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Abstract

Grammatical error correction (GEC) is a task001
dedicated to rectifying texts with minimal edits,002
which can be decoupled into two components:003
detection and correction. However, previous004
works have predominantly focused on direct005
correction, with no prior efforts to integrate006
both into a single model. Moreover, the ex-007
ploration of the detection-correction paradigm008
by large language models (LLMs) remains un-009
derdeveloped. This paper introduces an inte-010
grated detection-correction structure, named011
DeCoGLM, based on the General Language012
Model (GLM). The detection phase employs013
a fault-tolerant detection template, while the014
correction phase leverages autoregressive mask015
infilling for localized error correction. Through016
the strategic organization of input tokens and017
modification of attention masks, we facilitate018
multi-task learning within a single model. Our019
model demonstrates competitive performance020
against the state-of-the-art models on English021
and Chinese GEC datasets. Further experi-022
ments present the effectiveness of the detection-023
correction structure in LLMs, suggesting a024
promising direction for GEC.025

1 Introduction026

Grammatical error correction (GEC) is a task027

focused on automatically rectifying grammati-028

cal errors in human-written text (Wang et al.,029

2021). GEC models are applied in language030

learning (Katinskaia and Yangarber, 2021; Caines031

et al., 2023; Kaneko et al., 2022), enhancing au-032

tomatic speech recognition (Liao et al., 2023),033

and aiding in text data labeling (Sun et al.,034

2023). The two primary approaches in GEC are035

Sequence-to-Sequence (Seq2Seq) and Sequence-036

to-Edit (Seq2Edit). Without detection, Seq2Seq037

treats GEC as the direct generation for correct text,038

providing high flexibility (Junczys-Dowmunt et al.,039

2018; Ge et al., 2018). On the other hand, Seq2Edit040

views GEC as a sequence labeling task for edit la-041

   Finally, I will have high salary when I am Journalist.Source

   Finally, I will have [MASK] high salary when I am [MASK].Masked

   Finally, I will have a high salary when I am a  journalist.Corrected

Localized Error Correction

      a             a  journalistPieces

Detect and Apply Template

Figure 1: Detection and correction process of
DeCoGLM. Detection and Correction are incorporated
in one General Language Model (GLM).

bels, showcasing high precision by controlled edits 042

(Awasthi et al., 2019; Stahlberg and Kumar, 2020; 043

Omelianchuk et al., 2020). The advent of large 044

language models (LLMs) has further expanded 045

Seq2Seq model capabilities (Ouyang et al., 2022; 046

Zeng et al., 2022). Despite their unprecedented 047

performance in various tasks (Chang et al., 2024), 048

LLMs underperform than low-parameter models in 049

GEC due to the over-correction phenomenon (Qu 050

and Wu, 2023; Coyne et al., 2023). 051

While the detection-correction structure can har- 052

ness the strengths of both Seq2Seq and Seq2Edit, 053

most existing works merely utilize detection as 054

additional input for Seq2Seq models (Yuan et al., 055

2021a; Li et al., 2022, 2023a). Moreover, all pre- 056

vious detection-correction systems comprise sep- 057

arate models (Chen et al., 2020). In contrast, we 058

introduce a novel GEC model, named DeCoGLM, 059

based on the General Language Model (GLM) (Du 060

et al., 2022). This model employs an integrated 061

detection-correction structure to detect errors and 062

generate localized corrections. As depicted in Fig- 063

ure 1, the error detection phase employs a template 064

rule to construct masked text based on detection 065

results. During the correction phase, the model 066

leverages the autoregressive mask infilling capabil- 067
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ity of the GLM to generate correct text pieces for068

erroneous parts, thereby saving inference time. To069

incorporate both detection and correction within a070

single model, we devise a multi-task learning ap-071

proach, organizing input text with attention mask072

adjustments. Results on English and Chinese GEC073

benchmarks demonstrate that our proposed model074

surpasses previous detection-correction models and075

is comparable to state-of-the-art (SOTA) models.076

To further explore the potential of applying the077

detection-correction structure to LLMs, the detec-078

tion and correction phases are separated, termed079

DeGLM and CoGLM respectively. Our proposed080

single system, comprising a small detection model081

and an LLM corrector, outperforms other Seq2Seq082

LLMs. In summary, our primary contributions are:083

• A novel GEC model, DeCoGLM, which incor-084

porates a detection-correction structure based085

on the GLM.086

• The design of a multi-task training method087

that integrates detection and correction within088

a single model.089

• The exploration of using LLMs for GEC,090

which involves deploying large error correc-091

tion models with the support of small detec-092

tion models.093

2 Related Work094

2.1 Sequence-to-Sequence GEC095

Seq2Seq models (Lewis et al., 2019; Raffel et al.,096

2020) have demonstrated high performance in GEC097

(Junczys-Dowmunt et al., 2018; Choe et al., 2019;098

Zhao et al., 2019; Katsumata and Komachi, 2020).099

Techniques such as data synthesis (Stahlberg and100

Kumar, 2021; Grundkiewicz et al., 2019), train-101

ing schedule (Lichtarge et al., 2020; Bout et al.,102

2023), and decode reranking methods (Kaneko103

et al., 2019; Zhang et al., 2023; Zhou et al., 2023)104

have been incorporated into previous Seq2Seq105

GEC models. SOTA model architectures typically106

supplement Seq2Seq models with additional infor-107

mation (Li et al., 2023a; Zhang et al., 2022b; Fang108

et al., 2023a). However, a significant drawback of109

Seq2Seq GEC models is the inference cost, as these110

models generate tokens sequentially and waste time111

copying source tokens (Sun et al., 2021).112

As the latest Seq2Seq models, LLMs have113

emerged as a new paradigm for natural language114

processing (NLP) tasks following the introduction115

of GPT-3 and ChatGPT (Brown et al., 2020). Nev- 116

ertheless, recent studies have shown that LLMs 117

underperform current SOTA models on both En- 118

glish and Chinese GEC benchmarks (Coyne et al., 119

2023; Loem et al., 2023; Qu and Wu, 2023; Li 120

et al., 2023b). Existing datasets and evaluation 121

methods (Bryant et al., 2017) favor minimum edits 122

as the rule for correction. However, GPT models 123

often produce over-corrected sentences with un- 124

necessary edits (Fang et al., 2023b; Coyne et al., 125

2023). In contrast to the Seq2Seq GEC methods 126

that directly perform overall generation, our work 127

only focuses on localized error correction, which 128

not only saves inference time but also mitigates the 129

over-correction phenomena in LLMs. 130

2.2 Sequence-to-Edit GEC 131

Seq2Edit methods generate edit operations for 132

ungrammatical sentences (Stahlberg and Kumar, 133

2020). For instance, LaserTagger (Malmi et al., 134

2019) predicts token-level edit operations, which 135

has been adopted in subsequent methods like PIE 136

and GECToR (Awasthi et al., 2019; Omelianchuk 137

et al., 2020). As a representative model, GECToR 138

predicts four classes of edits and grammatical trans- 139

formations, achieving high-precision results. Lai 140

et al. (2022) further enhances it by addressing its 141

deficiencies in multi-round correction. However, 142

Seq2Edit methods necessitate intricate designs for 143

edits, which are not language-agnostic. In con- 144

trast, our proposed model retains a limited set of 145

language-agnostic edit operations and can flexibly 146

conduct edits by autoregressive generation. 147

2.3 Detection-Correction GEC 148

The GEC task can be divided into two processes: 149

detection and correction (Rei and Yannakoudakis, 150

2016; Bell et al., 2019). Prior research incorporates 151

detection results as supplementary information for 152

Seq2Seq correction models (Kaneko et al., 2020; 153

Yuan et al., 2021b; Li et al., 2023a). The methods 154

proposed by Mallinson et al. (2020) and Yakovlev 155

et al. (2023) employ the Masked Language Model 156

(MLM) (Devlin et al., 2018) to obtain corrections, 157

which are constrained by mask number. Chen et al. 158

(2020) introduces error span detection and correc- 159

tion to address the GEC problem, which allows 160

for flexible corrections while maximizing time ef- 161

ficiency. Building on this, we further integrate the 162

detection and correction tasks into a single GLM 163

model, enabling mutual benefits between the two 164

tasks, which is not achieved by previous works. 165
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s. Consistent with GLM, the position IDs and

block position IDs are utilized for marking the original positions of text pieces and the inner order of tokens.

3 Methods166

Our proposed model leverages the design of the167

GLM. Given a sentence with MASK tokens, GLM168

utilizes autoregressive blank infilling (Du et al.,169

2022) to generate a corresponding segment for each170

MASK position. These segments are termed as text171

pieces. This section describes how GLM is utilized172

to integrate detection and correction into a single173

model, as depicted in Figure 2. Additionally, the174

design of multi-task training is also outlined here.175

3.1 Error Detection176

Drawing from the four edit classes by Omelianchuk177

et al. (2020), we utilize token-level detection labels178

that do not include any specific word or grammar.179

Given that the mask-infilling process can generate180

empty text pieces, the REPLACE and DELETE181

operations are consolidated into the ERROR label.182

Consequently, the detection labels comprise KEEP183

(K), ERROR (E), and INSERT (I). Given the184

tokens of source text as:185

xs = x1sx
2
s . . . x

n
s (1)186

, the objective of error detection is to predict detec-187

tion labels derived by the alignment between the188

source text and the target text (correct text):189

d = d1d2 . . . dn, di ∈ L = {K,E, I} (2)190

Detection Model The proposed model begins191

by extracting the representations of the source text192

tokens by GLM as Equation 3. The final detection193

label predictions are generated through a detection194

head, implemented by a feed-forward network FN195

and softmax function, as shown in Equation 4:196

hs = h1sh
2
s . . . h

n
s = GLM(xs) (3)197

p
(
d̂i = l|xs

)
= Softmax(FN

(
his
)
), l ∈ L (4) 198

Fault-tolerant Template The source text xs is 199

transformed into masked text xm based on the de- 200

tection labels using the following template rules. 201

Each continuous interval containing only ERROR 202

labels is replaced with a MASK token. For each 203

position of INSERT, a MASK token is inserted. 204

The form of masked text is shown in Equation 5: 205

xm = xs1m1xs2m2 . . .mkxsk+1
, (5) 206

where mi is the i-th MASK token introduced in 207

xs, and xsi denotes the i-th correct subinterval 208

of source text. If all the labels are KEEPs, the 209

source text is directly output as the corrected result. 210

Despite potential inaccuracies in detections, our 211

model can tolerate a certain degree of false posi- 212

tives. In the instance where the correct token is 213

identified as ERROR or INSERT, the corrector can 214

mitigate such errors by either restoring the original 215

text piece or generating an empty text piece. 216

Aggressive Detection Utilizing the fault-tolerant 217

template enables more aggressive detection, em- 218

phasizing the recall of ERROR and INSERT. Focal 219

Loss (Lin et al., 2020) is used as the loss function 220

to tackle the issue of imbalanced classification be- 221

cause the majority of tokens correspond to KEEP 222

labels. The training objective for error detection is 223

given by Equation 6: 224

ℓD = −αD (1− pθ (d|xs))
γ log (pθ (d|xs)) (6) 225

where θ represents the model parameters and γ is 226

a hyper-parameter set to 2. αD denotes the corre- 227

sponding weight factors for detection labels. To 228

strengthen aggressive error detection, αK for the 229
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KEEP category is set to 1, while αEI = 2 is set for230

the ERROR and INSERT categories.231

3.2 Localized Error Correction232

In the training data, detection labels are derived233

from the alignment of sequences between the234

source text xs and the target text y. The corre-235

sponding masked text xm can be formulated in236

Equation 5 with xsi representing the i-th aligned237

segment. For each unaligned position replaced with238

mi, the correct text piece is denoted as ci. Conse-239

quently, the target text can be represented as:240

y = xs1c1xs2c2 . . . ckxsk+1
(7)241

Leveraging the GLM pretrained by autoregres-242

sive blank infilling task, we fine-tune the GLMs for243

localized error correction. The probability distri-244

bution prediction for the j-th token in the i-th text245

piece ci is given in Equation 8:246

p
(

ˆci,j = w|xs,xm, c<i, c
<j
i

)
=

GLMH
(
xs,xm, c<i, c

<j
i

)
, w ∈ V

(8)247

where GLMH denotes the GLM model with its248

original token prediction head, w is any token in249

the vocabulary, and c<j
i refers to all tokens with250

index < j in text piece ci.251

3.3 Multi-Task Organization252

Multi-task Learning. The cross-entropy loss253

function, shown in Equation 9, is used as the train-254

ing objective for error correction task:255

ℓC = −
∑
i,j

log
(
pθ

(
ci,j |xs,xm,c<i,c<j

i

))
(9)256

For multi-task learning, we utilize a weighted257

loss function to enable the model to concurrently258

acquire error detection and correction capabilities.259

The training objective for this DeCoGLM model is260

to minimize the loss function given by:261

ℓ = ℓ̄C + wD ℓ̄D (10)262

where ℓ̄C and ℓ̄D are the token-level averages of ℓC263

and ℓD respectively. The detection loss weight wD264

is set to 10 to balance the scales of the two losses.265

For the impact of the loss weights on the model’s266

performance, please refer to Section 5.1.267

Attention Mask To unify the two tasks into a sin-268

gle model, source text xs, masked text xm, and text269

pieces c are concurrently fed into the GLM model.270

The prediction of detection labels is conditioned271
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Figure 3: Attention Mask Example. The source text is
xs = x1

sx
2
sx

3
sx

4
s, and the target text is y = c11x

3
sx

4
sc

1
2c

2
2.

The region enclosed by dashed lines indicates the atten-
tion removed compared to the original GLM.

on xs, while the autoregressive text prediction re- 272

lies on xs, xm, and all previously generated text 273

pieces. Therefore, the attention from xm to xs is 274

eliminated to prevent detection from using xm and 275

c, with other part adhering to the original GLM 276

attention mask. This is depicted in Figure 3. 277

Two Stage Supervised Fine-tuning Given that 278

error detection is not infallible, the input during the 279

correction phase may contain inaccuracies, with 280

a distribution deviation from the training samples 281

constructed with right detection labels. This issue 282

is also observed in other detection-correction works 283

(Chen et al., 2020; Li et al., 2023a). To address 284

this, we add a second supervised fine-tuning stage 285

(SFT2), which employs a detection-enhanced ap- 286

proach: initially, all detection results on the training 287

set are obtained using the model trained with data 288

constructed by perfect detection (SFT1). Then, new 289

training data is generated by augmenting the origi- 290

nal labels with the fault detection results, leading to 291

a secondary training of the SFT1 model. Examples 292

of the two-stage training samples are provided in 293

Table 6 in the appendix. 294

3.4 Separate Models 295

The detection and correction phases can be imple- 296

mented using two separate GLMs, named DeGLM 297

and CoGLM respectively in this paper. Their train- 298

ing objectives are defined by Equation 6 and 9, 299

respectively. This decomposition facilitates the 300
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customization of distinct models for the detection301

and correction phases. However, in scenarios with302

limited computational resources, the Parameter-303

Efficient Fine-Tuning (PEFT) (Fu et al., 2023) is304

ineffective for DeCoGLM due to the significant305

disparities between the sequence labeling task of306

the error detection module and the mask-infilling307

pretraining task of GLM. To apply our approach308

to LLMs, we propose training a large version of309

CoGLM using the detection-enhanced method, sim-310

ilar to the second stage fine-tuning discussed in311

Section 3.3.312

3.5 Detection Control313

During inference, the model needs to predict detec-314

tion labels for the source text first, then transform315

it into masked text. Subsequently, both of them316

are input together for generating text pieces. This317

decoupling allows us to regulate the correction pro-318

cess using the probabilities of the three detection319

labels, thereby harnessing the model’s potential to320

enhance benchmark performance. Three control321

modes are designed:322

KEEP Threshold (δ): Any prediction with KEEP323

probability exceeding δ is directly set to KEEP.324

ERROR Lower Bound (ϕe): Any ERROR prob-325

ability prediction falling below ϕe is directly set326

to 0, thereby precluding the prediction of ERROR327

when pe < ϕe.328

INSERT Lower Bound (ϕi): Any INSERT proba-329

bility prediction below ϕi is directly set to 0, pre-330

cluding the prediction of INSERT when pi < ϕi.331

The three inference hyper-parameters can be de-332

termined using a greedy grid search based on the333

metrics on the validation set. We discuss them in334

Section 5.4.335

4 Experiments336

4.1 Datasets and Evaluation337

For the English GEC task, we evaluate the perfor-338

mance on the CoNLL-14 test set (Ng et al., 2014)339

using the M2 Scorer (Dahlmeier and Ng, 2012),340

and on the BEA-19 test set (Bryant et al., 2019) us-341

ing the ERRANT scorer (Bryant et al., 2017). The342

model is pretrained on synthetic dataset C4-200M343

(Stahlberg and Kumar, 2021) and fine-tuned on344

the cleaned Lang8 dataset (CLang8) (Rothe et al.,345

2021). For the large version of CoGLM model,346

we utilize smaller datasets including FCE (Yan-347

nakoudakis et al., 2011), NUCLE (Dahlmeier et al.,348

2013), and W&I+LOCNESS (Bryant et al., 2019)349

for fine-tuning, following Zhou et al. (2023). The 350

BEA-19 dev set is used for model selection. 351

For the Chinese GEC task, we synthesize pre- 352

training data from the People’s Daily corpus1 us- 353

ing rule-based insertion, replacement, and deletion. 354

The models are fine-tuned on the Chinese Lang8 355

dataset (Zhao et al., 2018) and the HSK dataset, 356

following Zhang et al. (2022a), and on the FCGEC 357

training set, respectively. The models are evaluated 358

on MuCGEC and FCGEC test sets using ChER- 359

RANT (Zhang et al., 2022a; Xu et al., 2022). Fur- 360

ther details are provided in Appendix A. 361

4.2 Model Settings 362

Proposed Models The open-source GLMs are 363

utilized as the backbones for both DeCoGLM 364

and separate models. The detection head com- 365

prises a feed-forward network with a single 366

hidden layer, the dimension of which matches 367

that of the GLM hidden state. The English 368

base model employs glm-roberta-large, while 369

glm-large-chinese is used as the Chinese base 370

model. The large CoGLM models for error correc- 371

tion, denoted as CoGLM (10B), uses glm-10b and 372

glm-10b-chinese as backbones. Due to the re- 373

striction of computational resources, large models 374

are fine-tuned on the relatively small fine-tuning 375

dataset mentioned in Section 4.1 by LoRA (Hu 376

et al., 2021), without datasets for pretraining. Refer 377

to Appendix B.2 for detailed configurations. 378

Comparison with Previous Works In the main 379

experiment, we present the results of single systems 380

trained on parallel data without reranker. GEC- 381

ToR (Omelianchuk et al., 2020) represents the 382

Seq2Edit models, while BART and T5 (Lewis et al., 383

2019; Raffel et al., 2020) are SOTA backbones of 384

Seq2Seq GEC methods. SynGEC (Zhang et al., 385

2022b) incorporates syntactic information into the 386

BART model. The performance of GECToR and 387

BART model on the Chinese dataset is the repro- 388

duced result under our data configuration, and the 389

results for BART on the English dataset are re- 390

ported by Zhang et al. (2022b). We also present 391

the results of four models involving the detection- 392

correction process. SpanDC (Chen et al., 2020) 393

comprises a span detector and a generator. Multi- 394

Encoder (Yuan et al., 2021a) encodes error cat- 395

egories as auxiliary information. GEC-DePend 396

(Yakovlev et al., 2023) integrates error detection 397

with correction by the MLM. TemplateGEC (Li 398

1https://github.com/shibing624/pycorrector
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English Chinese
CoNLL-14 test BEA-19 test MuCGEC test FCGEC test

Single System Parameters P R F0.5 P R F0.5 P R F0.5 P R F0.5

Primary Results
GECToR 110M 77.5 40.1 65.3 79.2 53.9 72.4 46.72 27.14 40.83 46.11 34.35 43.16
BART 400M 73.6 48.6 66.7 74.0 64.9 72.0 41.90 29.48 38.64 38.38 37.62 38.23
T5 770M - - 66.1 - - 72.1 - - - - - -
SynGEC 110M+400M 74.7 49.0 67.6 75.1 65.5 72.9 54.69 29.10 46.51 - - -
SpanDC 125M+209M 72.6 37.2 61.0 70.4 55.9 66.9 - - - - - -
Multi-Encoder 110M+107M 71.3 44.3 63.5 73.3 61.5 70.6 - - - - - -
GEC-DePenD 253M 73.2 37.8 61.6 72.9 53.2 67.9 - - - - - -
TemplateGEC 125M+770M 74.8 50.0 68.1 76.8 64.8 74.1 - - - - - -
DeGLM-CoGLM 335M+335M 75.1 49.0 67.8 76.4 63.4 73.4 47.22 30.08 42.39 52.95 39.20 49.48
DeCoGLM 335M 75.1 49.4 68.0 77.4 64.6 74.4 45.01 31.77 41.55 55.75 37.91 50.96

Resource-restricted LLMs
ChatGLM2 6B 61.72 45.58 57.64 56.89 58.73 57.25 31.35 21.39 28.68 44.30 17.08 33.59
ChatGLM3 6B 60.63 47.50 57.46 59.48 60.37 59.65 30.62 21.60 28.26 41.06 19.93 33.88
LLaMA2/Baichuan 7B 67.24 51.84 63.47 66.16 66.12 66.15 36.47 25.18 33.47 51.83 24.08 42.12
LLaMA2/Baichuan 13B 68.43 55.30 65.33 69.46 69.28 69.42 37.91 26.90 35.04 56.65 27.11 46.52
DeGLM-CoGLM 335M+10B 70.58 52.65 66.08 72.80 67.57 71.69 47.48 29.92 42.49 56.09 38.02 51.22

GPT-4 Zeroshot
ZeroShot - 59.64 58.32 59.37 55.69 70.44 58.13 36.36 27.71 34.22 18.83 4.08 10.93
+DeGLM - 66.40 54.81 63.70 64.92 69.42 65.78 32.68 30.90 32.31 25.60 16.98 23.24

Table 1: Results on English and Chinese GEC benchmarks. The parameter counts of the backbones of each system
are shown in the second column. Under restricted resource, LLMs are fine-tuned using smaller datasets by LoRA.
The highest metric is indicated in bold, while the second highest metric value is underlined.

et al., 2023a) uses the output of the GECToR model399

as supplementary information for Seq2Seq models.400

Comparison with LLMs For the LLMs treating401

GEC as a Seq2Seq task, we fine-tune ChatGLM2,402

ChatGLM3 (Du et al., 2022), and Llama2 (Tou-403

vron et al., 2023) with LoRA. As Llama2 is not404

optimized for Chinese, the results on the Chinese405

dataset are obtained using the Baichuan (Yang et al.,406

2023) models.407

GPT-4 We report the zero-shot performance of408

GPT-4 on four datasets with prompting. We at-409

tempt to incorporate detection results in the form410

of masked text into the prompt of GPT-4, aiming411

to enhance the performance on GEC tasks.412

4.3 Main Results413

Table 1 presents the main results. According to414

the last two rows of primary results, the integrated415

detection-correction model outperforms the sepa-416

rate models in most cases in terms of the F0.5 met-417

ric, despite having only half the parameter count.418

This suggests that the designed multi-task learn-419

ing mutually reinforces detection and correction.420

DeCoGLM achieves the highest or second-highest421

F0.5 performance on three datasets, demonstrat-422

ing comparable performance to SOTA GEC mod-423

els. Considering the model parameter counts, our424

model outperforms all previous works with the425

detection-correction process, indicating that the426

well-designed detection-correction structure can427

achieve SOTA level in GEC, a field typically dom- 428

inated by Seq2Seq models. These results also un- 429

derscore the potential of GLM in GEC field. 430

Despite limitations of data quantity and fine- 431

tuning methods, fine-tuning LLMs with over 10B 432

parameters yields results approaching SOTA level, 433

suggesting that LLMs can reduce the need for ex- 434

tensive supervised data for fine-tuning. The strat- 435

egy of small detection models assisting large mod- 436

els in localized correction yields improved perfor- 437

mance across all datasets, primarily due to higher 438

precision. This suggests that the model reduces 439

over-correction at the expense of a certain level 440

of recall. On the English dataset, GPT-4 exhibits 441

a similar trend when incorporated with detection 442

results, indicating that integrating detections can 443

stably improve the GEC capability of LLMs, thus 444

presenting a promising future direction for GEC. 445

5 Analysis 446

5.1 Weights of Multi-Task Training 447

To establish two weights that significantly impact 448

the training objective: the detection loss weight wD 449

in Equation 10, and the ERROR and INSERT loss 450

weight αEI in Equation 6, we conduct preliminary 451

experiments, which include only the two stages 452

of fine-tuning. The obtained results are presented 453

in Table 3. Based on a preliminary observation 454

on the loss scale, we initially set wD = 10 and 455
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CoNLL-14 test BEA-19 test
BackBone Pretrained SFT1 SFT2 Ctrl P R F0.5 P R F0.5

GLM-Roberta Yes ✓ ✓ ✓ 75.07 49.40 68.00 77.36 64.63 74.43
GLM-Roberta Yes ✓ ✓ × 70.47 54.96 66.70 72.75 69.28 72.03
GLM-Roberta Yes ✓ × ✓ 75.27 48.24 67.69 76.55 62.34 73.21
GLM-Roberta Yes ✓ × × 68.38 57.35 65.84 69.00 71.02 69.39
GLM-Roberta Yes × × × 54.04 45.99 52.21 45.12 58.60 47.30
GLM-Roberta No ✓ ✓ ✓ 72.78 46.42 65.36 75.54 59.87 71.78
GLM-Roberta No ✓ ✓ × 69.25 51.26 64.71 72.33 65.46 70.85
GLM-Roberta No ✓ × ✓ 68.25 49.33 63.39 69.66 61.94 67.97
GLM-Roberta No ✓ × × 63.92 52.46 61.25 66.27 66.01 66.21
BART-large No ✓ ✓ ✓ 69.53 45.62 62.93 72.01 57.84 68.64
BART-large No ✓ ✓ × 66.39 49.80 62.24 69.25 63.28 67.97
BART-large No ✓ × ✓ 67.54 43.66 60.88 68.08 55.14 65.03
BART-large No ✓ × × 62.75 50.40 59.81 64.67 63.62 64.46

Table 2: Ablation study results. The "Ctrl" denotes the proposed detection control.

F0.5 on dev set
wD αEI BEA-19 MuCGEC FCGEC
20 2 60.30 34.45 40.57

10

- 60.09 35.17 41.52
1 59.93 34.25 42.89
2 60.81 35.09 42.49
3 60.29 35.82 40.72
4 60.12 35.03 41.49

5 2 60.60 34.53 42.10
1 2 59.64 33.23 36.72

Table 3: The preliminary experimental results of differ-
ent loss weights. wD and αEI is defined in Section 3.3
and 3.1. The "-" value of αEI represents the usage of
cross-entropy other than Focal Loss.

CoNLL-14 test BEA-19 test
K E I D P R F0.5 P R F0.5

✓ ✓ 69.67 50.91 64.89 72.18 65.14 70.65
✓ ✓ ✓ 69.25 51.26 64.71 72.33 65.46 70.85
✓ ✓ ✓ ✓ 68.48 49.95 63.75 71.23 64.48 69.77

Table 4: Results under different detection label sets.

explore experimental results under varying αEI .456

The outcomes suggest that the Focal Loss along457

with moderately increasing αEI to achieve aggres-458

sive detection introduced in Section 3.3 is effective.459

After setting αEI = 2, we conducted additional460

experiments with different wD. The overall experi-461

mental results indicate that αEI = 2 and wD = 10462

constitute a suitable setup.463

5.2 Detection Label Set464

In the design outlined in Section 3.1, ERROR465

includes both replacement and deletion, as the466

deletion can be considered as replacing with zero-467

length text. The results for this design are shown468

in the second row of Table 4. INSERT can also469

be further merged into the ERROR label. This can470

be achieved by considering the INSERT operation471

as replacing the token xi at the insertion position472

with xicj , where cj represents tokens to be in- 473

serted. The results corresponding to this approach 474

are shown in the first row of Table 4. Additionally, 475

we demonstrate the results of applying four detec- 476

tion labels (KEEP, ERROR, INSERT, DELETE) 477

in the last row. Overall, our designed three-label 478

scheme performs relatively better, as the insertion 479

operation in the two-label mode requires disrupting 480

the correct part of the source text, and encountering 481

DELETE in the four-label mode will lead to direct 482

deletion, which makes the model unable to recover 483

from faults in the error correction phase. 484

5.3 Ablation Study 485

To explore the effectiveness of various components 486

in the designed detection-correction model, we con- 487

duct an ablation study focusing on synthetic data, 488

backbone, two-stage fine-tuning, and detection con- 489

trol. The results are shown in Table 2. 490

Effectiveness of synthetic data In the pro- 491

posed model, both the English and Chinese models 492

undergo pretraining with a large-scale synthetic 493

dataset of GEC. A comparison between the top 494

and middle rows of Table 2 reveals that pretrain- 495

ing indeed provides a stable improvement in model 496

performance, although the data used is not from 497

real scenarios. 498

Effectiveness of GLM backbone The detection- 499

correction structure can also be implemented in 500

Seq2Seq models. We applied the proposed method 501

to the BART model and conducted experiments. 502

An additional detection head is integrated into the 503

BART encoder, while the decoder generates text 504

pieces for localized error correction. The experi- 505

mental results, depicted in the bottom rows of Table 506

2, consistently demonstrate superior performance 507

when employing GLM as the backbone compared 508
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to using BART. This can be attributed, in part, to509

the consistency between the original pretraining510

task of GLM and the training objective of the cor-511

rection task, as defined in Equation 9. However, the512

pretraining pattern of BART differs. Additionally,513

the separation of BART’s encoder and decoder into514

two distinct modules may not effectively foster the515

mutual enhancement of detection and correction516

abilities in multi-task learning.517

Effectiveness of Two Stage Fine-tuning As de-518

scribed in Section 3.3, two fine-tuning stages differ519

in the training data: SFT1 constructs training sam-520

ples using only ground-truth detection labels, while521

SFT2 utilizes both ground-truth detection labels522

and the detection results from the model trained523

in the first stage. As evident from the compari-524

son in Table 2, SFT1 significantly improves the525

model’s performance than the model pretrained on526

the synthetic dataset. Comparing the results exclu-527

sively differing in SFT2 in Table 2, it is observed528

that SFT2 consistently enhances F0.5, primarily529

attributed to the improvement in precision while530

maintaining recall relatively constant. This vali-531

dates the effectiveness of the two-stage supervised532

fine-tuning design.533

Detection Control From Table 2, it is evident534

that, under the scenario of employing the same535

trained model, setting three hyper-parameters for536

the detection phase also enhances the F0.5 perfor-537

mance. This approach primarily aims at improving538

precision. However, upon closer inspection, it is539

noticeable that this technique results in a more sub-540

stantial reduction in recall compared to the second-541

stage fine-tuning. For all GLM models incorporat-542

ing detection control, the recall on the CoNLL-14543

test set is consistently below 50%, and the recall544

on the BEA-19 test set is consistently below 65%.545

Thus, the effectiveness of detection control stems546

more from the trade-off between precision and re-547

call, as discussed in the next section.548

5.4 Precision-Recall Trade off549

Adjusting the threshold for KEEP prediction prob-550

ability (δ) and the probability lower bounds for551

ERROR and INSERT predictions (ϕe, ϕi) defined552

in Section 3.5 allows for further adjustment of pre-553

cision and recall, resulting in improved F0.5 scores.554

We performed a parameter search on the validation555

set to identify configurations maximizing F0.5, and556

the results are depicted in Figure 4.557

Without setting ϕe and ϕi, δ = 0.38 achieved the558

highest F0.5 of 63.2 on BEA-19 dev set. Then, we559

Figure 4: Results of detection control on BEA-19 dev
set. The heat value represents the value of F0.5.

fix δ = 0.38 and perform a grid search for ϕe, ϕi. 560

All results are presented as points in the right plot of 561

Figure 4, and nearly all points are located within the 562

region enclosed by the dashed line in the bottom- 563

left. The dashed line represents the boundary of 564

the model’s capability, and the intersection point 565

with the F0.5 contour line represents the optimal 566

performance attainable by the model. The point 567

with the highest F0.5 = 63.5 is the one closest to 568

the intersection point, with ϕe = 0.5 and ϕi = 569

0.6. Under this parameter configuration, the model 570

achieved an F0.5 value of 74.43 on the BEA-19 571

test set, as shown in Table 1. The detection control 572

offers such a straightforward implementation of the 573

precision-recall trade-off. 574

6 Conclusion 575

We introduce a novel language-agnostic detection- 576

correction structure via GLM for the GEC task. 577

The structure employs a three-label error detection 578

pattern and uses Focal Loss for aggressive detec- 579

tion. The correction phase leverages the mask- 580

infilling capability of GLM to generate correct 581

text pieces. A multi-task learning approach is 582

designed to integrate both functionalities within 583

the same model, optimized using a weighted loss 584

function. Experimental results show proposed 585

model DeCoGLM outperforms previous detection- 586

correction structures and achieves F0.5 scores com- 587

parable to SOTA on English and Chinese GEC 588

benchmarks. The effectiveness of the detection- 589

correction structure is further validated by applying 590

it to open-source LLMs and GPT-4, indicating that 591

incorporating error detection information improves 592

the performance of LLMs on GEC datasets by re- 593

ducing over-correction. Ablation studies confirm 594

the efficacy of our model design and the ability 595

to trade off precision and recall can be realized 596

by detection control. We aim for this work to fur- 597

ther guide research in the GEC field within the 598

detection-correction paradigm. 599
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Limitations600

Incremental methods proven effective on Seq2Seq601

models, such as incorporating syntactic informa-602

tion (Zhang et al., 2022b), refining training data603

(Mita et al., 2020), and employing additional604

models for reranking during the generation phase605

(Zhang et al., 2023; Zhou et al., 2023), are not im-606

plemented in this work. The main objective of this607

paper is to propose a novel GEC architecture, with608

these additional tricks serving as potential avenues609

for future extensions. Furthermore, due to resource610

restrictions, we are unable to apply our integrated611

detection-correction structure to LLMs. This is be-612

cause the sequence labeling task differs from the613

generative tasks that LLMs are designed to perform,614

necessitating full-parameter fine-tuning to integrate615

the two tasks. Additionally, in our investigation of616

LLMs as correction models, models with parame-617

ters exceeding 13B are not utilized. The absence618

of full-parameter fine-tuning on LLMs and exper-619

iments with larger models due to resource con-620

straints leaves room for further exploration of the621

application of the detection-correction paradigm622

on LLMs.623

Ethics Statement624

The datasets and models we used are publicly avail-625

able and utilized only for research purposes. The626

datasets do not contain any information that names627

or uniquely identifies individual people or offen-628

sive content. LLMs are utilized in our experiments,629

consistent with their intended use in natural lan-630

guage processing tasks. The models we designed631

will be published and intended for academic re-632

search in the field of grammatical error correction,633

in accordance with the original access conditions634

of the models used.635

The detection-correction structure we designed636

limits the model to making only localized modifica-637

tions to the text, preventing it from generating text638

without constraints, thereby significantly reducing639

the potential risks associated with the model. How-640

ever, It is worth noting that the modifications made641

by the designed model may alter certain facts in642

the text, leading to hallucination, especially when643

modifications occur in named entities.644

ChatGPT is utilized as the AI Assistant to polish645

the paper writing.646
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A Dataset1073

A.1 Dataset Statistics1074

Dataset #Sentences Usage As training data of
C4-200M 183,894,319 Pretraining DeCoGLM, DeGLM, CoGLM
Synthetic-CH 33,166,047 Pretraining DeCoGLM, DeGLM, CoGLM
CLang8(EN) 2,372,119 Fine-tuning DeCoGLM, DeGLM, CoGLM
FCE all 33,236 Fine-tuning CoGLM (10B)
NUCLE 57,157 Fine-tuning CoGLM (10B)
W&I+LOCNESS 34,308 Fine-tuning CoGLM (10B)
Lang8 (CH) 1,092,285 Fine-tuning All
HSK 95,320 Fine-tuning All
FCGEC train 36,341 Fine-tuning CoGLM (10B)
BEA19 dev 4,384 Validation -
MuCGEC dev 1,137 Validation -
FCGEC dev 2,000 Validation -
CoNLL-14 test 1,312 Testing -
BEA19 test 4,477 Testing -
MuCGEC test 6,000 Testing -
FCGEC test 3,000 Testing -

Table 5: Dataset statistics. The rightmost column in-
dicates the models that utilize the respective dataset;
"All" signifies that DeCoGLM, DeGLM, CoGLM, and
CoGLM (10B) all used the dataset as the training set.

In the experiments described in Section 4.1, the1075

datasets used are outlined in Table 5. Due to1076

constraints on our computational resources, the1077

CoGLM (10B) models are fine-tuned on relatively1078

smaller datasets, and the models are not pre-trained1079

on synthetic datasets.1080

A.2 Dataset Examples 1081

In Sections 3.1 and 3.2, we describe the construc- 1082

tion of training data. By aligning the source text 1083

with the target text, we derive error detection la- 1084

bels and masked text, thereby constructing training 1085

samples as illustrated in Figure 2. In Section 3.3, 1086

we elaborate on a two-stage supervised fine-tuning 1087

approach, where the training data for the second 1088

stage is reconstructed based on the detection predic- 1089

tions made by the model trained in the first stage. 1090

During data construction, model-induced false pos- 1091

itives for ERROR and INSERT are incorporated to 1092

generate new masked text and corresponding text 1093

pieces. It is crucial to note that this process is solely 1094

aimed at creating new masked text to enhance the 1095

model’s ability to address false positives during the 1096

correction phase, while the detection labels used 1097

in training remain unchanged. Examples of the 1098

constructed training data are provided in Table 6, 1099

where "<s>" denotes the "begin of sentence" token 1100

and "</s>" represents the "end of sentence" token. 1101

For the sake of brevity, these tokens are omitted in 1102

the content of this paper except in Figure 2. 1103

B Details of Experiments 1104

B.1 Loss Weight 1105

We pre-determine the weights in multi-task learn- 1106

ing by intuitively observing the scales of two losses. 1107

This preliminary experiment was conducted on the 1108

CLang8 dataset, and the loss curves are depicted in 1109

Figure 5. It is evident from the figure that the detec- 1110

tion loss ℓD and correction loss ℓC differ by roughly 1111

an order of magnitude. Consequently, we initially 1112

set wD = 10, determine the weights for ERROR 1113

and INSERT categories in Focal Loss denoted by 1114

αEI , and subsequently test whether wD = 10 is an 1115

optimal choice, as discussed in Section 5.1. 1116

Figure 5: Loss curves in standard training condition.
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Stage Items Example 1 Example 2

SFT1

Source Text xs <s>The every male employees were standing in the back row .</s> <s>They are covered with rust so bad .</s>
Target Text y <s>All the male employees were standing in the back row .</s> <s>They are covered with rust so badly .</s>
Masked Text xm <s>[MASK] male employees were standing in the back row .</s> <s>They are covered with rust so [MASK] .</s>
Text Pieces Input <|startofpiece|> All the <|startofpiece|> badly
Text Pieces Target All the <|endofpiece|> badly <|endofpiece|>
Detection Labels K E E K K K K K K K K K K K K K K K K K E K K

SFT2

Detections by SFT1 K E E K E E K K K K K K K K K K K K I K K K K
Merged Detecions K E E K E E K K K K K K K K K K K K I K E K K
Masked Text x′

m <s>[MASK] male [MASK] standing in the back row.</s> <s>They are covered with rust [MASK] so [MASK] .</s>
Text Pieces Input <|startofpiece|> All the <|startofpiece|> employees were <|startofpiece|> <|startofpiece|> badly
Text Pieces Target All the <|endofpiece|> employees were <|endofpiece|> <|endofpiece|> badly <|endofpiece|>

Table 6: Examples of training data from CLang8 dataset in two fine-tuning stages. In detection labels, K=KEEP,
E=ERROR and I=INSERT.

Configuration EN Pretrain EN finetune CH Pretrain CH finetune
DeCoGLM-Training

Backbone GLM-RoBERTa-large (Du et al., 2022) GLM-large-chinese (Du et al., 2022)
Backbone Parameters 335M 335M
Batch size 12 12 12 12
Update frequecy 10 20 8 8(M), 10(F)
Max epochs (20M iterations) 20 2 10(M), 20(F)
Evaluation key (SFT1) - AD-Accuracy AD-Accuracy AD-Accuracy
Evaluation key (SFT2) - General-Accuracy - General-Accuracy
Evaluation interval 10000 2000 4000 2000(M), 200(F)
Early stop - 10 - 10
Max source text length 128 128 128 128
Warm-up steps (SFT1) 10000 1000 1000 1000(M), 200(F)
Warm-up steps (SFT2) - 1000 - 1000(M), 200(F)
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Learning rate scheduler Polynomial Polynomial Polynomial Polynomial
Learning rate (SFT1) 2× 10−5 3× 10−6 2× 10−5 1× 10−5 (M), 4× 10−5(F)
Learning rate (SFT2) - 1× 10−6 - 5× 10−6 (M), 1× 10−5(F)

DeCoGLM-Inference
KEEP threshold 0.38 None
ERROR lower bound 0.5 None
INSERT lower bound 0.6 None
Beam size 3 3
Max tokens per piece 10 10

Table 7: The model hyper-parameters of proposed DeCoGLM. Both pretraining and fine-tuning configurations
are presented. EN and CH represent English models and Chinese models, respectively. In the settings of Chinese
fine-tuned models, M and F represent models for MuCGEC and FCGEC, respectively. The bottom of the table
presents the hyper-parameters of inference.

B.2 Model Configurations1117

The training configurations for the integrated1118

detection-correction model (DeCoGLM) and the1119

parameters used during inference are presented in1120

Table 7. To conserve computational resources dur-1121

ing training, early stopping is employed, which1122

requires the pre-definition of evaluation metrics on1123

the validation set. Two primary metrics are uti-1124

lized: (1) AD-Accuracy, defined as the sum of the1125

recall for ERROR and INSERT and the accuracy1126

of next token prediction by GLM, aiming to rein-1127

force the aggressive detection principle mentioned1128

in Section 3.1; (2) General-Accuracy, the geomet-1129

ric mean between the recall for the three detection1130

labels and the accuracy of next token prediction1131

by GLM. The configurations for training the sep- 1132

arate models, DeGLM and CoGLM, are similar 1133

to those in Table 7. The pre-trained models in- 1134

clude glm-roberta-large, glm-large-chinese, 1135

glm-10b, and glm-10b-chinese, accessible 1136

through HuggingFace2. We implement all 1137

the designed models using PyTorch, including 1138

DeCoGLM, DeGLM, and CoGLM. 1139

All models are trained by the Trainer from the 1140

transformers3 package in Python, on NVIDIA RTX 1141

4090 GPUs. Due to resource constraints, all ex- 1142

periments are conducted with a fixed random seed 1143

(111), and single-run results are reported. We adopt 1144

the approach recommended by Rothe et al. (2021) 1145

2https://huggingface.co
3https://huggingface.co/docs/transformers/index
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Mode Prompt

ZeroShot

Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If there are no errors,
reply with a copy of the original sentence.

Input sentence: [TEXT]
Corrected sentence:

+DeGLM

Reply with a corrected version of the input sentence with all grammatical and spelling errors fixed. If there are no errors,
reply with a copy of the original sentence.
Hint: We have detected some possible grammatical errors and replaced every error span with a [MASK] to get a masked
sentence, you can reference the masked sentence to give final corrected sentence. If there is no [MASK] in the masked sentence,
it means that we have not detected any grammatical errors in the input sentence.

Input sentence: [TEXT]
Masked Sentence: [MASKED_TEXT]
Corrected sentence:

Table 8: GPT-4 prompts used in experiments, following Coyne et al. (2023).

F0.5 on test set Average inference time per sample (ms)
Backbone Structure CoNLL-14 BEA-19 Detection Correction Total

GLM-Roberta De-Co 64.71 70.85 14.5 69.1 83.6
BART-large De-Co 62.24 67.97 17.1 43.4 60.5
BART-large Seq2Seq 64.46 67.94 - 266.2 266.2

Table 9: Time consumed in inference. De-Co represents the proposed detection-correction structure.

to post-process the model’s predictions on English1146

test datasets, aiming to ensure greater alignment of1147

tokenization with the evaluation data.1148

B.3 GPT-4 Prompts1149

The prompts utilized during the inference of GPT-41150

are illustrated in Table 8. For the Chinese tasks, the1151

prompts are the direct translation of the correspond-1152

ing English prompts. The API version of GPT-41153

used in this paper is Preview-0315.1154

C Inference Speed1155

We conduct a brief evaluation of the inference1156

speed of our proposed detection-correction struc-1157

ture, and the average inference speeds on the1158

CoNLL-14 and BEA-19 test sets are presented in1159

Table 9. The models are trained exclusively on the1160

CLang8 dataset, and during the inference phase, no1161

hyperparameters are adjusted, utilizing only beam1162

search. Our proposed model achieves slightly bet-1163

ter performance while maintaining a faster infer-1164

ence speed (≈3x) than the Seq2Seq model. The1165

experiments are conducted on an NVIDIA RTX1166

4090 GPU, with the same constrained batch size of1167

1 during inference.1168
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