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Abstract

Mutual information (MI) maximization provides an appealing formalism for learn-
ing representations of data. In the context of reinforcement learning (RL), such
representations can accelerate learning by discarding irrelevant and redundant in-
formation, while retaining the information necessary for control. Much prior work
on these methods has addressed the practical difficulties of estimating MI from
samples of high-dimensional observations, while comparatively less is understood
about which MI objectives yield representations that are sufficient for RL from
a theoretical perspective. In this paper, we formalize the sufficiency of a state
representation for learning and representing the optimal policy, and study several
popular MI based objectives through this lens. Surprisingly, we find that two of
these objectives can yield insufficient representations given mild and common as-
sumptions on the structure of the MDP. We corroborate our theoretical results with
empirical experiments on a simulated game environment with visual observations.

1 Introduction

Deep reinforcement learning (RL) algorithms are in principle capable of learning policies from
high-dimensional observations, such as camera images [49, 39, 32]. However, policy learning in
practice faces a bottleneck in acquiring useful representations of the observation space [58]. State
representation learning approaches aim to remedy this issue by learning structured and compact
representations on which to perform RL. A useful state representation should be sufficient to learn
and represent the optimal policy or the optimal value function, while discarding irrelevant and
redundant information. Understanding whether or not an objective is guaranteed to yield sufficient
representations is important, because insufficient representations make it impossible to solve certain
problems. For example, an autonomous vehicle would not be able to navigate safely if its state
representation did not contain information about the color of the stoplight in front of it. With the
increasing interest in leveraging offline datasets to learn representations for RL [19, 35, 64], the
question of sufficiency becomes even more important to understand if the representation is capable of
representing policies and value functions for downstream tasks.

While a wide range of representation learning objectives have been proposed in the literature [41],
in this paper we focus on analyzing representations learned by maximizing the mutual information
(MI) between random variables. Prior work has proposed many different MI objectives involving
the variables of states, actions, and rewards at different time-steps [4, 52, 53, 58]. While much prior
work has focused on how to optimize these various MI objectives in high dimensions [61, 8, 52, 27],
we focus instead on their ability to yield theoretically sufficient representations. We find that two
commonly used objectives are insufficient for the general class of MDPs, in the most general case, and
prove that another typical objective is sufficient. We illustrate the analysis with both didactic examples
in which MI can be computed exactly and deep RL experiments in which we approximately maximize
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the MI objective to learn representations of visual inputs. The experimental results corroborate our
theoretical findings, and demonstrate that the sufficiency of a representation can have a substantial
impact on the performance of an RL agent that uses that representation. This paper provides guidance
to the deep RL practitioner on when and why objectives may work well or fail, and also provides a
formal framework to analyze newly proposed representation learning objectives based on MI.

2 Related Work

In this paper, we analyze several widely used mutual information objectives for control. In this
section we first review MI-based unsupervised learning, then the application of these techniques to
the RL setting. Finally, we discuss alternative perspectives on representation learning in RL.

Mutual information-based unsupervised learning. A common technique for unsupervised repre-
sentation learning based on the InfoMax principle [43, 9] is to maximize the MI between the input
and its latent representation subject to domain-specific constraints [7]. This technique has been
applied to learn representations for natural language [14], video [65], and images [5, 27] and even
policy learning via RL in high dimensions [62]. To address the difficulties of estimating MI from
samples [45] and with high-dimensional inputs [61], much recent work has focused on improving MI
estimation via variational methods [61, 55, 52, 8]. In this work we are concerned with analyzing the
MI objectives, and not the estimation method. In our experiments with image observations, we use
noise contrastive estimation methods [24], though other choices could also suffice.

Mutual information objectives in RL. RL adds aspects of temporal structure and control to the
standard unsupervised learning problem discussed above (see Figure 1). This structure can be
leveraged by maximizing MI between sequential states, actions, or combinations thereof. Some
works omit the action, maximizing the MI between current and future states [4, 52, 64]. Several
prior works [51, 57, 60, 44] maximize MI objectives that closely resemble the Jfwd objective we
introduce in Section 4, while others optimize related objectives by learning latent forward dynamics
models [70, 33, 74, 26, 39]. Multi-step inverse models, closely related to the Jinv objective (Section 4),
have been used to learn control-centric representations [71, 23]. Single-step inverse models have
been deployed as regularization of forward models [73, 2] and as an auxiliary loss for policy gradient
RL [58, 53]. Our result regarding the sufficiency of this objective is similar to an example explored
in Misra et al. [48]; however, we relate ours to MI objectives. The MI objectives that we study have
also been used as reward bonuses to improve exploration, without impacting the representation, in
the form of empowerment [37, 36, 50, 40] and information-theoretic curiosity [63].

Representation learning for reinforcement learning. In RL, the problem of finding a compact
state space has been studied as state aggregation or abstraction [6, 42]. Abstraction schemes include
bisimulation [22], homomorphism [56], utile distinction [46], and policy irrelevance [30]. While
efficient algorithms exist for MDPs with known transition models for some abstraction schemes
such as bisimulation [18, 22], in general obtaining error-free abstractions is impractical for most
problems of interest. For approximate abstractions prior work has bounded the sub-optimality of
the policy [11, 13, 1] as well as the sample efficiency [38, 68, 16], with some results in the deep
learning setting [21, 51]. In this paper, we focus on whether a representation can be used to learn
the optimal policy, and not the tractability of learning. Li et al. [42] shares this focus; while they
establish convergence properties of Q-learning with representations satisfying different notions of
sufficiency, we leverage their Q

⇤-sufficiency criteria to evaluate representations learned via MI-
based objectives. Alternative approaches to representation learning for RL include priors based on
the structure of the physical world [31] or heuristics such as disentanglement [67], meta-learning
general value functions [69], predicting multiple value functions [10, 17, 29] and predicting domain-
specific measurements [47, 15]. We restrict our analysis to objectives that can be expressed as
MI-maximization. In our paper we focus on the representation learning problem, disentangled from
exploration, a strategy shared by prior works [19, 35, 64, 72].

3 Representation Learning for RL

The goal of representation learning for RL is to learn a compact representation of the state space that
discards irrelevant and redundant information, while still retaining sufficient information to represent
policies and value functions needed for learning. In this section we formalize this problem, and
propose and define the concept of sufficiency to evaluate the usefulness of a representation.
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3.1 Preliminaries

We begin with brief preliminaries of reinforcement learning and mutual information.

Reinforcement learning. A Markov decision process (MDP) is defined by the tuple (S, A, T , r),
where S is the set of states, A the set of actions, T : S⇥A⇥S ! [0, 1] the state transition distribution,
and r : S ! R the reward function 2. We will use capital letters to refer to random variables and
lower case letters to refer to values of those variables (e.g., S is the random variable for the state and
s is a specific state). Throughout our analysis we will often be interested in multiple reward functions,
and denote a set of reward functions as R. The objective of RL is to find a policy that maximizes
the sum of discounted returns R̄ for a given reward function r, and we denote this optimal policy as
⇡
⇤
r

= arg max
⇡

E⇡[
P

t
�

t
r(St, At)] for discount factor �. We also define the optimal Q-function as

Q
⇤
r
(st,at) = E⇡⇤ [

P1
t=1 �

t
r(St, At)|st,at]. The optimal Q-function satisfies the recursive Bellman

equation, Q
⇤
r
(st,at) = r(st,at) + �Ep(st+1|st,at) arg maxat+1

Q
⇤
r
(st+1,at+1). An optimal policy

and the optimal Q-function are related according to ⇡
⇤(s) = arg maxa Q

⇤(s,a).

Mutual information. In information theory, the mutual information (MI) between two random
variables, X and Y , is defined as [12]:

I(X; Y ) = Ep(x,y) log
p(x, y)

p(x)p(y)
= H(X) � H(X|Y ). (1)

The first definition indicates that MI can be understood as a relative entropy (or KL-divergence),
while the second underscores the intuitive notion that MI measures the reduction in the uncertainty of
one random variable from observing the value of the other.

Figure 1: Probabilistic graphi-
cal model illustrating the state
representation learning prob-
lem: estimate representation
Z from original state S.

Representation learning for RL. While state aggregation meth-
ods typically define deterministic rules to group states in the repre-
sentation [6, 42], MI-based representation learning methods used for
deep RL treat the representation as a random variable [51, 52, 53].
Accordingly, we formalize a representation as a stochastic mapping
between original state space and representation space.

Definition 1. A stochastic representation �Z(s) is a mapping from
states s 2 S to a probability distribution p(Z|S = s) over elements
of a new representation space z 2 Z .

In this work we consider learning state representations from data by
maximizing an objective J. Given an objective J, we define the set
of representations that maximize this objective as �J = {�Z | �Z 2
arg max J(�). Unlike problem formulations for partially observed
settings [70, 26, 39], we assume that S is a Markovian state; therefore the representation for a given
state is conditionally independent of the past states, a common assumption in the state aggregation
literature [6, 42]. See Figure 1 for a depiction of the graphical model.

3.2 Sufficient Representations for Reinforcement Learning

We now turn to the problem of evaluating stochastic representations for RL. Intuitively, we expect a
useful state representation to be capable of representing an optimal policy in the original state space.

Definition 2. A representation �Z is ⇡
⇤-sufficient with respect to a set of reward functions R if

8r 2 R, �Z(s1) = �Z(s2) =) ⇡
⇤
r
(A|s1) = ⇡

⇤
r
(A|s2).

When a stochastic representation �Z produces the same distribution over the representation space
for two different states s1 and s2 we say it aliases these states. Unfortunately, as already proven in
Theorem 4 of Li et al. [42] for the more restrictive case of deterministic representations, being able to
represent the optimal policy does not guarantee that it can be learned via RL in the representation
space. Accordingly, we define a stricter notion of sufficiency that does guarantee the convergence of

2We restrict our attention to MDPs where the reward can be expressed as a function of the state, which is
fairly standard across a broad set of real world RL problems
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Q-learning to the optimal policy in the original state space (refer to Theorem 4 of Li et al. [42] for
the proof of this).

Definition 3. A representation �Z is Q
⇤-sufficient with respect to a set of reward functions R if

8r 2 R, �Z(s1) = �Z(s2) =) 8a,Q⇤
r
(a, s1) = Q

⇤
r
(a, s2).

Note that Q
⇤-sufficiency implies ⇡

⇤-sufficiency since an optimal policy can be recovered from the
optimal Q-function via ⇡

⇤
r
(s) = arg max

a
Q

⇤
r
(s, a) [66]; however the converse is not true. We

emphasize that while Q
⇤-sufficiency guarantees convergence, it does not guarantee tractability, which

has been explored in prior work [38, 16].

We will further say that an objective J is sufficient with respect to some set of reward functions R if
all the representations that maximize that objective �J are sufficient with respect to every element of
R according to the definition above. Surprisingly, we will demonstrate that not all commonly used
objectives satisfy this basic qualification.

4 Mutual Information for Representation Learning in RL

In our study, we consider several MI objectives proposed in the literature.

Forward information: A commonly sought characteristic of a state representation is to ensure it
retains maximum predictive power over future state representations. This property is satisfied by
representations maximizing the following MI objective,

Jfwd = I(Zt+1; Zt, At) = H(Zt+1) � H(Zt+1|Zt, At). (2)
We suggestively name this objective “forward information” due to the second term, which is the
entropy of the forward dynamics distribution. This objective and closely related ones have been used
in prior works [51, 57, 60, 44].

State-only transition information: Several popular methods [52, 4, 64] optimize a similar objec-
tive, but do not include the action:

Jstate = I(Zt+k; Zt) = H(Zt+k) � H(Zt+k|Zt). (3)
As we will show, the exclusion of the action can have a profound effect on the characteristics of the
resulting representations.

Inverse information: Another commonly sought characteristic of state representations is to retain
maximum predictive power of the action distribution that could have generated an observed transition
from st to st+1. Such representations can be learned by maximizing the following information
theoretic objective:

Jinv = I(At; Zt+k|Zt) = H(At|Zt) � H(At|Zt, Zt+k) (4)
We suggestively name this objective “inverse information” due to the second term, which is the
entropy of the inverse dynamics. A wide range of prior work learns representations by optimizing
closely related objectives [23, 58, 2, 53, 71, 73]. Intuitively, inverse models allow the representation
to capture only the elements of the state that are necessary to predict the action, allowing the discard
of potentially irrelevant information.

5 Sufficiency Analysis

In this section we analyze the sufficiency of representations obtained by maximizing each objective
presented in Section 4. To focus on the representation learning problem, we decouple it from RL
by assuming access to a dataset of transitions collected with a policy that reaches all states with
non-zero probability, which can then be used to learn the desired representation. We also assume
that distributions, such as the dynamics or inverse dynamics, can be modeled with arbitrary accuracy,
and that the maximizing set of representations for a given objective can be computed. While these
assumptions might be relaxed in any practical RL algorithm, and exploration plays a confounding
role, the ideal assumptions underlying our analysis provide the best-case scenario for objectives to
yield provably sufficient representations. In other words, objectives found to be provably insufficient
under ideal conditions will continue to be insufficient under more realistic assumptions.
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5.1 Forward Information

In this section we show that a representation that maximizes Jfwd is sufficient for optimal control
under any reward function. This result aligns with the intuition that a representation that captures
forward dynamics can represent everything predictable in the state space, and can thus be used
to learn the optimal policy for any task. This strength can also be a weakness if there are many
predictable elements that are irrelevant for downstream tasks, since the representation retains more
information than is needed for the task. Note that the representation can still discard information in
the original state, such as independent random noise at each timestep.

Proposition 1. Jfwd is sufficient for all reward functions.

Proof. (Sketch) We first show in Lemma 1 that if Zt, At are maximally informative of Zt+1, they
are also maximally informative of the return R̄t. Thanks to the Markov structure, we then show in
Lemma 2 that Ep(Zt|St=s)p(R̄t|Zt, At) = p(R̄t|St = s, At). In other words, given �Z , additionally
knowing S doesn’t change our belief about the future return. The Q-value is the expectation of the
return, so Z has as much information about the Q-value as S. See Appendix A.1 for the proof.

5.2 State-Only Transition Information

While Jstate is closely related to Jfwd, we now show that Jstate is not sufficient.

Proposition 2. Jstate is not sufficient for all reward functions.

Proof. We show this by counter-example with the deterministic-transition MDP defined in Figure 2
(left). For all four states, let the two actions a0 and a1 be equally likely under the policy distribution.
In this case, each state gives no information about which of the two possible next states is more likely;
this depends on the action. Therefore, a representation maximizing Jstate is free to alias states with
the same next-state distribution, such as s0 and s3. An alternative view is that such a representation
can maximize Jstate = H(Zt+k) � H(Zt+k|Zt) by reducing both terms in equal amounts - aliasing
s0 and s3 decreases the marginal entropy as well as the entropy of predicting the next state starting
from s1 or s2. However, this aliased representation is not capable of representing the optimal policy,
which must distinguish s0 and s3 in order to choose the correct action to reach s2, which yields
reward.

In Figure 2 (right), we illustrate the insufficiency of Jstate computationally, by computing the values
of Jstate and Jfwd for different state representations of the above MDP, ordered by decreasing
compression (increasing I(Z; S)) left to right. At the far left of the plot is the representation that

Figure 2: (left) A representation that aliases the states s0 and s3 into a single state maximizes Jstate

but is not sufficient to represent the optimal policy which must choose different actions in s0 and
s3 to reach s2 which yields reward. (right) Values of Jstate and Jfwd for a few representative state
representations, ordered by increasing I(Z; S). The representation that aliases s0 and s3 (plotted
with a diamond) maximizes Jstate, but the policy learned with this representation may not be optimal
(as shown here). The original state representation (plotted with a star) is sufficient.
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aliases all states, while the original state representation is at the far right (plotted with a star).
The representation that aliases states s0 and s3 (plotted with a diamond) maximizes Jstate, but is
insufficient to represent the optimal policy. Value iteration run with this state representation achieves
only half the optimal return (0.5 versus 1.0).

5.3 Inverse Information

Since Jinv preserves state elements that the agent can influence with its actions, we might think that it
is a good candidate for a sufficient objective that is capable of discarding more information than Jfwd.
However, here we show with a counterexample that Jinv is not sufficient. Intuitively, an insufficient
representation can be obtained by maximizing Jinv in an MDP when the reward function depends on
elements outside the agent’s control. We then show that additionally requiring the representation to
represent the immediate reward is not enough to resolve this issue.

Proposition 3. Jinv is not sufficient for all reward functions. Additionally, adding I(Rt; Zt) to the
objective does not make it sufficient.

Proof. We show this by counter-example with the deterministic-transition MDP defined in Figure 3
(left). Consider the representation that aliases the states s0 and s1. This state representation wouldn’t
be sufficient for control because the same actions taken from these two states lead to different next
states, which have different rewards (a0 leads to the reward from s0 while a1 leads to the reward from
s1). However, this representation maximizes Jinv because, given each pair of states, the action is
identifiable. Interestingly, this problem cannot be remedied by simply requiring that the representation
also be capable of predicting the reward at each state. Indeed, the same insufficient representation
from the above counterexample also maximizes this new objective as long as the reward at s0 and s1
are the same.

Analogous to the preceding section, in Figure 3 (right), we plot the values of the objectives Jinv

and Jfwd for state representations ordered by increasing I(Z; S) value (decreasing compression).
The representation that aliases states s0 and s1 (plotted with a diamond) maximizes Jinv, but is
insufficient to represent the optimal policy; value iteration with this state representation achieves half
the optimal return (0.5 versus 1.0).

Figure 3: (left) In this MDP, a representation that aliases the states s0 and s1 into a single state
maximizes Jinv , yet is not sufficient to represent the optimal policy, which must distinguish between
s0 and s1 in order to take a different action (towards the high-reward states outlined in green). (right)
Values of Jinv and Jfwd for a few selected state representations, ordered by increasing I(Z; S). The
representation that aliases s0 and s1 (plotted with a diamond) maximizes Jinv , but is not sufficient to
learn the optimal policy. Note that this counterexample holds also for Jinv + I(R; Z).
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6 Experiments

To analyze whether the conclusions of our theoretical analysis hold in practice, we present experiments
studying MI-based representation learning with image observations. We do not aim to show that
any particular method is necessarily better or worse, but rather to determine whether the sufficiency
arguments that we presented can translate into quantifiable performance differences in deep RL.

6.1 Experimental Setup

Figure 4: (left) Original catcher game: agent (grey
paddle) moves left or right to catch fruit (yellow
square) that falls. (right) Variation catcher-grip:
agent must open the gripper to catch fruit.

To separate representation learning from RL, we
first optimize each representation learning ob-
jective on a dataset of offline data, similar to
the protocol in Stooke et al. [64]. Our datasets
consist of 50k transitions collected from a uni-
form random policy, which is sufficient to cover
the state space in our environments. We then
freeze the weights of the state encoder learned
in the first phase and train RL agents with the
representation as state input. We perform our
experiments on variations on the pygame [59]
video game catcher, in which the agent controls
a paddle that it can move back and forth to catch
fruit that falls from the top of the screen (see
Figure 4). A positive reward is given when the fruit is caught and a negative reward when the fruit is
not caught. The episode terminates after one piece of fruit falls. We optimize Jfwd and Jstate with
noise contrastive estimation [24], and Jinv by training an inverse model via maximum likelihood. We
also include the performance of an agent trained “end-to-end" with pixel inputs. For the RL algorithm,
we use the Soft Actor-Critic algorithm [25], modified slightly for the discrete action distribution.
Please see Appendix A.2 for full experimental details.

6.2 Computational Results

In principle, a representation learned with Jinv may not be sufficient to solve the catcher game.
Because the agent does not control the fruit, a representation maximizing Jinv might discard that
information, thereby making it impossible to represent the optimal policy. We observe in Figure 5
(top left) that indeed the representation trained to maximize Jinv results in RL agents that converge
slower and to a lower asymptotic expected return. Further, attempting to learn a decoder from the
learned representation to the position of the fruit incurs a high error (Figure 5, bottom left), indicating
that the fruit is not precisely captured by the representation. The characteristics of this simulated
game are representative of realistic tasks. Consider an autonomous vehicle that is stopped at a
stoplight. Because the agent does not control the state of the stoplight, it may not be captured in the
representation learned by Jinv and the resulting RL policy may choose to run the light.

In the second experiment, we consider a failure mode of Jstate. We augment the paddle with a gripper
that the agent controls and must be open in order to properly catch the fruit (see Figure 4, right).
Since the change in the gripper is completely controlled by a single action, the current state contains
no information about the state of the gripper in the future. Therefore, a representation maximizing
Jstate might alias states where the gripper is open with states where the gripper is closed. Indeed, we
see that the error in predicting the state of the gripper from the representation learned via Jstate is
about chance (Figure 5, bottom right). This degrades the performance of an RL agent trained with
this state representation since the best the agent can do is move under the fruit and randomly open
or close the gripper (Figure 5, top right). In the driving example, suppose turning on the headlights
incurs positive reward if it’s raining but negative reward if it’s sunny. The representation could fail
to distinguish the state of the headlights, making it impossible to learn when to properly use them.
Jfwd produces useful representations in all cases, and is equally or more effective than learning
representations purely from the RL objective alone (Figure 5).
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Figure 5: (left) Policy performance using learned representations as state inputs to RL, for the catcher
and catcher-grip environments. (right) Error in predicting the positions of ground truth state elements
from each learned representation. Representations maximizing Jinv need not represent the fruit,
while representations maximizing Jstate need not represent the gripper, leading these representations
to perform poorly in catcher and catcher-grip respectively.

6.3 Increasing visual complexity via background distractors

Here we test whether sufficiency of representation can impact agent performance in more visually
complex environments by adding background distractors to the agent’s observations. We replace the
background of the game with randomly generated images of 10 circles of different colors (Figure 6).

IUXLW

DJHQW

Figure 6: Example 64x64 pixel agent observations
with background distractors (circles), randomly
generated at each time step, that increase the diffi-
culty of learning a good representation.

Analogous to Section 6, in Figure 7 we show
the performance of an RL agent trained with the
frozen representation as input (top), as well as
the error of decoding true state elements from
the representation (bottom). In both games,
end-to-end RL from images performs poorly,
demonstrating the need for representation learn-
ing. As predicted by the theory, the represen-
tation learned by Jinv fails in both games, and
the representation learned by Jstate fails in the
catcher-grip game. The difference in perfor-
mance between sufficient and insufficient objec-
tives is even more pronounced in this setting.
With more information present in the form of
the distractors, insufficient objectives that do not
optimize for representing all the required state
information may be “distracted” by representing the background objects instead, resulting in low
performance. In Appendix A.5 we experiment with visual distractors that are temporally correlated
across time. We also consider variations on our analysis, evaluating how well the representations pre-
dict the predict the optimal Q

⇤ in Appendix A.3, and experimenting with a different data distribution
for collecting the representation learning dataset in Appendix A.4. These results demonstrate that
using insufficient representation learning objectives can degrade the performance of an RL agent, not
that they necessarily will. Our aim is to provide an illustration of the potential impact of insufficient
representations, to underscore the utility of sufficiency as a tool in designing representation learning
objectives and debugging system failures.
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Figure 7: With background distractors added to the observations, the state representation learned
via Jinv fails to capture the fruit object accurately in catcher (left), and the representation learned
via Jstate continue to perform poorly at capturing the gripper state in catcher-grip (right). The
performance of the insufficient representations is even lower than in the clean background experiment.

7 Discussion

In this work, we analyze which common MI-based representation learning objectives are guaranteed
to yield representations provably sufficient for learning the optimal policy. We show that two
common objectives Jstate and Jinv yield theoretically insufficient representations, and provide a
proof of sufficiency for Jfwd. We then show that insufficiency of representations can degrade
the performance of deep RL agents with experiments on a simulated environment with visual
observations. While an insufficient representation learning objective can work well for training RL
agents on simulated benchmark environments, the same objective may fail for a real-world system
with different characteristics. We believe that encouraging a focus on evaluating the sufficiency of
newly proposed representation learning objectives can help better predict potential failures.

While sufficiency is a critical criterion for representations, compression is also highly important.
Our results thus highlight an important open problem in unsupervised learning for RL: defining
representation learning objectives that are provably sufficient and able to discard more information
than Jfwd. Is the “smallest" representation that maximizes Jfwd the smallest sufficient representation
possible without making further assumptions on the MDP structure or reward function? What
assumptions on the MDP structure or reward function would suffice to make Jinv and Jstate sufficient?
For example, Jstate is trivially sufficient when the environment dynamics and the agent’s policy
are deterministic. However, we hypothesize there may be more interesting MDP classes, related to
realistic applications, in which generally insufficient objectives may be sufficient.

Additionally, extending our analysis to the partially observed setting would be more reflective of
practical applications. An interesting class of models to consider in this context are generative models
such as variational auto-encoders [34]. Prior work has shown that maximizing the ELBO alone cannot
control the content of the learned representation [28, 54, 3]. We conjecture that the zero-distortion
maximizer of the ELBO would be sufficient, while other solutions would not necessarily be. We see
these directions as fruitful in providing a deeper understanding of the learning dynamics of deep RL,
and potentially yielding novel algorithms for provably accelerating RL with representation learning.
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