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Abstract

Wildfires have increased in frequency and duration over the last decade in the1

Western United States. This not only poses a risk to human life, but also results in2

billions of dollars in private and public infrastructure damages. As climate change3

potentially worsens the frequency and severity of wildfires, understanding their risk4

is critical for human adaptation and optimal fire prevention techniques. However,5

current fire spread models are often dependent on idealized fire and soil parameters,6

hard to compute, and not predictive of property damage. In this paper, we use a7

multimodal model with image and text embeddings that allows both image and text8

representations in the same latent space, to predict which houses will burn down9

in the event of wildfires. Our results indicate that the DE model achieves better10

performance than the unimodal baselines for image-only and text-only models (i.e.11

ResNet50 and XGBoost), and text or vision only models. Moreover, following other12

models in the literature, it outperform these models also in low-data regimes.13

1 Introduction14

As the frequency and severity of wildfires surge around the world, so do its socio-economic conse-15

quences. According to the National Interagency Fire Center, wildfires generate more than 30 billion16

dollars in capital losses every year in the United States. In California alone, the 2022 fire season17

incurred 380 million dollars in losses from capital destruction and fire-fighting efforts. Property fuel18

management policies have been central to manage property burning risk. While changes in building19

codes have decreased the risks of property burning [2], these risks and its costs are projected to20

increase as the wildland-urban interface (WUI) footprint expands and climate change increases the21

frequency of wildfires around the globe [18, 8]. One of the most widely supported risk management22

strategies is to create a fuel-free defensible space surrounding houses and other structures [33], but23

often other property characteristics, such as the building materials, the spatial arrangement of the24

property footprint, or the fire weather can dramatically change the burning probabilities [20].25

Literature exploring these property burning risk have rely on qualitative assessments [5] or regression26

analysis [33] combining remote-sensing outcomes and house features. Other literature focused27

on prediction tasks, has mainly pivoted around burned-area segmentation [4, 30], and fire spread28

modeling [10, 11], but not directly in property destruction as a prediction task. Fire spread and29

hazard models, while seemingly useful for this classification task, do not perform well when trying30

to predict property burning [34], and are not suitable for real-time fire estimation because of their31

computationally complexity. Thus, existing methods do not produce immediately actionable insights32

for land managers and emergency responders in wildfire-prone areas to minimize fire property33

damages.34
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Machine learning applications in sustainability have been predominantly dominated by vision tasks.35

These comes as satellite imagery has become abundant and readily accessible to researchers . Nonethe-36

less, vision-only models forgo data available in more traditional formats for the social scientists37

and ecologists, such as tabular data. This presents trade-offs to researchers when training predictive38

models, where they would either featurize image data and combine it with tabular data in tree models39

(i.e. RandomForest or XGBoost) [15], or forgo tabular data and fine-tune deep learning vision models.40

The former strategy would miss possible spatial patterns that deep learning architectures can identify41

and generalize, while the latter will miss important non-visual data that can improve [36].42

Multimodal models have been used for classification [12, 22, 21] and captioning [19, 26]. In these43

models, different data modes can be combined at different stages of the learning process [31]. In early44

fusion, the inputs (i.e. text and image) are combined and a common representation is learned, whereas45

in late fusion separate models learn each data mode before fusing the results into a single prediction.46

When data modes distributions lack a large common support, alternative fusion architectures can help47

to align data modes. CLIP [27], and other derivative models using contrastive approaches [22, 38, 37]48

have shown how we can use dual and multiple encoder models with a contrastive loss to cross-align49

different modes of data in the same latent space. Fine-tuning these models to new tasks, or adding50

projection heads after building embeddings [23] has shown performance gains [14, 24] while keeping51

its few-shot abilities.52

New ways of representing tabular data as text using large language models (LLM) has opened53

new alternative for multimodal classification. TabLLM [17] have leveraged LLM for few-shot54

classification using tabular data by fine-tuning the T0 model to different classification tasks. TabLLM55

serializes each row into a text prompt representation and a short description of the classification56

problem (i.e. Is this house going to burn?), and outperforms tree-based methods using fewer57

observations. LIFT [6] follows a similar approach by directly fine-tuning the LLM using the serialized58

tabular data to both classication and regression problems using a “no-code” interface where the prompt59

includes the prediction task (i.e If x = 0.5 and y = 0.2, then z is). As with TabLLM, LIFT60

has similar or better performances than tree-based models, although this performance decreases as61

the number of classes increases or if the features have large dimensions.62

In this paper, we want to assess the prediction lift from adding tabular data as text prompts into a63

multi-modal classification task of house burning in California. To do this, we will combine pre-fire64

aerial imagery from houses, and tabular data including house characteristics, weather variables, and65

fire hazard scores. We will transform these data into different text prompts to be coupled with labeled66

images of houses [17]. We will run experiments combining different text-model encoders with a67

fixed vision encoder, and assess their performance against vision and text-only baselines.68

2 Related literature69

Prediction of property destruction in wildfire settings must account for different physical and property70

factors. Houses’ fuel availability in their defensible space is not the only factor that affects their risk71

of fire, but also fire conditions and fire weather that can affect ember transport [5]. Fire modeling has72

been used by the United States Forest Service as the main tool to address property prediction damage73

and prioritize local fire suppression responses.74

Numerical models that solve different fire spread and fuel-weather interaction equations to generate75

fire perimeters for a determined time frame are usually used on different time steps to predict the76

margins of a fire. Models like FARSITE [10] and FlamMap [9] are some of the production models77

used by the Forest Service for fire events in the USA. They use spatial information on weather,78

topography, fuels, and vegetation parameters. Although some of these information is near-real time79

available, some field critical information, as fuel consumption and fire spread rate, are often scant80

during fire events due to the risk to scientists on the field and measuring difficulty. To yield accurate81

results tuned to local conditions, numerical models’ predictions need to be calibrated and these hard82

to collect critical fire features are the ones that the models are more sensible to [32].83

More recently, MCTS-A3C [13] an agent-based model has been used to predict fire spread using a84

Markov Decision Process. Just like the numerical models, MTCS-A3C starts from an ignition point85

and generates a fire perimeter depending on weather and fire start characteristics. Other machine86

learning approaches include FireCast [29], a CNN-based approach using weather data to make fire87

predictions a day-ahead. Where as useful for fire boundary prediction, houses are often within fire88
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boundaries and they do not necessarily burn, thus having a model that is able to predict burning89

within fire boundary is relevant for targeting fire responses and prevention.90

3 Methodology91

3.1 Data92

Figure 1: Sample of NAIP Labels: These are four
examples of our NAIP samples. The two houses on the
first column were destroyed, whereas the ones in the
second column survived the fire. Notice the image in the
right-upper corner represents some of the labeling issues
in out database, we remove all image labels where more
than 95% of pixels are vegetation (using the NVDI).

For our binary classification task, we use93

a geo-referenced dataset of homes exposed94

to wildfire contacts in California between95

2015 and 2020 (n = 39, 718) collected by96

CALFIRE’s the Damage Inspection pro-97

gram (DINS). The geo-referenced dataset98

contains an assessment of all burned and99

unburned properties within the boundaries100

of a wildfire with. We augment these data101

with high-resolution weather data (≈ 4102

km) from GridMet [1], to capture different103

weather variables during the wildfire event104

corresponding to each house in our sample.105

Since we want to predict fire destruction106

before the fire event, we use the average107

month weather variables before the fire108

event. We extract temperature, humidity,109

and wind-speed, although we are particularly110

interested in Vapor Pressure Deficit (VPD)111

since indicates the level of humidity saturation112

in the air and is predictive of fire spread113

[18].114

115

Using the coordinates from each house plot, we extract images for each house before a fire event from116

the National Agricultural Imagery Project (NAIP), a yearly aerial imagery survey with very-high117

resolution (0.6m/px) for all the continental US run by the US Department of Agriculture. NAIP118

covers California during the growing season, April to August, which overlaps with the state’s fire119

season. The NAIP labels might contain more than one house in the case of plots overlap (i.e. houses120

in a cul-de-sac) introducing the possibility for false-positive or false-negative events. We try to121

alleviate this problem by excluding houses that overlap with other houses within a 40 meter radius,122

this reduces the sample of total houses to 9, 256. Figure 1 shows some of the sample labels in our123

dataset.124

3.2 Baselines125

To build a vision-only baseline we full fine-tune a ResNet501 using our dataset. During learning,126

We use the Adam optimizer with an decaying schedule learning rate, and a weight decay of 10−3127

for L2 regularization in our loss. Given the nature of our dataset, and the local randomness of fire128

exposure, we have an unbalanced data set. To correct for this we changed the batch sampling to129

always have a balanced sample or change the weights on the cross-entropy loss to give more weight130

to the minority class (in our case the destroyed class). For the tabular data baseline, and following131

similar approaches in Ecology, we include the featurized pixel data for each house (i.e. mean, standard132

deviation, and variance for each of the bands) and used an XGBoost model to classify each of our133

labels using 10-fold cross-validation for each of the years in our sample. Our best vision baseline134

achieved a 0.61 F1-score, while our best tabular baseline had an F1-score of 0.66.135

1We use V2 weights from PyTorch vision, which enhance the original paper weights using new optimizations
during train and test time.
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This house is {} years old. It is located {} meters above sea level with a slope of {}.
Temperature is {} degrees. Relative humidity is {}. Wind speed is {}. The vapor pressure
deficit is {} and the fuel moisture was {}. The risk to structure is {}. The fire name is {}

Figure 2: Template to transform tabular data to text prompt

Vision Encoder Text Encoder F-1 (All sample) F-1 (1% sample)

ViT - 0.71 0.67
- GPT-2 0.65 0.62
- RoBERTa 0.73 0.67

Multimodal Models

ViT GPT-2 0.64 0.61
ViT RoBERTa 0.77 0.75

Table 1: F1 Scores for all the unimodal and multimodal models. The last column captures the
few-show abilities of each model using the 1% of our sample (n = 92).

3.3 Experiments136

1. Vision: To test the leverage from the DE model, we first fine-tune a vision transformer ViT137

[7]:vit-base-patch16-224-in21k to our house dataset for a binary classification task.138

We do a grid search to pick the best learning rate, batch size and dropout combination during139

fine-tuning. Our best model had a a LR of 5× 10−5, and a dropout probability of 1× 10−3140

with a batch size of 64. As with the baselines, we test both upsampling the batches to have141

balanced sets and changing the weights of the CE loss function. We follow a ’80-20-20’142

split policy for training, validation and testing sets.143

2. Text: Following [17] best performing prompting strategies, we picked a template prompting,144

as seen in Figure 2. For our binary classification task we fine-tune two LLMs: GPT-2 [28]145

and RoBERTa [25]. Both models have a similar number of parameters (gpt2-medium and146

roberta-large have around 340M parameters), but RoBERTa is trained using significantly147

more data than GPT-2. For both models, we pass the suggested prompt and follow a similar148

grid search with a LR of 5× 10−3, with a batch size of 64.149

3. Multimodal: Pre-trained versions of CLIP do not have not expressive text en-150

coders [26]. To augment CLIP’s text encoding-decoding abilities, we fine-tune the151

VisionTextDualEncoder class from HuggingFace [35] and change the text encoders152

to the same ones used in our text experiments. We always use the same ViT encoder153

(vit-base-patch16-224-in21k) and use the same prompt we described in Figure 2 and154

similar training parameters.155

3.4 Multimodal Model Evaluation156

To evaluate the classification abilities from our DE model after the DE fine-tuning we pass during157

test time a tuple: {(I(i), p
(i)
t , p

(i)
f )}(n) with an image: I(i) and two text prompts with the same158

information, but with different label, a true label: p
(i)
t , and a false label: p

(i)
f using the same159

template we used during training. Now, we will calculate the probabilities of matching image to160

text using a the softmax function and pick the image-prompt label with the highest probability:161

P(y(i) = 1) = argmaxσ(z(i)) where σ is the softmax function.162

4 Results163

As seen in Table 1, our results suggest that the DE model performs better than our two vision and164

tabular baselines (F1: 0.61 and 0.66, respectively). Following [3], we run our experiments using165

only 1% of our sample obtaining a comparable performance than with the full sample. This results166
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align with experiments with TabLLM [17], LIFT [37], and CLIP [24] that have shown good few-shot167

performance in reduced data regimes. Compared to our baselines, all our models, including the vision168

and text only models, do perform better, with the exception of GPT-2.169

5 Discussion170

We have explored the use of multi-modal classification to solve a practical problem in fire management171

in fire-prone areas in the United States. We found that DE models are able to perform better than172

single-mode models (only vision or tabular data) and our baselines, giving a promising result to173

apply contrastive learning and CLIP-like models to environmental problems that involve multiple174

data modes and rely on small label samples. RoBERTa showed better performance overall compared175

to GPT-2, we still need to test larger or science-domain LLMs. Despite our results, is still needed to176

experiment the optimal fine-tuning strategies in DE models, not only to explore more computationally177

efficient strategies, such as LoRa [16], but also to exploit the adaptability of LLMs embeddings to the178

house burning task classification.179

We have not explore the ability of these models to adapt to lower resolution imagery or its performance180

to do inferece with out-of distribution samples. These are still widely present problems in the remote181

sensing classification literature. Is importance to notice that each of our experiments were less182

computational demanding than the fire-spread model FARSITE [10], and it can serve as a test bed for183

land management interventions during wildfires in furture.184
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