaining excellent
cross-modality alignment efficiency.

2 Method
In forecasting with exogenous variables, given an endoge-
nous time series X = {x1, x2, . . . , xL} ∈ R1×L and its
correlated exogenous variables Z = {Z1,Z2, . . . ,ZC} ∈
RC×Lx , the task aims to learn a forecasting model F(·)
that predicts future T time steps of the endogenous series
X̂ = {xL+1, xL+2, . . . , xL+T } based on both its historical
observations and exogenous variables. Specifically, xi de-
notes the value of the endogenous series at the i-th time step,
Zi ∈ R1×Lx represents the i-th exogenous variable where
i ∈ {1, 2, . . . , C}, C is the number of exogenous variables,
L and Lx are the look-back window sizes for the endoge-
nous and exogenous variables, respectively and T is the pre-
diction horizon.

The architecture of the ExoTimer is illustrated in Fig. 1,
which comprises four key components: a) an Exo-Aware

Endogenous Encoder to adaptively discover important ex-
ogenous variable information and capture inter-patch de-
pendencies for endogenous variables; b) a Multi-Attribute
Prompt Embedding module to extract multiple attribute
features from endogenous time series and generate proper
prompts for pre-trained LLMs; (c) Bi-Hash Alignment, an
LSH-based module to enable bi-directional modality align-
ment between textual and temporal representations; (d) a
Dual-Branch Predictor to employ a learnable coefficient to
fuse predictions from both temporal and textual modalities.

2.1 Exo-Aware Endogenous Encoder
AdaExoFusion To robustly handle irregular and hetero-
geneous exogenous series, the AdaExoFusion module first
projects the exogenous and endogenous variables into an
embedding space as follows:
Eexo = Embed(Z) ∈ RC×d Eendo = Embed(X) ∈ R1×d (1)

where d is the embedding dimension. The embeddings are
then transformed to the frequency domain by real Fast
Fourier Transform (rFFT).
Eexo

f = |rFFT(Eexo)| ∈ RC× d
2 ,Eendo

f = |rFFT(Eendo)| ∈ R1× d
2 (2)

To adaptively capture dependencies between exogenous
and endogenous variables in the frequency domain, we com-
pute pairwise distances using a learnable Mahalanobis met-
ric (Mahalanobis 1936):
Di = (Eendo

f −Eexo
i,f )Q(Eendo

f −Eexo
i,f )⊤, i = {1, · · · , C} (3)

where Q = A⊤A is a positive semi-definite matrix with
A ∈ R d

2×
d
2 as learnable parameters. The distances Di are

converted into similarity scores and sparsified to emphasize
strong external dependencies and reduce noise:

Ci =
1

Di + ϵ
Pi =

Ci · τ
max (Ci)

(4)

where ϵ > 0 is a small constant ensuring numerical stability,
and Ci denotes the normalized similarity between the i-th
exogenous variable and the endogenous variable, τ is a tem-
perature parameter that controls the sparsity of the adaptive
mask, and Pi represents the probability of retaining correla-
tions in the mask. A larger Pi indicates a stronger correla-
tion with the endogenous variable.

The binary adaptive mask matrix M ∈ R1×C is then sam-
pled via a Gumbel-Softmax (Jang et al. 2017) distribution:

Mi ∼ Gumbel-Softmax(Pi) ∈ {0, 1} (5)
To fuse important exogenous information into the endoge-

nous representation, we apply masked cross-attention:

Attn = Softmax
(
EendoWQ(EexoWK)⊤√

d
+ mask

)
Eglobal

endo = LayerNorm (Eendo +AttnEexoWV )

(6)

where maski = 1 if Mi = 1, otherwise maski = −∞ if
Mi = 0. WQ,WK and WV are learnable weight matri-
ces for query, key, and value projections, respectively, and
LayerNorm(·) denotes layer normalization (Ba et al. 2016).

Endogenous Patch Encoder The endogenous time se-
ries is segmented into overlapped or non-overlapped patches
(Nie et al. 2023), which are embedded through linear pro-
jection and combined with position encodings. Then, self-
attention (Vaswani et al. 2017) is applied to capture inter-
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Figure 1: The model framework of ExoTimer.

patch dependencies:
P = Patching (X) ∈ RN×P

Epatch = PatchEmbed(P) ∈ RN×d

Epos = PositionEmbed(P) ∈ RN×d

Epatch
endo = Epos +Epatch ∈ RN×d

Epatch
endo = LayerNorm(Epatch

endo + MSA(Epatch
endo ))

(7)

where P is the length of each patch, N = ⌊ (L−P )
S ⌋ + 2

represents the number of patches where S denotes the slid-
ing stride, PatchEmbed(·) projects each patch into a d-
dimensional vector, PositionEmbed(·) is applied to generate
embeddings to encode the temporal order of patches, Epatch

endo
denotes the temporal embedding for the endogenous vari-
able, MSA(·) denotes the multi-head self-attention layer.

The final endogenous embedding H is generated by con-
catenating the exogenous variable fused global embedding
Eglobal

endo and patch embedding Epatch
endo :

H = [Eglobal
endo ,Epatch

endo ] ∈ R(N+1)×d (8)
where [·] denotes the concatenation operation along the se-
quence dimension.

2.2 Multi-Attribute Prompt Embedding
Since LLMs are pre-trained on textual corpora, they en-
counter the inherent challenge in comprehending the un-
derlying dynamics of temporal patterns in time series (Jin
et al. 2024). To address this challenge, we design a struc-
tured prompt template that bridges raw temporal features
and the language understanding capabilities of LLMs, as il-
lustrated in Fig. 1. The prompts are composed of three key
parts:
1. Context Prompts (PTcontext) provide an overview of

the dataset along with definitions of exogenous and en-
dogenous variables.

2. Task Instruction Prompts (PTtask) specify the analyt-
ical objectives.

3. Time Series Analysis Prompts (PTtime) encompass
multi-category features extracted from time series.

Concretely, Time Series Analysis Prompts incorporate
four types of features: (1) Basic Statistical Features, e.g.,
mean, median, standard deviation and range, which sum-
marize central tendency and dispersion, enabling LLMs to
effectively capture fundamental data patterns. (2) Trend
Features, quantifying long-term evolutions using trend di-
rection (e.g., upward or downward slope), trend strength
(e.g., the magnitude of the slope) and trend stability (e.g.,
variability of residuals around the trend line). (3) Spec-
tral Features, employing Fourier transforms to reveal pe-
riodic patterns. (4) Anomaly Features, identifying devia-
tions from expected patterns to enhance analysis reliability.
The relevant features for each category and their correspond-
ing prompt templates are summarized in Table 7 (see Ap-
pendix D). All features are extracted using a dedicated time
series feature extractor to capture diverse dynamic attributes.
The extracted features are inserted into pre-defined textual
templates, enabling LLMs to effectively leverage their prior
knowledge for time-series pattern understanding.

To further improve efficiency and reduce computational
overhead, we pre-generate and cache the final prompt em-
beddings by encoding the prompts using the LLM before
training:

P = LLM(PTcontext, PTtask, PTtime) ∈ Rdllm (9)
where LLM(·) denotes the encoder of the pre-trained LLM,
P is the resulting prompt embedding, and dllm denotes the
embedding dimension of the LLM.

2.3 Bi-Hash Alignment
Recent approaches to align time series with LLMs falls
into three main categories: cross-modal retrieval, contrastive
learning and knowledge distillation (Liu et al. 2025b).
Among these, cross-modal retrieval methods are most
widely adopted in current research (Huang et al. 2024; Liu
et al. 2024a; Jin et al. 2024). These methods typically imple-



ment retrieval between temporal representations and textual
embeddings by using cross-attention mechanisms. However,
these attention-based approaches suffer from quadratic com-
putational complexity, limiting their scalability to long se-
quences. More importantly, the inherent heterogeneity be-
tween time series and textual modalities results in divergent
feature space distributions, posing a substantial challenge to
attention mechanisms to achieve robust feature alignment.

To address these limitations, we leverage the theoreti-
cal properties of Locality Sensitive Hashing (LSH) (Indyk
and Motwani 1998) to enable robust and order-preserving
cross-modal retrieval. By mapping high-dimensional fea-
tures from heterogeneous modalities into a shared, compact
and discrete hash space, LSH offers several key theoretical
guarantees for effective retrieval and alignment.

Order Preservation Hashing A key theoretical advan-
tage of employing LSH for cross-modal alignment is order-
preserving property, which guarantees that semantic simi-
larity in the original feature spaces is faithfully preserved in
the resulting binary Hamming space. This property is cru-
cial for aligning heterogeneous modalities, such as tempo-
ral features and textual knowledge, where the original fea-
ture spaces may exhibit divergent statistical distributions and
scales.

Let h,p denote two vectors. For a random Gaussian pro-
jection vector a ∼ N (0, Ik), LSH produces ha(x) =
sign(a⊤x). The collision probability between two vectors
depends solely on their angle:

P
[
sign(a⊤p) ̸= sign(a⊤h)

]
= 1

π cos−1
(

p⊤h
∥p∥ ∥h∥

)
(10)

Therefore, for any triplet p,h1,h2 with similarity(p,h1) >
similarity(p,h2), it follows that:

E[dH(b(p),b(h1))] < E[dH(b(p),b(h2))] (11)
where b(·) ∈ {−1,+1}k denotes the binary codes of a vec-
tor, obtained by concatenating the results of ha over k inde-
pendent random projections, and dH denotes the normalized
Hamming distance. As the LSH binarization dimension k in-
creases, the empirical Hamming distance sharply converges
around its expected value, as guaranteed by the Chernoff-
Hoeffding bound:
P
[∣∣∣dH(b(p),b(h))− 1

π cos−1
(

p⊤h
∥p∥ ∥h∥

)∣∣∣ ≥ ϵ
]
≤ 2 exp(−2kϵ2) (12)

Consequently, LSH provides an exponential convergence
guarantee for order preservation in cross-modal retrieval.

Generalization Error and Robustness Analysis Let
X ⊂ RD denotes the original continuous feature space and
B = {−1,+1}k the corresponding hash space. We define
the family of hash functions as H = {h : x 7→ b}, map-
ping from X to B. The empirical Rademacher complexity
(Koltchinskii and Panchenko 2002) of H is defined as:

R̂n(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

⟨σi, h(xi)⟩

]
(13)

where σi ∈ {−1,+1}k are independent Rademacher ran-
dom vectors and ⟨·, ·⟩ denotes the standard inner product.
Since the Vapnik-Chervonenkis (VC) (Vapnik and Chervo-
nenkis 1971) dimension of the discrete hash space B is
upper-bounded by k, which is significantly lower than that

of the full continuous space RD, the generalization error is
bounded by:

R(h) ≤ R̂S(h) + 2R̂n(H) + 3

√
log(2/δ)

2n
, (14)

where R̂S(h) denotes the empirical risk. Since R̂n(H) ≤√
k log 2

n (see proof in Appendix B.1), this bound grows
sublinearly with the hash dimension k, thereby effectively
mitigating the risk of overfitting. Moreover, the hash space
naturally serves as an information bottleneck transmitting
only alignment-relevant semantic information. This makes
the approach robust to both noise and intra- and inter-modal
distribution shift.

Based on above theoretical insights, we introduce Bi-
Hash Alignment, an LSH-based module that bridges het-
erogeneous modalities by aligning their representations in
a shared hash space. This module consists of temporal-text
hash alignment and text-temporal hash alignment compo-
nents, both implemented by Cross-Modal LSH, which facil-
itates multi-modal feature fusion through differentiable LSH
with similarity-guided alignment.

Specifically, given the input representations P ∈ Rdllm

and H ∈ Rd from textual and time series modality, respec-
tively. To obtain k-dimensional hash codes, Cross-Modal
LSH first applies learnable linear projections and then em-
ploys Gumbel-Softmax relaxation with temperature γ for
differentiable optimization during training. At inference,
sign activation is used to produce deterministic binary codes:

Training: b(t) = 2GSγ([I
(t),−I(t)]):,1 − 1,

b(s) = 2GSγ([I
(s),−I(s)]):,1 − 1

Inference: b(t) = sign(I(t)),b(s) = sign(I(s))

(15)

where I(t) = PWt + ct and I(s) = HWs + cs. Wt ∈
Rdllm×k, Ws ∈ Rd×k, ct, cs ∈ Rk are learnable projec-
tion parameters. GSγ([I

∗,−I∗]):,1 denotes the probability
of selecting +1 for each bit by Gumbel-Softmax relaxation.
To align the modalities, we compute the normalized cosine
similarity S between the hash codes:

S = Softmax
(
b(t)⊤b(s)

)
(16)

Hybrid representations are then generated as:
Fst = MLP ([P,SH]) ∈ Rdllm (17)

where [·] denotes concatenation and MLP(·) consists of two
linear layers with GELU activation.

Applying the above procedure yields the temporal-text
hash alignment result Fst. The text-temporal hash alignment
result Fts can be obtained in a symmetrical manner.

2.4 Dual-Branch Predictor
We generate predictions through a dual-branch inference
method. For the temporal-text aligned representation, we
flatten the features and apply a linear projection layer to ob-
tain the prediction Yst. For the text-temporal aligned repre-
sentation, we first project features to the prediction horizon,
followed by a projection to the target channel dimension,
resulting in Yts. The final prediction Y is computed as a
weighted combination of both branches using a learnable



coefficient α:
Y = αYst + (1− α)Yts, α ∈ [0, 1] (18)

3 Experiment
Datasets We conduct experiments on twelve real-world
datasets. For long-term forecasting, we employ seven es-
tablished benchmarks: ETT datasets (including four subsets:
ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al. 2021), Traffic
(Wu et al. 2023), ECL (Li et al. 2019), and Weather (Zhou
et al. 2021). For short-term forecasting, we evaluate on five
electricity price forecasting (EPF) datasets: NP, PJM, BE,
FR, and DE (Lago et al. 2021). More details, such as the
number of endogenous and exogenous variables, are pro-
vided in Appendix C.1.

Baselines We compare ExoTimer with 11 state-of-the-
art (SOTA) time series models, and cite their performance
from ExoLLM and TimeXer if applicable. Our baselines in-
clude LLM-based models: LLM4TS (Chang et al. 2023),
GPT4TS (Zhou et al. 2023), TimeLLM (Jin et al. 2024),
TimeCMA (Liu et al. 2025a), ExoLLM (Huang et al. 2025),
Transformer-based models: TimeXer (Wang et al. 2024),
PatchTST (Nie et al. 2023), iTransformer (Liu et al. 2024b),
Crossformer (Zhang and Yan 2023), CNN-based models:
TimesNet (Wu et al. 2023), and Linear-based model: TiDE
(Das et al. 2023). Among these, TimeXer and TiDE are
recently proposed deep learning methods designed for ex-
ogenous variables, while ExoLLM is a recent SOTA LLM-
based forecasting model tailored for exogenous variables.

Setups For short-term forecasting, we set the look-back
window size to 168, the prediction horizon to 24 following
the configuration in NBEATSx (Olivares et al. 2023), and
use a patch size of 24. For long-term forecasting, we con-
sistently use a patch size of 16 with look-back window size
of 96 and prediction horizons {96, 192, 336, 720}. We select
GPT-2 as the LLM to generate the prompt embeddings. De-
tails of the implementation are provided in Appendix C.4.

3.1 Main Results
Long-term forecasting The results in Table 1 demon-
strate that the average performance of ExoTimer outper-
forms all baseline models in most cases. Notably, compared
with ExoLLM, ExoTimer achieves superior performance
with 13.3% and 8.9% improvements in MSE and MAE, re-
spectively. Compared to TimeCMA, the latest cross-modal
alignment model, ExoTimer demonstrates relative reduc-
tions of 40.7% and 24.8% in MSE and MAE, respectively.
Compared with TimeXer, the current SOTA deep learning
model with exogenous variables, ExoTimer improves per-
formance in MSE and MAE by 24.1% and 13.1%, respec-
tively.

Short-term forecasting As shown in Table 2, ExoTimer
outperforms all baselines in all cases. Compared with Ex-
oLLM, ExoTimer achieves reductions of 5.2% in MAE and
6.0% in MSE, respectively. Furthermore, ExoTimer sur-
passes both TimeXer and TiDE, which are specifically de-
signed for forecasting with exogenous variables.

Few-shot forecasting In few-shot learning, only 10% of
the training data are used. As shown in Table 3, ExoTimer
outperforms all baseline methods. We attribute this to the
effective knowledge activation via multi-attribute prompts.
Specifically, ExoTimer achieves an average reduction of
11.8% in MSE and 7.9% in MAE compared with ExoLLM.

Zero-shot forecasting The results presented in Table 4
demonstrate that ExoTimer consistently outperforms the
most competitive baseline model by a significant margin,
achieving an improvement of 8.9% in MSE and 5.6% in
MAE compared with ExoLLM. The results further indicate
that ExoTimer can effectively leverage inherent knowledge
in LLMs for time series forecasting while exhibiting strong
generalization capabilities.

3.2 Ablation Study
Model Design We conduct ablation studies of model de-
sign by removing each module from ExoTimer on five
datasets. w/o Exo does not integrate any exogenous informa-
tion into endogenous temporal embedding. w/o ExoSelect
employs all exogenous variables without selecting the im-
portant ones. w/o Text2TsAlign removes the text-temporal
hash alignment and the corresponding temporal branch pre-
dictor. w/o Ts2TextAlign removes the temporal-text hash
alignment and the corresponding textual branch predictor.
w/o Bi-HA removes all alignments between temporal and
textual modalities. w/o AdaWeight removes the adaptive
weighting in the Dual-Branch Predictor. As shown in Ta-
ble 5, ExoTimer exhibits the best performance compared
to architectural variants across the five datasets. w/o Bi-HA
has the most significant impact on prediction performance,
highlighting the superiority of our LSH-based hash space re-
trieval for cross-modal alignment.

Prompt Design We evaluate four different prompt settings
on ETTh1 and Weather datasets: (1) Prompt-1 removes the
context instruction prompt. (2) Prompt-2 removes the task
instruction prompt. (3) Prompt-3 removes the time series
analysis prompt. (4) Prompt-4 transforms the numerical
data of time series into texts as adopted in TimeCMA. The
results in Fig. 2 demonstrate that the multi-attribute prompt
design in ExoTimer can effectively activate the prior knowl-
edge in LLMs compared to ablated prompt settings. Further-
more, our results indicate that directly using raw numeri-
cal data as prompts provides limited information and fails to
utilize the textual understanding capability of LLMs. These
findings underscore the importance of well-designed prompt
engineering in unlocking the reasoning potential of LLMs
for time series forecasting.

3.3 Model Analysis
Efficiency Analysis. We evaluate the parameter numbers
and training time of ExoTimer on the ECL dataset (320 ex-
ogenous variables) compared with ten baseline models with
the identical batch size 8 for a fair comparison. As illus-
trated in Fig. 3, ExoTimer achieves the best trade-off be-
tween accuracy and efficiency, attaining the lowest MSE
with smaller parameter size and faster training speed among
all compared models. This demonstrates the superiority of



Model ExoTimer ExoLLM TimeXer iTransformer PatchTST Crossformer TiDE TimesNet TimeCMA TimeLLM GPT4TS LLM4TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.317 0.397 0.330 0.404 0.327 0.408 0.365 0.442 0.394 0.446 0.344 0.412 0.419 0.468 0.410 0.476 0.477 0.529 0.365 0.413 0.392 0.442 0.378 0.427

Weather 0.001 0.023 0.001 0.027 0.002 0.031 0.002 0.031 0.002 0.031 0.005 0.055 0.002 0.029 0.097 0.115 0.002 0.029 0.003 0.036 0.005 0.056 0.004 0.046

ETTh1 0.048 0.176 0.069 0.205 0.073 0.209 0.075 0.211 0.078 0.215 0.285 0.447 0.083 0.223 0.076 0.215 0.087 0.227 0.104 0.277 0.126 0.305 0.115 0.304

ETTh2 0.158 0.306 0.175 0.327 0.189 0.342 0.199 0.352 0.192 0.345 1.027 0.873 0.205 0.356 0.210 0.362 0.230 0.377 0.226 0.388 0.277 0.443 0.251 0.415

ETTm1 0.026 0.124 0.049 0.165 0.052 0.171 0.053 0.175 0.053 0.173 0.411 0.548 0.053 0.173 0.054 0.175 0.055 0.176 0.080 0.233 0.106 0.264 0.093 0.248

ETTm2 0.107 0.243 0.113 0.249 0.120 0.258 0.127 0.267 0.120 0.258 0.976 0.769 0.122 0.261 0.129 0.271 0.132 0.276 0.162 0.311 0.196 0.349 0.179 0.330

Traffic 0.150 0.225 0.145 0.220 0.156 0.234 0.161 0.246 0.173 0.253 0.182 0.268 0.240 0.326 0.171 0.264 0.324 0.410 0.186 0.271 0.166 0.247 0.177 0.260

Table 1: Long-term forecasting with exogenous variables. The look-back window size L is 96 for all baselines. Results are averaged from all
prediction horizons T ∈ {96, 192, 336, 720}. A lower value indicates better performance. The best results are highlighted in bold and the
second best are underlined. The complete results are listed in the Appendix E.1.

Model ExoTimer ExoLLM TimeXer iTransformer PatchTST Crossformer TiDE TimesNet TimeCMA TimeLLM GPT4TS LLM4TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NP 0.197 0.219 0.216 0.234 0.236 0.268 0.265 0.300 0.267 0.284 0.240 0.285 0.335 0.340 0.250 0.289 0.309 0.321 0.477 0.434 0.275 0.303 0.265 0.315

PJM 0.063 0.162 0.076 0.175 0.093 0.192 0.097 0.197 0.106 0.209 0.101 0.199 0.124 0.228 0.097 0.195 0.108 0.215 0.154 0.268 0.118 0.207 0.255 0.308

BE 0.335 0.213 0.358 0.225 0.379 0.243 0.394 0.270 0.400 0.262 0.420 0.290 0.523 0.336 0.419 0.288 0.463 0.313 0.488 0.310 0.502 0.288 0.426 0.258

FR 0.358 0.192 0.365 0.203 0.385 0.208 0.439 0.233 0.411 0.220 0.434 0.208 0.510 0.290 0.431 0.234 0.429 0.260 0.526 0.260 0.570 0.497 0.519 0.459

DE 0.413 0.393 0.422 0.401 0.440 0.415 0.479 0.443 0.461 0.432 0.574 0.430 0.568 0.496 0.502 0.446 0.520 0.463 0.468 0.440 0.569 0.490 0.517 0.460

Avg 0.273 0.236 0.288 0.251 0.307 0.265 0.335 0.289 0.330 0.282 0.354 0.284 0.412 0.338 0.340 0.290 0.366 0.314 0.423 0.342 0.325 0.326 0.399 0.408

Table 2: Full results of the short-term forecasting with exogenous variables task on EPF dataset. The look-back window size and predict
horizon are 168 and 24 respectively for all baselines. Avg means the average results from all five subsets.
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Figure 2: Model Performance with Different Prompt Settings.

ExoTimer for time series forecasting with high-dimensional
exogenous variables.

Exogenous Variable Selection We visualize the masked
attention scores of endogenous variables with different ex-
ogenous variables on the ETTh1 dataset. Fig. 4 demonstrates
that ExoTimer is able to ignore irrelevant factors and fo-
cus on the most informative variables for prediction. Addi-
tionally, we observe that exogenous series with shapes and
temporal dynamics similar to those of the endogenous series
tend to receive greater attention.

Hash Space Visualization We perform representation
analysis for text-temporal hash alignment using t-SNE.
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Figure 3: Model Efficiency Comparison on ECL Dataset.

Fig. 5 (a) shows that textual embeddings exhibit broad dis-
persion with rich semantic diversity, while the temporal rep-
resentations are highly clustered, indicating the heterogene-
ity gap between two modalities. After hashing, as shown in
Fig. 5 (b), the textual embeddings become less dispersed,
yet still present a relatively scattered distribution. The hash
results suggest that ExoTimer preserves the most relevant
semantics and informative representations. Fig. 5 (c) shows
the pairwise cosine similarities between hash vectors of both
modalities. In Fig. 5 (d), blue and green points denote hashed
and fused temporal representations, respectively, with grey



Model ExoTimer ExoLLM TimeXer iTransformer PatchTST Crossformer TiDE TimesNet TimeCMA TimeLLM GPT4TS LLM4TS

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.076 0.215 0.084 0.230 0.094 0.248 0.091 0.251 0.153 0.344 0.346 0.506 0.126 0.312 0.104 0.251 0.101 0.246 0.101 0.251 0.095 0.242 0.140 0.342

ETTh2 0.210 0.361 0.253 0.403 0.279 0.435 0.290 0.439 0.401 0.546 1.501 1.080 0.327 0.478 0.363 0.487 0.325 0.454 0.298 0.439 0.278 0.425 0.364 0.512

ETTm1 0.052 0.171 0.057 0.181 0.062 0.194 0.062 0.190 0.124 0.290 0.475 0.601 0.094 0.256 0.059 0.185 0.057 0.182 0.062 0.190 0.062 0.190 0.109 0.273

ETTm2 0.127 0.265 0.144 0.291 0.156 0.310 0.163 0.306 0.253 0.410 1.187 0.882 0.209 0.365 0.163 0.309 0.138 0.285 0.158 0.306 0.155 0.301 0.231 0.388

Table 3: Few shot learning on 10% training data. The look-back window size L is 96 for all baselines. Results are averaged from all prediction
horizons T ∈ {96, 192, 336, 720}. The complete results are listed in the Appendix E.2.

Model ExoTimer ExoLLM TimeXer iTransformer PatchTST Crossformer TiDE TimesNet TimeCMA TimeLLM GPT4TS LLM4TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1−→ETTh2 0.190 0.345 0.204 0.359 0.228 0.390 0.221 0.395 0.380 0.544 0.875 0.796 0.308 0.490 0.252 0.400 0.249 0.399 0.248 0.394 0.232 0.381 0.344 0.538

ETTh2−→ETTh1 0.072 0.206 0.074 0.212 0.082 0.228 0.085 0.230 0.118 0.287 0.429 0.562 0.096 0.251 0.094 0.238 0.105 0.250 0.087 0.230 0.082 0.223 0.107 0.269

ETTm1−→ETTm2 0.126 0.264 0.162 0.309 0.177 0.332 0.178 0.324 0.353 0.495 1.348 1.025 0.267 0.437 0.278 0.409 0.213 0.358 0.176 0.324 0.178 0.324 0.310 0.466

ETTm2−→ETTm1 0.052 0.174 0.054 0.176 0.058 0.187 0.061 0.185 0.094 0.248 0.455 0.538 0.078 0.220 0.060 0.185 0.059 0.183 0.059 0.185 0.058 0.182 0.086 0.234

Table 4: Zero-shot learning. The look-back window size L is 96 for all baselines. Results are averaged from all prediction horizons T ∈
{96, 192, 336, 720}. The complete results are listed in the Appendix E.3.

Dataset ECL Weather ETTh1 ETTm1 PJM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ExoTimer 0.317 0.397 0.001 0.023 0.048 0.176 0.026 0.124 0.063 0.162

w/o Exo 0.392 0.446 0.002 0.031 0.084 0.223 0.057 0.177 0.101 0.203

w/o ExoSelect 0.400 0.456 0.002 0.031 0.090 0.231 0.054 0.174 0.127 0.233

w/o Text2TsAlign 0.394 0.451 0.002 0.031 0.104 0.234 0.053 0.173 0.110 0.211

w/o Ts2TextAlign 0.379 0.440 0.002 0.031 0.088 0.229 0.054 0.174 0.107 0.208

w/o Bi-HA 0.994 0.802 0.002 0.031 0.083 0.226 0.058 0.185 0.270 0.371

w/o AdaWeight 0.382 0.442 0.002 0.031 0.084 0.224 0.054 0.174 0.114 0.210

Table 5: Ablation study of model design. Results are averaged from
all prediction horizons T ∈ {96, 192, 336, 720} for ECL, Weather,
ETTh1, ETTm1, and {24} for PJM. The full results are listed in the
Appendix F.

arrows indicating the fusion process. The fused results vali-
date that our cross-modal alignment method effectively en-
riches temporal features and produces semantically consis-
tent representations.

4 Conclusion
This paper proposes ExoTimer, a promising framework that
leverages large language models (LLMs) for time series
forecasting with exogenous variables. An Exo-Aware En-
dogenous Encoder is employed to identify important exoge-
nous variables, and generate comprehensive global embed-
dings and patch-level representations for endogenous vari-
ables. A Multi-Attribute Prompt Embedding module is de-
signed to activate prior knowledge in LLMs. Moreover, a
cross-modality alignment method based on Locality Sensi-
tive Hashing (LSH) is proposed to bridge the heterogeneity
gap between textual and temporal modalities. Extensive ex-
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Figure 4: Visualization of Exogenous Variable Selection.

Figure 5: Visualization of Text-temporal Alignment.

periments demonstrate that ExoTimer achieves state-of-the-
art performance on both long-term and short-term forecast-
ing tasks, and exhibits strong generalizability and scalability
in both few-shot and zero-shot scenarios. Our results also
provide novel insights into the importance of well-designed
prompts in unlocking the reasoning potential of LLMs, as
well as the effectiveness and efficiency of the LSH-based
modality alignment method.
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