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Abstract

Annotating cross document event coreference001
links is a tedious task that requires annotators002
to have near-oracle knowledge of a document003
collection. The heavy cognitive load of this004
task decreases overall annotation quality while005
inevitably increasing latency. To support anno-006
tation efforts, machine-assisted recommenders007
can sample likely coreferent events for a given008
target event, thus eliminating the burden of ex-009
amining large numbers of true negative pairs.010
However, there has been little to no work in011
evaluating the effectiveness of recommender012
approaches, particularly for the task of event013
coreference. To this end, we first create a sim-014
ulated version of recommender based annota-015
tion for cross document event coreference res-016
olution. Then, we adapt an existing method as017
the model governing recommendations. And018
finally, we introduce a novel method to as-019
sess the simulated recommender by evaluating020
an annotator-centric Recall-Annotation effort021
tradeoff.022

1 Introduction023

Event Coreference Resolution (ECR) is the task024

of identifying mentions of the same event either025

within or across documents. We refer to the task of026

event coreference for a single document as Within-027

Document Event Coreference Resolution (WDCR),028

with the task involving multiple documents referred029

to as Cross Document Event Coreference Resolu-030

tion (CDCR).031

Consider the following excerpts from three re-032

lated documents (document name in bold):033

39_11ecbplus: [Peter Capaldi]ARG0 will re-034

placeevt1 [Matt Smith]ARG1 , who announced035

in June that he was leaving the sci-fi show.036

39_1ecb: [Matt Smith]ARG0 , 26 , will037

make his debut in 2010, replacingevt2 [David038

Tennant]ARG1 , who leaves at the end of this039

year.040

39_5ecbplus: [Peter Capaldi]ARG0 takes 041

overevt3 [Doctor Who]ARG1 . . . [Peter 042

Capaldi]ARG0 stepped intoevt4 [Matt 043

Smith’s]ARG1 soon to be vacant Doctor Who 044

shoes. 045

The task of WDCR is to determine that event men- 046

tions evt3 and evt4 are coreferent within document 047

39_5ecbplus. The more challenging task of CDCR 048

is to form the two clusters, {evt1, evt3, evt4} and 049

{evt2}, by disambiguating events from the three 050

closely related documents. 051

While manually annotating WDCR links can be 052

difficult, the far greater challenge of CDCR arises 053

from the large number of pairs that need to be ex- 054

amined as a collection grows, as well as to the 055

cognitive load of assessing if two events are actu- 056

ally coreferent (Song et al., 2018; Wright-Bettner 057

et al., 2019). Indeed, an annotator has to examine 058

multiple documents often relying on memory to 059

identify all CDCR links, leading to errors. 060

To reduce the cognitive burden of CDCR, annota- 061

tion tools can provide integrated recommenders for 062

coreferent links (Pianta et al., 2008; Yimam et al., 063

2014; Klie et al., 2018). Recommender systems 064

typically store a knowledge base (KB) of annotated 065

documents and then use this KB to suggest likely 066

coreferent candidates for a target event by query- 067

ing and ranking the candidates. The annotator can 068

then inspect the candidates and choose a corefer- 069

ent event if present. Figure 1 illustrates a typical 070

workflow for this process. 071

A recommender’s querying and ranking opera- 072

tions are typically driven by machine learning (ML) 073

systems that are trained either actively (Pianta et al., 074

2008; Klie et al., 2018) or by using batches of an- 075

notations (Yimam et al., 2014). While there have 076

been advances in recommendation-based annota- 077

tions, there is little to no work in evaluating the 078

effectiveness of these systems, particularly in the 079

use case of event coreference. Specifically, both 080

the overall coverage, or recall, of the annotation 081
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Figure 1: Typical Workflow of Machine-Assisted Annotation of CDCR Links1. While annotating document
39_11ecbplus, the annotator comes across replaceevt1 . The recommender queries and ranks candidates from
a KB built over previously annotated documents, then presents them to the annotator in rank order for the annota-
tor to choose from. In this example, the second candidate is the coreferent event in 39_5ecbplus.

process as well as the degree of annotator effort082

needed depend on the performance of the recom-083

mender. In order to address this shortcoming, we084

offer the following contributions:085

1. We introduce a novel method of recommender-086

based annotation for CDCR.087

2. We compare two existing methods for CDCR088

(differing widely in their computational costs089

and portability), by adapting them as the un-090

derlying ML models guiding the recommen-091

dations.092

3. We introduce a novel methodology for assess-093

ing the simulated recommender by evaluating094

an annotator-centric Recall-Annotation effort095

tradeoff.096

2 Related Work097

Previous work for ECR is largely based on model-098

ing the probability of coreference between mention099

pairs. These models are built on supervised clas-100

sifiers trained using features extracted from the101

pairs. Earlier work on feature representation uses102

the broader context of the event mentions to create103

symbolic linguistic similarities (Lee et al., 2012;104

Liu et al., 2014; Yang et al., 2015; Araki and Mita-105

mura, 2015). While these models fall short in their106

performance when compared to current methods,107

they still are useful in terms of application with108

limited computational resources.109

Most recent work uses a transformer-based lan-110

guage model (LM) like BERT (Devlin et al., 2018)111

or RoBERTa (Liu et al., 2019) to generate contex-112

tualized pair representations of mentions, followed113

1Only a subset of possible annotations is shown here.

by LM fine-tuning using a coreference scoring ob- 114

jective (Barhom et al., 2019; Cattan et al., 2020; 115

Meged et al., 2020; Zeng et al., 2020; Yu et al., 116

2020; Caciularu et al., 2021). These methods use 117

scores generated from the coreference scorer to ag- 118

glomeratively cluster coreferent events. Caciularu 119

et al. (2021) use a modified Longformer (Beltagy 120

et al., 2020) as the underlying LM to generate a 121

document level representation of the event mention 122

pairs. Following the work of Kenyon-Dean et al. 123

(2018), they fine-tune the corresponding CDCR 124

system by training over sampled coreferent and 125

non-coreferent mention pairs. To our knowledge, 126

it is the state of the art system for CDCR. 127

Over the years, a number of metrics have been 128

proposed to evaluate ECR (Vilain et al., 1995; 129

Bagga and Baldwin, 1998; Luo, 2005; Recasens 130

and Hovy, 2011; Luo et al., 2014; Pradhan et al., 131

2014). While these metrics do help in assessing the 132

quality of the underlying ML model, an annotator 133

might still want to have an estimate of how much 134

effort is required to identify CDCR links using a 135

recommender. In the remainder of the paper, we 136

attempt to answer this question by quantifying an- 137

notation effort and analyzing its relation in terms 138

of finding CDCR links. 139

3 Dataset 140

For our experiments, we use the corpus Event 141

Coreference Bank Plus (ECB+; Cybulska and 142

Vossen (2014)), a common choice for assessing 143

CDCR, as well as the experimental setup of Cybul- 144

ska and Vossen (2015) and gold topic clustering of 145

documents and gold mentions annotations for both 146

training and testing. 147

We use gold-standard within-document corefer- 148

2



ence annotations to merge coreferent mentions into149

within-document event instances. The goal is to150

group these event instances into what we refer to as151

cross-document event clusters. We include dataset152

statistics in the appendix.153

4 Recommender Methodology154

To simulate a typical human annotation process and155

isolate the performance of the recommender, we156

employ incremental clustering where a target event157

is either merged or added to a store of event clusters.158

The main steps of the recommender are (1) retrieve159

candidate clusters for the target event from the ex-160

isting set of event clusters, (2) rank each candidate161

based on how similar it is to the target event, and162

(3) prune lower ranked candidates. Following pre-163

vious work, we choose a simple retrieval strategy164

in which we query all the existing event clusters165

that come from the same topic. For ranking, we166

adapt methods that work well in an agglomerative167

clustering setting to a streaming approach.168

4.1 Ranking169

We investigate two separate methods to drive the170

ranking of candidates distinguished by their compu-171

tational cost and likely portability to new domains.172

We use these methods to generate the average pair-173

wise coreference scores between mentions of the174

candidate and target events, then use these scores175

to rank candidates.176

Ranking directly with Caciularu et al. (2021)177

(CDLM): In this method, we use the pretrained LM178

and the fine-tuned CDCR system of Caciularu et al.179

(2021) to generate pairwise mention scores2. This180

method is expensive as it runs a large LM over all181

the pairs of mentions (over 100,000) within each182

topic during prediction.183

Ranking with Features (Regressor): In the184

second method, we use a two-layer neural regres-185

sor trained over similarity features mostly adopted186

from Lee et al. (2012). We add one more feature187

by taking the cosine similarity of contextualized188

representations of the mentions from the frozen189

CDLM. To sample for and train the Regressor,190

we follow the methods of Caciularu et al. (2021).191

Considering the generation of the contextualized192

representation using CDLM to be a simple prepro-193

cessing step, the Regressor represents a com-194

putationally inexpensive method which can be run195

without dedicated GPUs.196

2Can be downloaded here

4.2 Pruning 197

To limit the number of candidates an annotator 198

would have to inspect for each target, we only pick 199

the top k candidates. If k is not an integer (e.g., 200

k = 2.5) and the coreferent candidate is not among 201

the top bkc (i.e., 2) candidates, we add one more 202

candidate to the top bkc with a probability of k − 203

bkc (i.e., 0.5). We further prune the candidates 204

by applying a threshold on the coreference score. 205

Section 5.2 describes the threshold tuning process. 206

Pruning comes at the cost of recall but is a nec- 207

essary step to reduce annotation effort. Pruning 208

may create the artifact of multiple recommended 209

coreferent candidates for a target event. We detect 210

these cases and merge all coreferent candidates and 211

the target event. 212

4.3 Simulation 213

We run the incremental clustering pipeline on the 214

events of the ECB+ development and test sets. For 215

each target event, the recommender retrieves the 216

candidates from the existing clusters and, using 217

each of the methods described earlier, ranks and 218

filters the candidates. We then identify corefer- 219

ent candidate(s) using ground-truth annotation and 220

merge the target accordingly. 221

5 Evaluation Methodology 222

We evaluate the performance of the recommenda- 223

tion methods on three aspects: how well it finds the 224

coreferent links, how “good” the recommendations 225

are, and how much effort it would take to annotate 226

the links using it. 227

5.1 Recall-Annotation Effort Tradeoff 228

Recall: To assess the recommender’s performance 229

in finding the CDCR links, we use the recall mea- 230

sure of MUC score (MUCR; Vilain et al. (1995)). 231

Since MUC assesses equivalence classes with mini- 232

mum links between the members, and an incremen- 233

tal clustering pipeline always produces clusters of 234

that kind, MUCR is a suitable metric for recall here. 235

Precision: In order to assess the quality of the rec- 236

ommendations, we need a measure of precision. A 237

recommendation is said to be correct if the coref- 238

erent candidate is among the candidates and faulty 239

otherwise. We get the ratio of the correct recom- 240

mendations and present this score as P. 241

Effort: To quantify annotation effort, we count 242

the number of recommended candidates presented 243

by the recommender. A unit effort represents the 244
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comparison between a candidate and target that an245

annotator would have to make in the annotation pro-246

cess. We represent this number as Comparisons.247

5.2 Analysis248

For our analysis, we run the simulation with prun-249

ing by varying the k in top k candidates as 2, 2.5, 3,250

. . . 5. For pruning with a threshold score, we tune251

it using the development set by first fixing the k to252

be 10, and then finding a threshold that achieves253

97% recall. The tuned threshold for CDLM is 10−4254

while for the Regressor, it is 0.508.255

1.5 2 2.5 3 4 5 6 7

Comparisons× 103

90 90

92 92

94 94

95 95

96 96

97 97

98 98

99 99

100 100

M
U
C
R
%

(2.5,
0.55)

(3, 0.56)

(5, 0.57)
(5, 0.44)

(5, 0.51)

(5, 0.43)

(4.5, 0.43)

Method

CDLM 10−4

CDLM
Regressor
.508
Regressor

Figure 2: Plot of Comparisons vs MUCR analysing sim-
ulated Annotation effort using the methods on the Test
set of ECB+ Corpus containing 1780 event mentions.
The plot is an interpolation over the two measures cal-
culated at various values of k. Select points are labeled
in the form (k, P).

We calculate MUCR and Comparisons for each256

of the k values and methods with and without using257

the threshold, collated for visualization in Figure 2,258

and label some informative points with their respec-259

tive P score. All methods achieve a MUCR greater260

than 95% when k = 5, showing the scores from the261

two methods are reliable for ranking the candidates.262

The P score is better for methods that use an263

additional threshold for pruning, as expected. The264

CDLM method with a threshold clearly performs265

better than the rest with a score almost reaching266

0.6. This means, using this method about 60% of267

the recommendations lead to finding a coreferent268

link in the dataset when targeting 97% recall.269

From the figure, we can see that some methods270

are better than others in terms of effort required to271

achieve a particular recall. For a fixed amount272

of effort, CDLM is better than Regressor by273

2-4% with or without the use of a threshold.274

The CDLM method greatly cuts the effort using 275

a threshold, but the difference in results for the 276

Regressor with and without the threshold is not 277

apparent. The benefits of using non-integer prob- 278

abilistic k values is clear from the sharp increases 279

in the MUCR with little increase in Comparisons at 280

those points for all the methods. 281

The plot also shows the tremendous effort re- 282

quired to annotate the last 5% of the links. We 283

hypothesize the additional comparisons are in part 284

due to the vast number of singleton clusters in the 285

dataset and also because certain topics have many 286

closely related documents. We leave the analysis 287

of these faulty comparisons for future work. 288

6 Discussion 289

Annotating CDCR links has a high cost. While the 290

Regressor does not have any additional comput- 291

ing cost, the CDLM method incurs the cost associ- 292

ated with high-performance GPUs. Just running 293

the simulation required four hours of computation 294

on a machine with four A100 GPUs at a total cost 295

of about 55 USD. This cost will be much greater 296

if the annotator’s own machine needs GPUs. An- 297

other issue of using CDLM to annotate a new dataset 298

is the generalizability of the model. CDCR an- 299

notation guidelines are an evolving research area. 300

The Regressor can be easily adapted according 301

to the guidelines through inclusion of additional 302

rules, but it might be difficult for the CDLM to 303

adapt without additional annotated data. The ease 304

of application and results similar to those of the 305

CDLMmethod motivates further research into better 306

similarity feature-based models for CDCR annota- 307

tion recommenders. 308

7 Conclusion 309

We introduced a methodology in which a state-of- 310

the-art coreference system can be converted into a 311

recommender system for annotating the same task. 312

We compared two recommenders through a novel 313

evaluation method that answers key questions re- 314

garding the quality of the recommender before an 315

annotator uses it. Next steps include testing the 316

transferability of the recommenders for annotating 317

documents of a different domain, and assessing ac- 318

tive learning approaches for the task. We also plan 319

to integrate the methodology into an annotation 320

tool like BRAT (Stenetorp et al., 2012), or Incep- 321

tion (Klie et al., 2018) for carrying out annotation 322

on new datasets. 323
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A ECB+ Corpus Event Statistics506

Table 1 contains the stats for the ECB+ corpus.507

Topics

Train Dev Test

Topics 25 8 10

Documents 594 196 206

Mentions 3808 1245 1780

Within-doc
Event Instances 3102 991 1403

Cross-doc
Event Instances 1464 409 805

Cross-doc
Event Clusters 411 129 182

Singletons 1053 280 623

Table 1: ECB+ Corpus Statistics for Event Mentions.
The Within-doc Event Instances are counted after merg-
ing coreferent mentions within documents. Singleton
Event Instances are event clusters with only a single
event.

B Regressor Model508

B.1 Model509

The classifier in the Regressor method is a 2-510

layered neural network with four hidden units in511

the first layer. We use Stocastic Gradient Descent512

to train the weights with a Binary Cross Entropy513

loss function and a learning rate of 10−5. We train514

the model for 100 epochs and use the saved model515

to run predictions on the development and test set.516

All the models were implemented using PyTorch517

(Paszke et al.) and the code is attached with the518

submission for reproducing the results.519

B.2 Feature List520

We use a total of 9 features for the method:521

lemma match: Binary feature, True if the522

lemmas of the two mentions are the same.523

lemma n-gram overlap: The ratio of over-524

lapping lemma n-grams between mention525

pairs.526

Entities in the sentence overlap: Ratio of527

overlapping named entities in the sentence.528

We use gold standard coreference annotations529

here.530

Entities in the Document overlap: Ratio of 531

overlapping named entities in the document. 532

We use gold standard coreference annotations 533

here. 534

Tf-idf cosine similarity of the documents: 535

The cosine similarity between tf-idf vectors of 536

the documents in which the mentions appear. 537

Cosine similarity of contextualized repre- 538

sentation using CDLM: We encode the repre- 539

sentation of the mention individually using 540

the entire document as context using the im- 541

plementation of Caciularu et al. (2021). We 542

then calculate the cosine similarity between 543

the representations of mention pairs. 544

Word relatedness using Lin Thesaurus for 545

lemmas: 3 features. a) ratio of overlap be- 546

tween the top-50 synonyms from Lin The- 547

saurus of the lemmas of the pairs. b) binary 548

feature when lemma of the target is among the 549

synonyms of candidate c) binary feature when 550

lemma of candidate is among the synonyms 551

of target. 552
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