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ABSTRACT

We present a novel framework to bootstrap Motion forecastIng with Self-
consistent Constraints (MISC). The motion forecasting task aims at predicting
future trajectories of vehicles by incorporating spatial and temporal information
from the past. A key design of MISC is the proposed Dual Consistency Con-
straints that regularize the predicted trajectories under spatial and temporal pertur-
bation during training. Also, to model the multi-modality in motion forecasting,
we design a novel self-ensembling scheme to obtain accurate teacher targets to
enforce the self-constraints with multi-modality supervision. With explicit con-
straints from multiple teacher targets, we observe a clear improvement in the
prediction performance. Extensive experiments on the Argoverse motion fore-
casting benchmark show that MISC significantly outperforms the state-of-the-
art methods. As the proposed strategies are general and can be easily incorpo-
rated into other motion forecasting approaches, we also demonstrate that our pro-
posed scheme consistently improves the prediction performance of several exist-
ing methods.

1 INTRODUCTION

Motion forecasting has been a crucial task for self-driving vehicles that aims at predicting the future
trajectories of agents (e.g., cars, pedestrians) involved in the traffic. The predicted trajectories can
further help self-driving vehicles to plan their future actions and avoid potential accidents. Since the
future is not deterministic, motion forecasting is intrinsically a multi-modal problem with substantial
uncertainties. This implies that an ideal motion forecasting method should produce a distribution of
future trajectories or at least multiple most likely ones.

Due to the inherent uncertainty, motion forecasting remains challenging and unsolved yet. Recently,
researchers have proposed different architectures based on various representations to encode the
kinematic states and context information from HDMap in order to generate feasible multi-modal
trajectories (Bansal et al., 2019; Chai et al., 2019; Gao et al., 2020; Gu et al., 2021; Liang et al.,
2020; Liu et al., 2021; Ngiam et al., 2021; Varadarajan et al., 2021; Ye et al., 2021; Zeng et al.,
2021; Zhao et al., 2020). These methods follow a traditional static training pipeline, where frames
of each scenario are split into historical frames (input) and future frames (ground truth) in a fixed
pattern. Nevertheless, the prediction task is a streaming task in real-world applications, where the
current state will become a historical state as time goes by, and the buffer of the historical state
is a queue structure to make successive predicted trajectories. As a result, the temporal consis-
tency thus becomes a crucial requirement for the downstream tasks for fault and noise tolerance.
To tackle this issue, trajectory stitching is widely applied in traditional planning algorithms (Fan
et al., 2018) to ensure stability along the temporal horizon. However, as the trajectory stitching op-
eration is non-differentiable, it cannot be easily incorporated into learning-based models. Though
deep-learning-based models show unprecedented motion prediction performance compared with tra-
ditional counterparts, they do not explicitly consider the temporal consistency, leading to unstable
behaviors in downstream tasks such as planning.

Inspired by these phenomena, we raise a question: can we explicitly enforce the consistency when
training a deep motion prediction model? On the one hand, the predicted trajectories should be
consistent given the successive inputs along the temporal horizon, namely temporal consistency.
On the other hand, the predicted trajectories should be stable and robust against small spatial noise
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or disturbance, namely spatial consistency. In this work, we propose a self-supervised scheme to
enforce consistency constraints in both spatial and temporal domains, namely Dual Consistency
Constraints. Our proposed framework, referred as MISC, significantly improves the quality and
robustness of motion forecasting, without the need for extra data.

On top of the consistency, multi-modality is another core characteristic of the motion prediction task.
Existing datasets (Chang et al., 2019; Sun et al., 2020) only provide a single ground-truth trajectory
for each scenario, which can not satisfy the multi-choice situations such as junction scenarios. Most
methods adopt the winner-takes-all (WTA) (Lee et al., 2016) or its variants (Breuer et al., 2021;
Narayanan et al., 2021) to alleviate this situation. However, WTA tends to produce confused pre-
dictions when two trajectories are very close. In contrast, our method addresses the multi-modality
issue by introducing more powerful teacher targets from self-ensembling. With self-constraint from
multiple soft teacher targets, our model is more likely to be exposed to more high-quality samples,
bootstrapping each modality.

Our contributions are summarized as follows,

• We propose Dual Consistency Constraints to enforce temporal and spatial consistency in
our model, which is shown to be a general and effective way to improve the overall perfor-
mance in motion forecasting.

• We propose a self-ensembling constraints training strategy that provides multi-modality
supervision explicitly during training to enforce self-consistency with teacher targets.

• We conduct extensive experiments on the Argoverse (Chang et al., 2019) motion forecast-
ing benchmark and our proposed approach achieves the state-of-the-art results.

2 RELATED WORK

Motion Forecasting. Traditional methods (Houenou et al., 2013; Schulz et al., 2018; Xie et al.,
2017; Ziegler et al., 2014) for motion forecasting mainly utilize HDMap information for the prior
estimation and Kalman filter (Kalman, 1960) for motion states prediction. With the recent progress
of deep learning on big data, more and more works have been proposed to exploit the potential
of data mining in motion forecasting. Methods (Bansal et al., 2019; Chai et al., 2019; Duvenaud
et al., 2015; Gao et al., 2020; Henaff et al., 2015; Liang et al., 2020; Liu et al., 2021; Shuman et al.,
2013; Song et al., 2021; Ye et al., 2021; Zeng et al., 2021) explore different representations, includ-
ing rasterized image, graph representation, point cloud representation and transformer to generate
the features for the task and predict the final output trajectories by regression or post-processing
sampling. Most of these works focus on finding more effective and compact ways of feature extrac-
tion on the surrounding environment (HDMap information) and agent interactions. Based on these
representations, other approaches (Casas et al., 2018; Mangalam et al., 2020; Song et al., 2021;
Zeng et al., 2021; 2019; Zhao et al., 2020) try to incorporate the prior knowledge with traditional
methods, which take the predefined candidate trajectories from sampling or clustering strategies as
anchor trajectories. To some extent, these candidate trajectories can provide better guidance and
goal coverage for the trajectories regression due to straightforward HDMap encoding. Nevertheless,
this extra dependency makes the stability of models highly related to the quality of the trajectory
proposals. Goal-guided approaches (Gilles et al., 2021; Gu et al., 2021; Gilles et al., 2022) are
therefore introduced to optimize goals in an end-to-end manner, paired with sampling strategies that
generate the final trajectory for better coverage rate.

Consistency Regularization. Consistency Regularization has been fully studied in semi-supervised
and self-supervised learning. Temporally related works (Wang et al., 2019; Lei et al., 2020; Zhou
et al., 2017) have widely explored the idea of cyclic consistency. Most of the works apply pairwise
matching to minimize the alignment difference through optical flow or correspondence matching to
achieve temporal smoothness. Other works (Bachman et al., 2014; Földiák, 1991; Ouyang et al.,
2021; Sajjadi et al., 2016; Wang et al., 2021) apply consistency constraints to predictions from the
same input with different transformations in order to obtain perturbation-invariant representations.
Our work can be seen as a combination of both types of consistency to fully consider the spatial and
temporal continuity in motion forecasting.

Multi-hypothesis Learning. Motion forecasting task inherently has multi-modality due to the fu-
ture uncertainties and difficulties in acquiring accurate ground-truth labels. WTA (Guzman-Rivera
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Figure 1: The overall architecture. We utilize TPCN as a feature extraction backbone to model
the spatial and temporal relationship among agents and map information. A goal prediction header
is then used to regress the possible goal candidates; with the goal position, we apply trajectory
completion to obtain full trajectories; finally, the trajectories are refined based on the output of the
trajectory completion module as anchor trajectories.

et al., 2012; Sriram et al., 2019) in multi-choice learning and its variants (Makansi et al., 2019;
Rupprecht et al., 2017) incorporate with better distribution estimation to improve the training con-
vergence, thus allowing more multi-modality. Some anchor-based methods (Breuer et al., 2021;
Chai et al., 2019; Phan-Minh et al., 2020; Zeng et al., 2021) introduce pre-defined anchors based
on kinematics or road graph topology to provide guidance. However, these methods only allow
one target per training stage. Other methods (Breuer et al., 2021; Gu et al., 2021) try to generate
multi-target for supervision with heavy handcrafted optimizations. We propose a Teacher-Target-
Constraints approach to provide more precise trajectory teacher labels by leveraging the power of
self-ensembling (Lee et al., 2013; Zheng et al., 2021). Multiple targets are explicitly provided to
each agent to better model the multi-modality.

3 APPROACH

The overall architecture of MISC consists of three parts. 1) We first utilize a joint spatial and
temporal learning framework TPCN (Ye et al., 2021) to extract pointwise features. Based on these
features, we decouple the trajectory prediction problem as a two-stage regression task. The first
stage performs goal prediction and completes the trajectory with the goal position guidance. The
second stage takes the output of the first stage as anchor trajectories for refinement. 2) To train
our MISC, we propose Dual Consistency Constraints to regularize the predictions both spatially
and temporally in a streaming task view. 3) We generate more accurate teacher targets by self-
ensembling to provide self-consistent Teacher Targets Constraints in Sec. 3.3.

3.1 ARCHITECTURE

Recently, TPCN (Ye et al., 2021) has gained popularity in this task due to its flexibility for joint
spatial-temporal learning and scalability to adopt more techniques from point cloud learning. Con-
sidering its inferiority in representing future uncertainty, we extend TPCN with a two-stage manner
through goal position prediction for more accurate waypoints prediction as our baseline. The whole
network is shown in Fig. 1.

Feature Extraction: TPCN utilizes dual-representation point cloud learning techniques with multi-
interval temporal learning to model the spatial and temporal relationship. All the historical trajecto-
ries of input agents and map information are based on pointwise representation {p1,p2, . . . ,pN},
where pi is the i-th point with N points in total, and then go through multi-representation learning
framework to generate pointwise features P ∈ RN×C , where C is the channel number.

Goal Prediction: With the pointwise features from the backbone, we also adopt the popular goal-
based ideas (Gilles et al., 2021; Gu et al., 2021; Zhao et al., 2020) to find the optimal planning
policy. Specifically, we first gather all corresponding pointwise agent features and then sum over
features to get the agent instance feature ϕ ∈ R1×C . To generate K goal position prediction G =
{Gk : (gkx, g

k
y )|1 ≤ k ≤ K}, we use a simple MLP layer: G = MLP (ϕ). Instead of relying
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Figure 2: The overall idea of the temporal consistency. In the training stage, we first generate output
prediction trajectory points as normal for each given scenario. Then we slide the input with a step
in order to introduce the streaming nature to generate the consecutive output trajectory points. The
proposed temporal consistency requires the overlap between these two outputs to be consistent

on heavy sampling strategies like previous goal-based methods, our method avoids generating extra
proposals, which may lead to a large computation overhead.

Trajectory Completion: With the predicted goal positions, we need to complete each trajectory
conditioned on these goals. We propose a simple trajectory completion module to generate K full
trajectories

{
τkreg|1 ≤ k ≤ K

}
with a single MLP layer as follows:

τkreg = {(xk
1 , y

k
1 ), (x

k
2 , y

k
2 ), . . . , (x

k
T , y

k
T )} = MLP (concat(ϕ,Gk)). (1)

Trajectory Refinement: Inspired by Faster-RCNN (Ren et al., 2015) and Cascade-RCNN (Cai &
Vasconcelos, 2018), we use the output trajectories from the Trajectory Completion as anchor trajec-
tories to refine trajectories and predict the corresponding possibility of each trajectory. In particular,
the input of the trajectory refinement module will be the whole trajectory with agent historical way-
points τhistory. With a residual block followed by a linear layer Reg and Cls respectively, we
regress the delta offset to the first stage outputs ∆τreg = Reg(τreg, τhistory) and corresponding
scores τcls =

{
ck|1 ≤ k ≤ K

}
respectively, where τcls = Cls(τreg, τhistory). The final output

trajectories will be τreg′ = ∆τreg + τreg.

3.2 DUAL CONSISTENCY CONSTRAINTS

Consistency regularization has been proved as an effective self-constraint that helps improve robust-
ness against disturbances. Therefore, we propose Dual Consistency Constraints in both spatial and
temporal domains to align predicted trajectories for continuity and stability.

TEMPORAL CONSISTENCY

In motion forecasting, since each training scenario contains multiple successive frames within a
fixed temporal chunk, it is reasonable to assume that any two overlapping chunks of input data with
a small time-shift should produce consistent results. The motion forecasting task aims to predict
K possible trajectories with T time steps for one scenario, given M frames historical information.
Suppose the information at each history frame is Ii, where 1 ≤ i ≤ M and the k-th output future
trajectories are

{
(xk

i , y
k
i )|M < i ≤ M + T

}
. We first apply time step shift s for the input for tem-

poral consistency. Therefore, the input history frames information will be {Ii|1 + s ≤ i ≤ M + s}
and then we apply the same network for the shifted history information with surrounding HDMap
information to generate the k-th output trajectories

{
(x′k

i , y′ki )|M + s < i ≤ M + s+ T
}

. When
s is small, the driving intentions or behavior keeps stable in a short period. Since both trajectories
have T − s overlapping waypoints, they should be as close as possible and share consensus. Thus,
we can construct self-constraints for a single scenario input due to the streaming property of the
input data. Fig. 2 demonstrates the overall idea of the temporal consistency constraint.

Trajectory Matching: Since we predict K future trajectories to deal with the multi-modality, it is
crucial to consider the trajectory matching relationship between original predictions and time-shifted
predictions when applying the temporal consistency alignment. For a matching problem, the metric
on similarity criteria and matching strategies will be two key factors. Several ways can be used to
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measure the difference between trajectories, such as Average Displacement Error (ADE) and Final
Displacement Error (FDE). We utilize FDE as the criteria since the last position error can partially
reflect the similarity with less bias from averaging compared with ADE.

Matching Strategy: There are roughly four ways used for matching, namely forward matching,
backward matching, bidirectional matching, and Hungarian matching. Forward matching takes one
trajectory in the current frame and finds its corresponding trajectory in the next frame with the
least cost or maximum similarity. Backward matching is the reverse way compared to forward
matching. Furtherly, bidirectional matching consists of both forward and backward matching, which
considers the dual relationship. Hungarian matching is a linear optimal matching solution based on
linear assignment. Forward and backward matching only considers the one-way situation, which
is sensitive to noise and unstable. Hungarian matching has a high requirement for cost function
choice. Based on these observations, we choose bidirectional matching as our strategy. We also
show its advantages over the other approaches in Sec. 4.3.

After obtaining the optimal matching pairs {(mk, nk)|1 ≤ k ≤ K}, we can compute the consistency
constraint by a simple smooth L1 loss (Ren et al., 2015) LHuber:

Ltemp =

K∑
k=1

T∑
t=s+1

LHuber((x
mk
t , ymk

t ), (x′nk

t−s, y
′nk

t−s)). (2)

SPATIAL CONSISTENCY

Since our MISC is a two-stage framework, the second stage mainly aims for trajectory refinement.
It will be more convenient to add spatial permutation in the second stage with less computational
cost. First, we apply spatial permutation function Z, including flipping and random noise, to the
trajectories from the first stage. The refinement module will process these augmented inputs and
generate the offset to the ground truth and classification scores. Under the small spatial permutation
and disturbance, we assume that the outputs of the network should also be self-consistent, meaning
that the outputs have strong stability or tolerance to noise. Compared with data augmentation, it is
the explicit regularization. Then the spatial consistency constraint Lspa is as follows:

Lspa = LHuber(∆τreg , Z
−1(Reg(Z(τreg, τhistory))). (3)

Then the total loss for Dual Consistency Constraints module will be Lcons = Lspa + Ltemp.

3.3 TEACHER-TARGET CONSTRAINTS

Existing datasets (Chang et al., 2019; Sun et al., 2020) only provide a single ground-truth trajectory
for the target agent, which is to be predicted in one scenario. In order to encourage the multi-
modality of models, the winner-takes-all (WTA) strategy is commonly used to prevent the model
from collapsing into a single domain. However, the WTA training strategy suffers from instabil-
ity associated with network initialization. Some other approaches (Breuer et al., 2021; Narayanan
et al., 2021) introduce robust estimation methods to select better hypotheses. To some extent, these
methods can only implicitly model the multi-modality. Some other approaches (Breuer et al., 2021;
Zhao et al., 2020) generate several possible future trajectories based on the kinematics model and
road graph topology. DenseTNT (Gu et al., 2021) only uses teacher labels for goal set prediction
through a hill-climbing algorithm. These optimization methods tend to impose strict constraints
and handcrafted prior knowledge, resulting in inaccurate teacher-targets and inferior performance.
In contrast, our approach aims to generate more accurate teacher targets to provide explicit multi-
modality supervision through self-ensembling to leverage the power of semi-supervised learning.

Teacher-Target Generation. The key part of our approach lies in generating more accurate teacher
labels for each agent. However, it is straightforward to apply model ensembling techniques (He et al.,
2020; Laine & Aila, 2016; Tarvainen & Valpola, 2017) to obtain more powerful predictions. Com-
pared with previous works (Breuer et al., 2021; Chai et al., 2019; Zhao et al., 2020), we do not rely
on handcrafted anchor trajectory sampling, which is based on inaccurate prior knowledge, including
motion estimation. Meanwhile, soft targets from ensembling can better finetune the predictions and
reduce the gradient variance for better training convergence. As suggested in works (Dietterich,
2000; Opitz & Maclin, 1999), the prediction error decreases when the ensemble approach is used
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Figure 3: The overall procedure for the teacher-target generation. We obtain multiple predictions
from outputs of different models for the target agents in each scenario; then we apply K-means
clustering algorithm to ensemble the trajectories

once the model is diverse enough. Therefore, we apply k-means algorithm (MacQueen et al., 1967)
to the predicted trajectories that are collected within different training procedures (for example,
launched with different seeds of random number generators, optimized with different learning rates,
etc.) of MISC without Teacher-Target Constraints to generate J trajectories with corresponding
scores for each scenario. Fig. 3 shows the overall process of our approach. Then with the original
ground-truth label, we will formulate J + 1 target trajectories as follows:

τconf = {c0, c1, . . . , cJ}, (4)

τ jtgt = {(xtgtj
1 , y

tgtj
1 ), (x

tgtj
2 , y

tgtj
2 ), . . . , (x

tgtj
T , y

tgtj
T )}, (5)

where τ jtgt is the j-th trajectory with score cj , among J + 1 target trajectories. To simplify the
notation, τ0tgt is the ground-truth trajectory with c0 set to 1.

3.4 LEARNING

The total supervision of our MISC can be decoupled into several parts, as described in previous
sections. For the regression and classification parts, we loop over all the possible J + 1 targets
τtgt. For each target τ jtgt with confidence τ jconf , we apply WTA strategy as described in Sec. 3.3.
Suppose k∗-th trajectory from trajectory refinement output τreg′ is the best trajectory which has the
maximum similarity with target τ jtgt, the classification loss and regression loss are defined as

Lj
cls =

1

K

K∑
k=1

τ jconfLHuber(c
k, ck

∗
), (6)

Lj
reg =

1

T

T∑
t=1

τ jconfLHuber((x
k∗

t , yk
∗

t ), (x
tgtj
t , y

tgtj
t )). (7)

For classification loss design, we adopt the displacement prediction idea from TPCN (Ye et al., 2021)
to alleviate the hard assignment phenomenon. As for converting the displacement into probability,
we use the standard softmin function to distribute the scores. Since we have trajectory completion
and refinement modules, the regression loss will be Lreg =

∑J
j=0(Lj

reg + Lj
∆reg), where Lj

∆reg is
the regression loss for the refinement module. The final loss is L = Lreg + Lcls + Lcons.

4 EXPERIMENTS

We conduct experiments on the Argoverse dataset (Chang et al., 2019), one of the largest publicly
available motion forecasting datasets. We compare our MISC with other state-of-the-art methods.
Furthermore, we provide ablation studies to evaluate the effectiveness and generalization ability of
each proposed module and design experiments for some hyperparameter choices.
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Table 1: The detailed results of our MISC and other top-performing approaches on the Argoverse
test set. And b-FDE6 is the abbreviation of brier-minFDE6

Models minADE1 minFDE1 MR1 minADE6 minFDE6 MR6 b-FDE6

Jean (Chang et al., 2019; Mercat et al., 2020) 1.74 4.24 0.68 0.98 1.42 0.13 2.12
LaneConv (Liang et al., 2020) 1.71 3.78 0.59 0.87 1.36 0.16 2.05
LaneRCNN (Zeng et al., 2021) 1.68 3.69 0.57 0.90 1.45 0.12 2.15

mmTransformer (Liu et al., 2021) 1.77 4.00 0.62 0.87 1.34 0.15 2.03
SceneTransformer (Ngiam et al., 2021) 1.81 4.06 0.59 0.80 1.23 0.126 1.88

TNT (Zhao et al., 2020) 1.77 3.91 0.59 0.94 1.54 0.13 2.14
DenseTNT (Gu et al., 2021) 1.68 3.63 0.58 0.88 1.28 0.125 1.97
PRIME (Song et al., 2021) 1.91 3.82 0.59 1.22 1.55 0.12 2.09

TPCN (Ye et al., 2021) 1.58 3.49 0.56 0.88 1.24 0.13 1.92
HOME (Gilles et al., 2021) 1.70 3.68 0.57 0.89 1.29 0.08 1.86

MultiPath++ (Varadarajan et al., 2021) 1.623 3.614 0.564 0.790 1.214 0.13 1.793
Ours 1.476 3.251 0.532 0.766 1.135 0.11 1.756

4.1 EXPERIMENTAL SETUP

Dataset. Argoverse (Chang et al., 2019) is currently one of the most popular motion forecasting
datasets. It provides more than 300K scenarios with rich HDMap information. For each scenario,
objects are divided into three types: agent, AV and others, where “agent” is the object to be predicted.
Moreover, each scenario contains 50 frames sampled at 10 Hz, meaning that the time interval be-
tween successive frames is 0.1s. The whole dataset is split into training, validation, and test sets,
with 205942, 39472, and 78143 sequences, respectively.

Metrics. We use the standard evaluation metrics, including ADE and FDE. ADE is defined as
the average displacement error between ground-truth trajectories and predicted trajectories over all
time steps. FDE is defined as displacement error between ground-truth trajectories and predicted
trajectories at the last time step. We predict K candidate trajectories for each scenario and calculate
the metrics with the ground truth labels. Accordingly, minADE and minFDE are minimum ADE
and FDE over the top K predictions. Moreover, miss rate (MR) is also considered, defined as the
percentage of the best-predicted trajectories whose FDE is within a threshold (2m). Brier-minFDE
is the minFDE plus (1−p)2, where p is the corresponding trajectory probability. Metrics for K = 1
and K = 6 are used in our experiments. Note that Brier-minFDE6 is the ranking metric.

Experimental Details. We apply some data augmentation, including random flipping with a prob-
ability 0.5 and global random scaling with the scaling ratio between [0.8, 1.25] during the training
stage. As for model settings, the time shift s for the temporal consistency constraint is set to 1. We
adopt K = 6 to generate 6 trajectories and use J = 6 teacher targets for each scenario. Furthermore,
we choose bidirectional-matching for temporal consistency constraint. We finally use 10 models for
ensembling due to computation resource limits. For more training details, we have included them in
the supplementary materials.

4.2 EXPERIMENTAL RESULTS

Argoverse Leaderboard Results. We provide detailed quantitative results of our MISC on the
Argoverse test set as well as public state-of-the-art methods in Tab. 1. Compared with previous
methods, our MISC improves all the evaluation metrics except MR6 by a large margin. Furtherly,
since the proposed modules are all general training components, other existing motion forecasting
models can also benefit greatly from these strategies.

Qualitative Results. We also present some qualitative results on the Argoverse validation set in
Fig. 4. Compared with results without consistency, the Dual Consistency Constraints improve both
the quality and smoothness of the predicted trajectories significantly, resulting in more feasible and
stable results despite the input noise.

4.3 ABLATION STUDIES

Component Study. As shown in Tab. 2, we conduct an ablation study for our MISC on the Argov-
erse validation set to evaluate the effectiveness of each proposed component. We adopt TPCN (Ye
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Figure 4: The past trajectory is in yellow, the predicted trajectory in green, and the ground truth in
red. The top row of the figure shows the results without consistency, while the bottom row shows
the results with consistency

Table 2: Ablation study results of modules. Goal refers to Trajectory completion with goal predic-
tion. “Ref.” is the trajectory refinement module, and the “Temp.” is temporal consistency. TTC
refers to Teacher-Target Constraints during training

Architecture Consistency TTC K=1 K=6
Goal Ref. Temp. Spatial minADE minFDE minADE minFDE

1.34 2.95 0.73 1.15
✓ 1.33 2.91 0.725 1.10
✓ ✓ 1.31 2.89 0.71 1.07
✓ ✓ ✓ 1.24 2.70 0.662 0.981
✓ ✓ ✓ ✓ 1.22 2.67 0.653 0.954
✓ ✓ ✓ 1.26 2.77 0.69 1.01
✓ ✓ ✓ ✓ ✓ 1.19 2.60 0.640 0.929

et al., 2021) as the baseline shown in the first row of Tab. 2 and add the proposed components pro-
gressively. The architecture modifications from the goal set prediction and trajectory refinement
module show their promising improvements of about 2%. Dual consistency Constraints have the
largest improvements of more than 5% among all the evaluation metrics. Especially for minFDE1,
temporal consistency can optimize 20 cm, indicating the temporal constraints can improve both final
position and trajectory probability prediction. Compared with temporal consistency, spatial consis-
tency has less effect on models since we only enforce this constraint in the trajectory refinement
stage. Finally, the Teacher-Target Constraints significantly increases performance, manifesting its
effectiveness in helping training convergence.

Temporal Consistency Factors. We study the factors in the matching problems, including similar-
ity and matching strategies. As shown in Tab. 3, both Hungarian and Bidirectional matching show
their advantages over the single direction matching. Although Hungarian matching can ensure the

Table 3: Ablation study on matching factor for temporal consistency. In this experiment, we remove
the Teacher-Target Constraints to fairly study the effect

Matching Strategy Similarity K=1 K=6
minADE minFDE MR minADE minFDE MR

Forward ADE 1.25 2.70 0.46 0.670 0.982 0.089
FDE 1.24 2.69 0.46 0.668 0.980 0.088

Backward ADE 1.25 2.70 0.46 0.670 0.982 0.089
FDE 1.24 2.68 0.46 0.667 0.958 0.085

Bidirectional ADE 1.22 2.67 0.446 0.666 0.972 0.087
FDE 1.22 2.67 0.445 0.653 0.954 0.084

Hungarian ADE 1.24 2.69 0.46 0.668 0.975 0.088
FDE 1.23 2.69 0.45 0.660 0.968 0.088
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Table 4: Ablation study results on the teacher target number J
Teacher Target Num K=1 K=6

J minADE minFDE MR minADE minFDE MR
1 1.29 2.82 0.50 0.70 1.03 0.104
3 1.28 2.80 0.48 0.69 1.02 0.10
6 1.26 2.77 0.47 0.69 1.01 0.09

Table 5: Ablation study of consistency constraints and Teacher Target Constraints on different state-
of-the-art methods on Argoverse validation set. Performance for methods without constraints is
obtained from corresponding papers or our reproduction

Method Consistency TTC K=1 K=6
minADE minFDE minADE minFDE

LaneGCN (Liang et al., 2020)
× × 1.35 2.97 0.71 1.08
✓ × 1.29 2.80 0.68 1.00
× ✓ 1.30 2.88 0.69 1.04

TPCN (Ye et al., 2021)
× × 1.34 2.95 0.73 1.15
✓ × 1.27 2.79 0.69 1.04
× ✓ 1.30 2.86 0.69 1.09

mmTransformer (Liu et al., 2021)
× × 1.38 3.03 0.71 1.15
✓ × 1.31 2.83 0.68 1.02
× ✓ 1.29 2.80 0.68 1.04

DenseTNT (Gu et al., 2021)
× × 1.36 2.94 0.73 1.05
✓ × 1.25 2.81 0.68 0.98
× ✓ 1.30 2.82 0.69 1.00

one-to-one matching relationship, it is sensitive to the similarity metric and numerical precision,
both of which are not stable in the early training stage. In contrast, bidirectional matching with the
FDE similarity metric nearly achieves the best results across all the evaluation metrics. Meanwhile,
we also conduct experiments to find the best time-shift value s in the temporal consistency. The
details can be found in appendix 6.

Number of Teacher Targets. As shown in Tab. 4, more teacher targets could bring better perfor-
mance. Compared with J = 1, 6 teacher targets bring an extra nearly 1% improvements. However,
the marginal improvement decreases significantly so we finally choose J = 6.

4.4 GENERALIZATION CAPABILITY

To verify the generalization capability of Dual Consistency Constraints and Teacher Targets Con-
straints, we also apply them to different models with state-of-the-art performance to show that they
can be plugin-in training schemes.

Consistency Component. As shown in Tab. 5, our dual consistency constraints can effectively
improve the performance of models regardless of their representations through the training phase.
There is a noticeable improvement of over 5% on every metric, especially for minFDE.

Teacher Target. Teacher-Target Constraints is another general training trick that can be widely used
in other frameworks. In Tab. 5, we also verify its effectiveness on other public methods. Methods
with Teacher-Target Constraints have nearly over 3% improvement in all metrics. For the origi-
nal DenseTNT (Gu et al., 2021), we replace its original handcrafted optimization for teacher goal
targets with our self-ensembling teacher targets. This strategy brings an over 5% increase in per-
formance, demonstrating the better quality of the self-ensembling teacher targets than handcrafted
optimizations and estimation.

5 CONCLUSION

In this work, we propose MISC, an effective architecture for the motion forecasting task that explic-
itly models the multi-modality. We also impose dual consistency regularization on both spatial and
temporal domains to leverage the potential of self-supervision, which has been ignored by previous
efforts. Besides, we explicitly model the multi-modality by providing supervision with powerful
self-ensembling techniques. Experimental results on the Argoverse motion forecasting dataset show
the effectiveness of our approach and generalization capability to other methods.
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REPRODUCIBILITY STATEMENT

We use the publicly available Argoverse Dataset (Chang et al., 2019) available at https://www.
argoverse.org/av1.html#forecasting-link. Dataset preprocessing is shown in 4.1.
Training process is in Appendix A.2. And the model architecture is illustrated in the Sec. 3.1 and
Appendix A.1.
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A APPENDIX

A.1 MODEL DETAILS

We provide the detailed network architecture of our MISC in Fig. 5. We use TPCN (Ye et al., 2021)
as our backbone. The feature extraction consists of 4 spatial modules and 4 dynamic temporal learn-
ing layers same as TPCN. Before the prediction header, we calculate the mean features and remove
map instances features. For the spatial module, the point representation utilizes PointNet++ (Qi
et al., 2017) with neighborhood radius of [0.2m, 0.4m, 0.8m], while the voxel representation uses
Sparse BottleNeck. We use all the points in this process without any sampling. More details about
backbone can be found in TPCN (Ye et al., 2021).

A.2 TRAINING DETAILS

We train MISC for 50 epochs using a batch size of 32 with Adam (Kingma & Ba, 2014) optimizer
with an initial learning rate of 0.001, which is decayed every 15 epochs in a ratio of 0.1.

Input: M x 2

Spatial Module

Dynamic Temporal Learning

Spatial Module

Dynamic Temporal Learning

concatenate

PointNet++
radius:(0.2, 0.4, 0.8) Sparse BottleNeck

Point To Voxel

Voxel To Point

Multi-interval Learning
(2, 4, 6, 8,16)

Instance Pooing

TPCN feature extraction

…
M x 128

Map Instances
N x 128

Agent Instances
1 x 128

Mean over Instance

Goal Prediction Header

KGoal
K x 2

Trajectory completion (MLP)
Kx30x2

Trajectory Refinement (MLP)
Kx30x2

Agent History
1x20x2

Final Output
Kx30x2

Figure 5: Detailed illustration of our MISC.

A.3 ABLATION STUDY

A.3.1 TEMPORAL CONSISTENCY

Meanwhile, we also conduct experiments to find the best time-shift value s in the temporal consis-
tency. As shown in Tab. 6, choosing time shift s = 1 has already achieved decent performance, with
five out of six metrics ranking the first. Further increasing the s will not bring much performance
gain since the driving behavior could change a lot with large s.

We use the average L2 distance among all predicted trajectory waypoints to measure the temporal
consistency. As shown in Fig. 6, our model without temporal consistency will have large inconsis-
tency even though the time shift s is small, which may lead to unstable behavior for the downstream
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Table 6: Ablation study results of time-shift s used by temporal consistency

Time shift K=1 K=6
s minADE minFDE MR minADE minFDE MR
1 1.22 2.67 0.444 0.653 0.954 0.084
2 1.23 2.67 0.444 0.654 0.958 0.082
3 1.25 2.69 0.445 0.662 0.964 0.085
4 1.25 2.70 0.446 0.667 0.969 0.086

Figure 6: The L2 distance in our model varies with the time shift s.

task such as planning. With temporal consistency constraints, there is a significant improvement for
the L2 distance divergence, demonstrating the effectiveness of our method.

A.3.2 SPATIAL CONSISTENCY

Furthermore, we also measure the spatial inconsistency against flipping and Gaussian noise with
zero mean and standard deviation of 15cm. The average spatial inconsistency will be 19.3cm, while
the number decreases to 10.2cm with our spatial consistency constraint.

A.3.3 COMPONENT STUDY

We provide a controlled experiment to verify the effectiveness of the proposed method when turning
both Dual Consistency Constraints and Teacher-Target Constraints on at the same time shown in
Tab. 7. With both modules on, the performance of all the methods benefits a lot, about nearly 7%,
demonstrating the generalization capability and effectiveness of our approach. It also shows that
these two modules can be independently helpful.

A.3.4 RESULTS ON WAYMO DATASET

Table 8: Quantitative results on the validation set of the Waymo Open dataset motion prediction
task.

Method minADE↓ minFDE↓ Miss Rate↓ mAP↑
Baseline (Ettinger et al., 2021) 0.675 1.349 0.183 0.268

KEMP (Lu et al., 2022) 0.5691 1.1993 0.1458 0.394
SceneTransformer (Ngiam et al., 2021) 0.613 1.22 0.157 0.284

Ours 0.54 1.11 0.128 0.41
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Table 7: Results of consistency constraints and Teacher-Target Constraints (TTC) supervision on
different state-of-the-art methods on Argoverse validation set. Performance for methods without
consistency constraints is obtained from corresponding papers or our reproduction.

Method Consistency & TTC K=1 K=6
minADE minFDE minADE minFDE

LaneGCN (Liang et al., 2020) × 1.35 2.97 0.71 1.08
✓ 1.25 2.71 0.66 0.98

TPCN (Ye et al., 2021) × 1.34 2.95 0.73 1.15
✓ 1.23 2.70 0.67 1.00

mmTransformer (Liu et al., 2021) × 1.38 3.03 0.71 1.15
✓ 1.25 2.77 0.67 0.99

DenseTNT (Gu et al., 2021) × 1.36 2.94 0.73 1.05
✓ 1.23 2.71 0.66 0.95

We provide some quantitative results on the validation set of the Waymo Open dataset motion pre-
diction task (Ettinger et al., 2021), shown in Tab. 8. Compared with KEMP (Lu et al., 2022) and
SceneTransformer (Ngiam et al., 2021), we also achieve very promising results and show compara-
ble improvement, demonstrating the effectiveness of our approach.

A.3.5 ABLATION STUDY ON WAYMO DATASET

Since the scale and object types in waymo dataset and argoverse dataset are different, we conduct
experiments to find the best time shift s for each class on Waymo Dataset. As shown in Tab. 9, best
time shift for vehicle and cyclist will be 1, while the value will be 2 for pedestrian class. To achieve
the best performance for the overall metrics, we finally choose s = 1 in our setting.

Table 9: Ablation study results of time-shift s used by temporal consistency on Waymo Open Motion
Dataset motion prediction

Time shift minADE ↓ minFDE ↓ MR ↓ mAP ↑
veh ped cyc veh ped cyc veh ped cyc veh ped cyc

1 0.622 0.34 0.654 1.262 0.663 1.294 0.135 0.085 0.197 0.285 0.252 0.214
2 0.625 0.33 0.660 1.263 0.662 1.296 0.135 0.084 0.200 0.283 0.252 0.215
3 0.632 0.34 0.667 1.274 0.666 1.302 0.136 0.086 0.198 0.290 0.254 0.217
4 0.634 0.33 0.672 1.278 0.670 1.303 0.137 0.086 0.199 0.288 0.253 0.217

A.4 RESULTS ON ETH DATASET

To verify the temporal consistency on the low framerate dataset, we conduct experiments on the
ETH Pellegrini et al. (2010) dataset. We report the ADE and FDE metrics for tpred = 8 and
tpred = 12 respectively. Following the common settings used by previous methods Fang et al.
(2020), we use K = 1 and K = 20. As shown in Tab. 10, our temporal consistency significantly
improves the performance. Choosing s = 1 works well in most of the evaluation metrics.

A.5 MODEL COMPLEXITY

We provide detailed runtime speed evaluated in a single RTX2080Ti with the model parameters
shown in Tab. 11. Compared with other state-of-the-art models, we achieve decent performance
without introducing more computation cost.

A.6 QUALITATIVE ANALYSIS

We provide some visual results of MISC on the the Argoverse (Chang et al., 2019) validation set in
Fig. 8 as well as the Argoverse test set in Fig. 9. These qualitative results demonstrate the effective-
ness and the high-quality predicted trajectories of our method.
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Table 10: Ablation study results of time-shift s used by temporal consistency on ETH Dataset

Time shift Dataset K=1 K=20
ADE FDE ADE FDE

0 ETH 0.69 / 0.98 1.30 / 1.98 0.51 / 0.79 1.05 / 1.66
HOTEL 0.27 / 0.33 0.46 / 0.55 0.20 / 0.25 0.36 / 0.44

1 ETH 0.65 / 0.93 1.22 / 1.86 0.47 / 0.73 0.97 / 1.55
HOTEL 0.23 / 0.29 0.42 / 0.50 0.18 / 0.23 0.33 / 0.42

2 ETH 0.65 / 0.92 1.23 / 1.88 0.48 / 0.73 1.00 / 1.56
HOTEL 0.24 / 0.27 0.43 / 0.49 0.18 / 0.25 0.34 / 0.42

3 ETH 0.66 / 0.93 1.24 / 1.89 0.48 / 0.73 0.98 / 1.57
HOTEL 0.24 / 0.30 0.43 / 0.52 0.19 / 0.24 0.34 / 0.44

4 ETH 0.66 / 0.94 1.23 / 1.89 0.49 / 0.74 0.99 / 1.58
HOTEL 0.25 / 0.31 0.44 / 0.51 0.20 / 0.25 0.33 / 0.44

Table 11: The number of parameters and running time.

Method Param (M) Speed (ms)
LaneGCN 3.7 55
DenseTNT 1.1 40
mmTransformer 2.6 34
Ours 3.6 36

A.7 FAILURE CASES

We also present some failure cases on the validation set in Fig. 7. Some possible reasons are:

• The ground-truth labels contain some noises. Since the ground-truth labels are obtained
from tracking, there may be some id switches, leading to the sudden perturbation of the
agents’ location (e.g., the first and third example in the second row of Fig. 7). Under these
scenarios, the predicted trajectories from MISC are more reasonable and stable without
large jerks.

• The multi-modality problem. In some situations, MISC can not predict the intention per-
fectly without enough motion and map information. The first and third example in the
first row of Fig. 7 demonstrate this phenomenon. The agent makes a lane change decision
without many hints in the historical information. Thus, this can be furtherly improved by
introducing more map constraints.
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Figure 7: Failure cases on the Argoverse validation set. The target agent’s past trajectory is in
yellow, predicted trajectory in green, and ground truth in red.
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Figure 8: The motion forecasting results on the Argoverse validation set. The target agent’s past
trajectory is in yellow, predicted trajectory is in green, and ground truth is in red.
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Figure 9: The motion forecasting results on the Argoverse test set. The target agent’s past trajectory
is in yellow and predicted trajectory in green.
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