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ABSTRACT

Zeroth-order (ZO) methods, which use the finite difference of two function evalua-
tions (also called ZO gradient) to approximate first-order gradient, have attracted
much attention recently in machine learning because of its broad applications.
The accurateness of ZO gradient highly depends on how many finite differences
are averaged, which are intrinsically determined by the number of perturbations
randomly drawn from a distribution. Existing ZO methods try to learn a data-driven
distribution for sampling the perturbations to improve the efficiency of ZO opti-
mization (ZOO) algorithms. In this paper, we explore a new and parallel direction,
i.e., learn an optimal sampling policy instead of using totally random strategy to
generate perturbations based on the techniques of reinforcement learning (RL),
which makes it possible to approximate the gradient with only two function evalua-
tions. Specifically, we first formulate the problem of learning a sampling policy as
a Markov decision process. Then, we propose our ZO-RL algorithm, i.e., using
deep deterministic policy gradient, an actor-critic RL algorithm to learn a sampling
policy which can guide the generation of perturbed vectors in getting ZO gradients
as accurate as possible. Importantly, the existing ZOO algorithms of learning a
distribution can be plugged in to improve the exploration of ZO-RL. Experimental
results with different ZO estimators show that our ZO-RL algorithm can effectively
reduce the query complexity of ZOO algorithms and converge faster than existing
Z00 algorithms especially in the later stage of the optimization process.

1 INTRODUCTION

Gradient based optimization is dominant in machine learning. However, in many fields of science and
engineering, explicit gradients V f () are difficult or even infeasible to obtain. Zeroth-order (ZO, also
known as derivative-free) optimization, where the optimizer is provided with only function values
f(z) and use the finite difference Berahas et al.[(2021) (also called ZO gradient) to approximate
the explicit (first-order) gradients V f (z). ZO optimization (ZOO) has a lot applications including
hyperparameter optimization |Gu et al.| (2021)); Koch et al.|(2018)) and bandit problems (Bubeck &
Cesa-Bianchil, 2012} [Lattimore & Gyorgy, |2021). One of the famous applications is to generate
prediction-evasive adversarial examples in the black-box setting |Liu et al.| (2018a); [Papernot et al.
(2017), e.g., crafted images with imperceptible perturbations to deceive a well-trained image classifier
into misclassification. Thus, ZOO has attracted a lot of attention in recent years due to a growing
requirement in real-world applications.

Specifically, the ZO gradient is usually with the following formula.

q

V(@) = = Yl ) = Fel m

where 1 > 0 is the smoothing parameter, {u;}7_; are the random perturbed vectors drawn from a
distribution p(u) which could be a Gaussian distribution or a uniform distribution on unit sphere
Nesterov & Spokoiny| (2017); [Duchi et al.| (2012). Essentially, if the smoothing parameter p ap-
proaches infinitesimal, lim,,_,¢ f(z + pu) — f(z) is exactly calculating the directional derivative
V..f(x) along a direction u, which means we use ¢ directional derivatives to approximate the ground
truth gradient V f(x) due to Vf(z) = [ (Vuf(z)u)p(u)du Nesterov & Spokoiny (2017). From
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Figure 1: (a) Comparison of the ZO gradient directions obtained by sampling perturbed vectors from
the standard Gaussian distribution and a learned Gaussian distribution. (b) Comparison of the ZO
gradient directions obtained by a random sampling policy and a learned sampling policy. (c) The
architecture of ZO optimizer.

this perspective, the accurateness of ZO gradient highly depends on the number of perturbed vectors
randomly sampled from the distribution. For a practical ZOO algorithm, e.g., we should balance
the number g of perturbed vectors and the accurateness of ZO gradient to make the overall query
complexityﬂ of ZOO algorithm as less as possible.

To improve the efficiency of ZOO algorithms, there have been much effort made recently. The
main idea of these efforts Maheswaranathan et al.| (2019); Ruan et al.| (2019)) is trying to learn a
non-isotropic Gaussian distribution A/ (0, 3) (the co-variance matrix > may not be a scale of the
identity matrix as shown in Fig. [T|a.) to generate perturbed vectors, instead of using the standard
Gaussian distribution A/(0, I'). By using the learned Gaussian distribution, one more accurate ZO
gradient can be obtained for a fixed query budget, which could improve the convergence of ZOO
algorithms. Specifically, a lot of evolutionary strategies (ES) Maheswaranathan et al.|(2019) such as
Natural ES Wierstra et al.| (2008), CMA-ES [Hansen| (2006)), and Guided ES Maheswaranathan et al.
(2019) were proposed to let co-variance matrix 3 track a low-dimensional subspace and further use
this to guide the sampled perturbed vectors. |[Ruan et al.|(2019) utilized RNN to learn an adaptive
co-variance matrix > and dynamically guide the sampled perturbed vectors.

As discussed above, learning a good sampling distribution helps to calculate a more accurate ZO
gradient. Parallel to learn a sampling distribution, learning a sampling policy to generate perturbed
vectors instead of using multiple randomly sampled perturbed vectors (please refer to Fig[I]b.) would
also be a promising direction for accelerate ZO algorithms. Theoretically, if the perturbation vector
u’ is with the same direction of V f(x), we can have that the directional derivative V. f () is equal
to the true gradient V f (), i.e., Vo f(z)u' = V f(x). Thus, V f(x) can be approximated by the ZO
gradient with only two queries as follows.

V() = i[f(w ) — f@) @

The key is to design some mechanism to find such perturbed vector u” which is an unstudied problem
in the community as far as we know.

In this paper, we explore Reinforcement Learning (RL) to learn a good sampling policy to solve the
above issue. We propose a ZOO algorithm based on RL (ZO-RL) to learn a sampling policy using the
policy gradient algorithm. Specifically, we first formulate the problem of learning a sampling policy
as a Markov decision process (MDP). Then, we use an actor-critic algorithm called deep deterministic
policy gradient (DDPG) [Lillicrap et al.|(2015), with two neural network function approximators to
learn a sampling policy which can guide the generation of perturbed vectors in getting ZO gradients
as accurate as possible. Importantly, the existing ZOO algorithms of learning a distribution can be
plugged in to improve the exploration of ZO-RL. Experimental results on three ZOO applications
show that our ZO-RL algorithm can effectively reduce the query complexity of ZOO algorithms and
converge faster than existing ZOO algorithms especially in the later stage of the optimization process.

'The overall number of queries of function evaluations is called query complexity.
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Figure 2: Illustration of the change of ZO gradient direction.
2 LEARNING SAMPLING POLICY FOR ZOO

2.1 PRINCIPLE OF USING RL TO ACCELERATE ZOO

As it regains its popularity recently because of star projects like AlphaGo Wang et al.| (2016)) and
AlphaStar [Arulkumaran et al.|(2019), RL is a dominant framework which can continuously optimize
a policy by maximizing the expected cumulative reward while interacting with the environment. If
we take the mechanism of generating perturbed vectors as the RL agent whose goal is to make the
direction of perturbed vector close to the true gradient. The target function f and the updating rules
of ZOO algorithm are all parts of the environment. At each step, the agent picks a perturbation vector
and pass it over to the environment for execution. The environment takes its step to calculate ZO
gradient and update x; and output x1 as the new observation for the RL agent. The RL agent then
receives a reward of f(xgy1) — f(zk). Please refer to Fig. for the above procedure. Basically, this
is a typical RL problem, which can be solved by model-free RL methods. The work we present here
can also be regarded as the work of model-free learning to optimize (L20)[Chen et al.| (2021)); [Li &
(2016), which aims to learn a better optimization algorithm by observing its execution. The
RL is an effective way to learn policies in a data-driven manner based on the execution of algorithms.

Intuitive reason of the advantage of ZO-RL. Even RL can work on ZOO as mentioned above, why
Z0O-RL can beat the traditional ZOO algorithms in terms of query complexity? We try to answer this
question intuitively in the below. In practice, our extensive experimental results (some of them are
provided in appendix) support this advantage.

Essentially, ZO-RL uses one perturbed vector generated by the learned policy function and two
function queries to approximate the true gradient as shown in (2). Ideally, if the agent becomes
smart in selecting perturbed vectors, which could produce a competitive approximation of the truth
gradient as accurate as the traditional ZO gradient (I)) with ¢ + 1 function queries. Thus, an effective
prediction of gradient oriented perturbed vector by RL can reduce the query complexity and speed up
the convergence of the ZOO algorithms. As show in Fig[2] in the later stage of RL training, the RL
agent could learn to reduce the random behavior (i.e., be smart) which makes ZO-RL possible to save
query complexity compared to the traditional ZOO algorithms.

2.2 FORMULATION WITH MDP

We consider the problem of finding a sampling
policy that encourages the sampled perturbed
vectors to be more efficient in calculating the

ZO gradients. As discussed in previous sub-
section, RL provides a framework in which the
agent can learn the best action to take by subse-

quently receiving rewards from the environment State | Reward Action
with which it interacts. Specifically, at each
query of ZO-RL algorithm, the agent outputs

the perturbed vectors u/’ accord.ing to the current © Current Location ® Next L°°aﬂ§noia::g:f$:’3:!m s 2o5den

state xx. Then, the agent receives rewards and Agent

next state x4 by interacting with the environ- Figure 3: Illustration of learning sampling policy
ment, and learns the sampling policy to maxi- for ZOO base on RL.

mize rewards. We will use MDP to formalize

this procedure with the tuple (S, A, P,,, R) as follows.

Agent

I.‘I
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1. State space S C R?: We choose s, = z € S to describe the current state of ZO algorithm,
where x}, is the point location for the k-th iteration [l The state space S could be R¢ or some
constraint set (e.g. ||z||2 < 1) which depends on the target problem.

2. Action space A C R?: We choose a, = u’ € A as the action, where ' is a perturbed vector.
The action space A could be R? regarding Gaussian distribution or the surface of unit sphere
regarding uniform distribution on unit sphere. Note that, no matter which kind of action space
considered, all of them are continuous.

3. Transition probability Py, = P(-|s,a): We do not know the transition probability. We will use
model-free RL methods to learn the policy.

4. Reward function R(s,a) : S x A — R: We consider the reward function R(sg,ar) = rp =
f(xg+1) — f(zk) as the difference between the function values at the current point location
x1, and the immediately preceding point location x4 after the action ay, is performed, which
encourages the learned policy to reach the minimum of the function value as quickly as possible.

We also provide a visualization of MDP in Figure[3] Through the framework of MDP, we will propose
a RL based ZOO algorithm to learn an action policy to maximize the expected cumulative reward,
which will be discussed in detail in the following. The optimal policy is to sample perturbed vectors
along the ground-truth gradient direction of the unknown function.

2.3 ZO-RL ALGORITHM

Actor-Critic Method. As mentioned above, the action space is continuous in our ZOO problem.
We adopt the deterministic sampling policy 7, because it has the advantages of requiring less data to
be sampled compared with the stochastic policy gradient algorithm. Thus, we can achieve higher
efficiency for the algorithm and have stable performance in a series of tasks with continuous action
space.

To find the optimal policy to approach the true gradient direction, we use deep deterministic policy
gradient (DDPG) to learn sampling policy 7. DDPG is an actor-critic and model-free algorithm
Konda & Tsitsiklis|(2000); |Lillicrap et al.|(2015) for RL over continuous action spaces and output
deterministic actions in a stochastic environment to maximize cumulative rewards.

The DDPG has two neural network function approximators. One is called the actor network which
learns a deterministic sampling policy 7(x|6™) with neural network weights 6™. The other is called
the critic network, which outputs a state-action value function Q(s,a|0#?) with neural network
weights 6€ to evaluate the value of the action performed.

In addition, DDPG creates a copy of the actor and critic networks, Q' (s, a|6’?) with neural network
weights '™ and 7/(x|0'™) with neural network weights 8’ respectively, which are called target
networks and used for calculating the target values. The weights of these target networks are updated
by making them slowly track the learned networks: 6’ — 76" + (1 — 7)8’ with 7 < 1. This means
that the target values are constrained to change slowly, greatly improving the stability of learning.
This simple change moves the relatively unstable problem of learning the action-value function closer
to the case of supervised learning.

At each iteration, we minimize a squared-error N
. copy 7 | Anomrzn ] copy/7| Critic target |
loss L to update the critic network parameter: ] : k)

z Actor e o Critic ]
N k Network | Network

i 1 8 olic ctiona,
minl =Y (g — Q(s,al09)?  (3) e EEm
o< N 1 l £

where vy, represents the TD target denoted as n Q(s,al0?)
reward
Yp = 1 +7Q' <5k+17 7TI($k+1|6’/ﬂ)|9/Q) C))

We maximize the cumulative reward using a
sampled policy gradient to the actor network parameter:

Figure 4: Illustration of of ZO-RL algorithm.
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*In the appendix, we provide the result of using the function values from the previous m iterations as states,
since this state can reflect the effectiveness of the previous estimated ZO gradient.
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Algorithm 1 Zeroth-Order Optimization with RL (ZO-RL)

Input: Smoothing parameter p, the number of sampled perturbed vectors ¢ and learning rate 7,
mini-batch size N and threshold ¢, « € [0, 1].
Output: RL based Sampling policy 7(x|6™).
1: Initialize 3 = I, p = 0 and sampling policy 7 (z|67).
2: fork=1to K do
3:  Get a perturbed vectors v’ = (1 — a)m(x|0™) + o - @, where @ ~ N (0, Xy).

4:  Calculate the ZO gradient estimator gy, according to (2)) with the perturbed vectors u'.

5. if p < e then

6: Randomly sample ¢ perturbed vectors {u;}7_; from the Gaussian distribution N'(0, £j).
7: Calculate the ZO gradient estimator g5 according to (1)) with the g perturbed vectors.

8: Update p based on g, and gj, according to (3)).

9: Update g, = gx (use g to substitute gg).
10:  endif

11:  Update xj with gy, e.g2. Tx+1 = Tk — 1+ k-

12:  Store transition {{u;}{/u’, 1, Tx+1, 7%} in a replay memory buffer.

13:  Update X (e.g. according to (6)).

14:  Observe N transitions from replay memory buffer to update the actor network and critic
network.

15: end for

where J = E, 55 a~x[R(S, a)] represents the expected cumulative reward.

Initialization with Also-Ran. At each iteration of ZO-RL, we use actor network to output action u’
according to current state x. Then, we transfer the action u’ to ZO Oracle, calculate the ZO gradient
g and output the next state xj1, and use the critic network to output the reward of this action. We
call {v', 2, xg4+1, 7%+ a transition. Good transitions can accelerate the learning speed of the agent.
The random sampling can effectively estimate the accurate gradient direction by querying multiple
perturbed vectors in each iteration. Thus, in order to better initialize the actor network, we can use
the random sampling to sampling perturbed vectors and interact with the current environment to
obtain accurate ZO gradient estimator g. We store these transitions generated by random sampling
into replay memory buffer, and use them to initialize the actor network. We use a cosine similarity p
to calculate the similarity of gradient directions obtained by plain random sampling and our sampling
policy m(z|07™):

p= 99 (5
gl - llgl|

where § is the ZO gradient estimator defined in (1)) with the perturbed vectors generated by random
sampling, and g is the ZO gradient estimator defined in (2)) with the perturbed vector generated by
our RL based policy. Obviously, p € [—1,1]. If p closes to 1, that means the directions between §
and g are close each other. Thus, we set a threshold € to control when to switch to pure RL method.
Correspondingly, if p < €, we use the random sampling policy to generate perturbed vectors and
initialize the actor network. Note that once p > ¢, the codes in lines 6-9 will not be execute any more
which also supports that the codes in lines 6-9 are just for initialization.

Z0O-RL. We summarize our ZO-RL algorithm in Algorithm|l} Note that lines 5-10 of Algorithm
corresponds to the also-ran which is used for initialization. Once p > ¢, the lines 5-10 will not
be executed any more, which means that we will use the perturbed vectors produced by RL based
sampling policy to calculate the ZO gradients and update the solutions entirely.

2.4 IMPROVE EXPLORATION

The RL usually can only evaluate the performance of an action, but does not know whether the
action is the best. For this reason, the essence of RL determines that it needs exploration very much.
Thus, we add a noise from an appropriate Gaussian distribution to the action performed by the agent
in RL to increase the exploration, which is formalized by v’ = (1 — a)7(2x|0™) + « - @, where
@~ N(0,3k). a € [0, 1] is the trade-off parameter to balance the learned policy and an exploration
distribution. Adding noise to the action can help RL to explore the environment more effectively and
to think about all possible actions. Here, we utilize the learned sampling distribution from existing
700 algorithms as the noise distribution to improve the quality of exploration. Specifically,
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Figure 5: Adversarial attack to black-box models in SGD setting.
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Figure 6: Adversarial attack to black-box models in signSGD setting.
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Figure 7: Adversarial attack to black-box models in ADAM setting.

1. Ruan et al| (2019) proposed a ZOO algorithm called ZO-LSTM, which use a Long Short-
Term Memory (LSTM) network called QueryRNN to learn the sampling distributions. They
dynamically update the covariance matrix X as follows.

%k = QueryRNN([V f(z1), z_1]) (©6)

QueryRNN can increase the sampling probability in the direction of the bias of the estimated
gradient or the parameter update of the previous iteration.

2. Maheswaranathan et al.| (2019) proposed a Guided Evolutionary Strategy for ZO-Guided ES,
which incorporates surrogate gradient information (which is correlated with true gradient) into
random search. It keeps track of a low dimensional guided subspace defined by k surrogate
gradients, which is combined with the full space for query direction sampling. Thus, they
dynamically update the covariance matrix X as follows.

Yp =Bl + (1 - BUUT (7
where U € R%*F s the orthonormal basis of the guided subspace (i.e., UU T =1, [ trades off
between the full space and the guided space.

At each iteration of our ZO-RL algorithm, we can update 3, (i.e. the line 13 of Algorithm|[T) to learn
the corresponding Gaussian distribution.

3 EXPERIMENTAL SETUP

3.1 DESIGN OF EXPERIMENTS

We empirically demonstrate the superiority of our proposed ZO-RL on three practical application
problems (black-box adversarial attack, non-convex binary classification and hyperparameter opti-
mization problem). Specifically, to show the advantages of the learned sampling policy, we compare
the performance of our ZO-RL with existing ZO gradient estimators on three ZOO algorithms.

The comparative ZO gradient estimators are summarized as follows:
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1. ZO-RS[Wang et al.| (2019): ZO gradients are calculated by (I)) with randomly sampled perturbed
vectors from standard Gaussian distribution.

2. ZO-LSTM Ruan et al.|(2019): They learned the Gaussian sampling rule and dynamically predicted
the covariance matrix X for query directions with recurrent neural networks, and generated ZO
gradient by UpdateRNN.

3. ZO-Guided ES Maheswaranathan et al.| (2019): ZO gradients are calculated by (I)) with randomly
sampled perturbed vectors from a learned Gaussian distribution. They let the covariance ma-
trix 2 in Gaussian distribution be related with the recent history of surrogate gradients during
optimization.

4. ZO-RL: ZO gradients are calculated by (2) with the perturbed vector generated by our ZO-RL.

5. ZO-RL-LSTM: ZO gradients are calculated by (2) with the perturbed vector generated by our
Z0O-RL where ZO-LSTM is used to improve the exploration.

The three ZO algorithms are summarized as follows:

1. SGD|Ghadimi & Lan|(2013)): A stochastic gradient descent algorithm based on the ZO gradient
estimators.

2. signSGD [Liu et al.|(2018b)): A stochastic gradient descent algorithm based on the sign of the ZO
gradient estimators.

3. ADAM Chen et al.|(2017): A stochastic gradient descent algorithm based on adaptive estimates
of lower-order moments.

To show the sensitivity of our proposed algorithm, we compare the performance of ZO-RL with
different values of hyperparameters. In addition, we use ablation experiments to test the impact of
each component of ZO-RL on the performance of our ZO-RL algorithm. The uniform distribution
on unit sphere is also considered for generating perturbed vectors. These results are included in
appendix.

3.2 IMPLEMENTATION

The choice of the network structure of the critic and actor for our ZO-RL is important because they
are used not only to evaluate sampling policies, but also to learn sampling policies. We choose the
convolutional neural network (CNN) Sezer & Ozbayoglu| (2018)) both for the critic network and the
actor network when image data are faced. Specifically, for MNIST dataset, we use a five-layer CNN
with two (5 X 5) x 6 convolutional layers with a step size of 1, each convolutional layer is subsampled
using a 2 x 2 pooling layer with a step size of 2, and finally a 300-unit fully-connected layer.

The parameters of the optimizer have different descent rates in different dimensions and the range may
be different in different environments. This may make it difficult for the network to learn efficiently
and find hyper-parameters that generalize the scale of state values in different environments. To
overcome this problem, we adapt the batch normalization [Santurkar et al.|(2018) to manually scale
features so that the parameters of the ZO optimizer are in a similar range across environments and
units.

For each task, we tune the hyper-parameters of baseline algorithms to report the best performance. For
ADAM, we tune (31 values over {0.9,0.99} and 35 values over {0.99,0.996,0.999}. We coarsely
tune the constant § on a logarithmic range {0.01;0.1;1; 10; 100; 1000} and set the learning rate
of baseline algorithms to n = §/d, where d is the dimension of dataset. We set the smoothing
parameter 1 = 0.0001 in all experiments. The number g of sampled perturbed vectors is selected over
{1,3,5,8,10, 15,20} for each algorithm. When the overall number of queries of function evaluations
is fixed, the optimal number ¢ of sampled perturbed vectors of the comparison algorithm is different.
For fairness, we compare the results of each algorithm under their best number of sampled perturbed
vectors. For our ZO-RL algorithm, the values for hyperparameters [y, l2, v, N 7 and € and « are
selected over {0.001, 0.005,0.01,0.05}, {0.001, 0.005,0.01,0.05}, {0.99,0.95,0.9}, {16, 32,64},
{0.001,0.005,0.01,0.05}, {0.3,0.4,0.5,0.6} and {0.33,0.5, 0.66} respectively.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 ADVERSARIAL ATTACK TO BLACK-BOX MODELS

We consider generating adversarial examples to attack black-box DNN image classifier and for-
mulate it as a zeroth-order optimization problem. The targeted DNN image classifier F'(x) =
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Figure 8: Non-convex optimization problems in the SGD setting.
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Figure 9: Non-convex optimization problems in the signSGD setting.
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Figure 10: Hyperparameter optimization problems in the SGD setting.

[F1, Fy,--- , F] takes as input an image = € [0, 1]¢ and outputs the prediction scores of K classes.
Given an image xo € [0, 1]¢ and its corresponding true label ¢, € [1,2,---, K], an adversarial
sample z is visually similar to the original image z( but leads the targeted model F' to make wrong
prediction other than ¢y. The black-box attack problem is normally formulated as follows.

max{Fy, (r) — max Fy (x),0} + clz - o]l ®

where the first term is the attack loss which measures how successful the adversarial attack is and
penalizes correct prediction by the targeted model. The second term is the distortion loss (p-norm
of added perturbation) which enforces the perturbation added to be small and c is the regularization
coefficient. In our experiment, we use ¢; norm (i.e., p = 1), and set ¢ = 0.1 for MNIST attack
task. Due to the black-box setting, one can only compute the function values of the above objective,
which leads to ZOO problems |Chen et al.| (2017)). Note that attacking each sample x( in the dataset
corresponds to a particular ZOO problem instance, which motivates us to train a ZO optimizer offline
with a small subset, and apply it to online attack to other samples with faster convergence (which
means lower query complexity) and lower final loss (which means less distortion). We randomly
select 50 images that are correctly classified by the targeted model in each test set to train the optimizer
and select another 50 images to test the learned optimizer. All ZO optimizers use the same initial
points for finding adversarial examples. The dimension of the optimizer function is d = 28 x 28 for
MNIST.

In this subsection, we compare the performance of different ZOO algorithms under Gaussian dis-
tribution. We provide the results under the spherical distribution in the appendix. Fig. 57l (a)~(c)
show the black-box attack loss versus query number using different ZOO algorithms under Gaussian
distribution in different settings. The loss curves are averaged over 10 independent random trails and
the shaded areas indicate the standard deviation. The ¢ in ZO-RL represents the number of sampled
query directions in each iteration of random sampling. In ZOO problem where we can only access
the function output, we more case the query complexity instead of running time. In the extreme case,
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we could satisfy the running time to reduce the query complexity. The results clearly show that our
ZO-RL algorithm can effectively reduce the query complexity of ZOO algorithms especially in the
later stage of the optimization process, and our ZO-RL-LSTM can always obtain the best results by
combining learned sampling policy and sampling distribution. This is due to the fact that our ZO-RL
algorithm learn a smarter sampling policy though RL instead of random sampling. Fig. Sr7](d) plot
the cosine similarities between ZO gradient estimator and ground-truth gradient. The direction of the
Z0 estimator generated by our ZO-RL algorithm is closer to the one of the ground-truth gradient
compared to other ZO estimators. In the later stage of the optimization process, the convergence
of ZO gradient leads to the reduction of the reward obtained by our ZO-RL algorithm in exploring
action space. Thus, the cosine similarity decreases after the convergence of the ZOO algorithm.

4.2 NON-CONVEX BINARY CLASSIFICATION PROBLEMS

We consider a binary classification problem with a non-convex least squared loss function
min,ega = >0 (yi — 1/(1 + e=w"®))2 Here (x;,1;) is the ith data sample containing feature
z; € R% and label y; € {—1,1}. We compare the algorithms on benchmark datasets (colon-cancer
(d = 2000), german (d = 24) and a9a (d = 123)@). All the algorithms only access to the ZO oracle
of function value evaluations. For each dataset, we repeat the experiment 10 times and report the
average and the standard deviation.

We compare the performance of different ZOO algorithms under Gaussian distribution. We provide
the results under the spherical distribution in the appendix. Fig. [§~9](a)~(c) shows the non-convex
least squared loss versus query number using different ZOO algorithms under Gaussian distribution
in different settings. The loss curves are averaged over 10 independent random trails and the shaded
areas indicate the standard deviation. The results clearly demonstrate that our ZO-RL leads to much
faster convergence and lower final loss under different parameter update settings compared to existing
700 algorithms. Fig. [B~0](d) plot the cosine similarities between ZO gradient estimator and ground-
truth gradient. These results demonstrate that our proposed ZO-RL algorithm can obtain better
performance than random sampling and learning sampling distribution, and can be well extended to
different categories of ZOO problems.

4.3 HYPERPARAMETER OPTIMIZATION PROBLEMS

We consider a hyperparameter optimization problem in the /5-regularized logistic regression model.
We use the logistic loss [(t) = log(1 + e t) as the loss function. The hyperparameter optimization
problem for /o-regularized logistic regression is formulated as follows.

n

arg min Zl(yi(mi,w()\))), st w(A) € argminZl(yi(xi7w()\) + eM|w|[?

X€E[—10,10] 5= werd T
The solver used for solving the inner objective is L-BFGS [Liu & Nocedal (1989). We compare the
algorithms on benchmark datasets (colon-cancer (d = 2000), german (d = 24) and a9a (d = 123)).
For each dataset, we repeat the experiments 10 times and report the average and the standard deviation.

We compare the performance of different ZOO algorithms under Gaussian distribution. In the
appendix, we provide the additional results under the sphere distribution. Fig. [I0](a)~(c) shows
the loss versus query number using different ZOO algorithms under Gaussian distribution in SGD
settings. The loss curves are averaged over 10 independent random trails and the shaded areas indicate
the standard deviation. Fig. [I0}(d) plot the cosine similarities between ZO gradient estimator and
ground-truth gradient. These results demonstrate that our ZO optimizer has learned a rather general
Z00 algorithm which can generalize to different classes of ZOO problems well.

5 CONCLUSION

We proposed a RL based sampling policy for generating the perturbations in ZOO. Since our method
only affects the generation of perturbed vectors, it can be used with different ZOO algorithms by
substituting ZO estimator to further improve the efficiency of ZOO algorithms. Importantly, the
existing ZOO algorithms of learning a distribution can be plugged in to improve the exploration
of our ZO-RL. Experimental results on different ZOO algorithms show that our ZO-RL algorithm
can effectively reduce the query complexity of ZOO algorithms especially in the later stage of the
optimization process, and converge faster than existing ZOO algorithms in different scenarios.

*http://archive.ics.uci.edu/ml/datasets.html
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A ADVERSARIAL ATTACK TO BLACK-BOX MODELS

Fig. [TTMI3]show the black-box attack loss versus query number using different ZOO algorithms
under unit sphere distribution in different settings. The “US” is the abbreviation of unit sphere
distribution. When the overall number of queries of function evaluations is fixed, the optimal number
q of sampled perturbed vectors of the comparison algorithm is different. For fairness, we compare the
results of each algorithm under their best number of sampled perturbed vectors. The results clearly
show that our ZO-RL algorithm can effectively reduce the query complexity of ZOO algorithms
especially in the later stage of the optimization process, and our ZO-RL-LSTM can always obtain the
best results by combining learned sampling policy and sampling distribution.
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Figure 11: Adversarial attack to black-box models in the signSGD setting.
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Figure 12: Adversarial attack to black-box models in the SGD setting.
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Figure 13: Adversarial attack to black-box models in the ADAM setting.

B NON-CONVEX BINARY CLASSIFICATION PROBLEMS

Fig. [T4MI6] show the non-convex least squared loss versus query number using different ZOO
algorithms under unit sphere distribution in different settings. The “US” is the abbreviation of unit
sphere distribution. These results demonstrate that our proposed ZO-RL algorithm can obtain better
performance than random sampling and learning sampling distribution, and can be well extended to
different categories of ZOO problems.
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Figure 14: Non-convex optimization problems in the signSGD setting.
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Figure 15: Non-convex optimization problems in the SGD setting.
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Figure 16: Non-convex optimization problems in the ADAM setting.
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C HYPERPARAMETER OPTIMIZATION PROBLEMS

Fig. [[7~I9)show the loss versus query number using different ZOO algorithms under unit sphere
distribution in different settings. The “US” is the abbreviation of unit sphere distribution. These
results demonstrate that our ZO optimizer has learned a rather general ZOO algorithm which can
generalize to different classes of ZOO problems well.
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Figure 17: Hyperparameter optimization problems in the signSGD setting.
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Figure 18: Hyperparameter optimization problems in the SGD setting.
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Figure 19: Hyperparameter optimization problems in the ADAM setting.

D ALGORITHM SENSITIVITY EXPERIMENT

D.1 HYPERPARAMETER TUNING

Reinforcement learning algorithm performances are known to be influenced by hyperparameters. To
show the stability of our proposed algorithm, we test the sensitivity of our algorithm to reinforcement
learning hyperparameters. We carry out hyperparametric tuning experiments for MNIST attack task.
For each hyperparameter, we calculate the final average loss for 10 independent random trails for each
hyperparameter candidate, and choose the optimal hyperparameters according to the final average
loss minimization criterion. Specifically, we select the optimal hyperparameters from the following
candidate set:
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Learning rate for actor [; = {0.01, 0.05,0.001, 0.005}.
Learning rate for critic I; = {0.01,0.05,0.001, 0.005}.

Mesh update parameter 7 = {0.001,0.005,0.01,0.05}.

Cosine similarity threshold ¢ = {0.3,0.4,0.5,0.6}.

Query number ¢ = {5, 10, 15, 20, 30}.

Smoothing parameter 1 = {0.001, 0.0001, 0.00001, 0.000001}.
Exploration paremeter o« = {0.66,0.5,0.33}

Nk Wb -

Fig. [20]show the loss versus query number using different hyperparameters under Gaussian distri-
bution for MNIST attack task. The loss curves are averaged over 10 independent random trails and
the shaded areas indicate the standard deviation. The results show that our ZO-RL algorithm is less
affected by the hyperparameters lo and 7, and more affected by the hyperparameters /1, €, ¢, ;4 and
a. The learning rate of actors has a much higher impact on the results than that of critics. That is
because the output of actor network directly determines the quality of sampling policy. For mesh
update parameter 7, cosine similarity threshold € and smoothing parameter p, choosing a smaller
value can often get better results. For query number ¢ and exploration paremeter «, too large or too
small will lead to a bad result, and it takes more time to find an optimal value.
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Figure 20: Hyperparameter tuning on MNIST attack task.

D.2 ABLATION EXPERIMENTS

We set up ablation experiments to test the impact of each component of ZO-RL on the performance
of the algorithm in different problems. Specifically, we set up two ablation studies as follows:
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1. To test whether pre-training can accelerate the learning rate of ZO-RL, we conducte exper-
iments using random sampling to sample from the standard Gaussian distribution as the
pre-training of reinforcement learning policy, i.e. using cosine similarity threshold e = 0.5,
and directly using reinforcement learning policy to sample from the standard Gaussian
distribution, i.e. using cosine similarity threshold € = —oo0.

2. To test the influence of convolutional layers on ZO-RL performance, we conducte experi-
ments using 9-layer neural network structure (4 convolution layers, 4 pooling layers and 1
full connection layer), 5-layer neural network (2 convolution layers, 2 pooling layers and 1
full connection layer) and 1-layer neural network (1 full connection layer).

Fig. [21] shows the loss versus query number for two ablation studies. The results show that pre-
training and deeper reinforcement learning network can effectively enhance the performance of our
ZO-RL algorithm.
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Figure 21: Ablation Study.

E ADDITIONAL SETTINGS FOR STATES

We use the function values from the previous m iterations as states, since this state can reflect the
effectiveness of the previous estimated ZO gradient. Fig. 22]show the black-box attack loss versus
query number using different ZOO algorithms under Gaussian distribution on MNIST attack task
in the SGD setting. The “ZO-newRL” represents the algorithm using the function values from the
previous mn iterations as the states. We set m = 20 for all the experiments in Fig. 22] The results
show that our ZO-newRL and ZO-RL have similar results, which can effectively reduce the query
complexity of ZOO algorithms. This further verifies that learning an effective sampling policy is
effective in the ZOO algorithms. Fig. 23] show the the black-box attack loss versus query number for
hyperparameter m. The results show that the more function values from previous iterations are used
as states, the better the algorithm performs.
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Figure 22: Adversarial attack to black-box models in the SGD setting.
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Figure 23: Hyperparameter m.
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