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ABSTRACT

Learning state representations has gained steady popularity in reinforcement
learning (RL) due to its potential to improve both sample efficiency and returns
on many environments. A straightforward and efficient method is to generate rep-
resentations with a distinct neural network trained on an auxiliary task, i.e. a task
that differs from the actual RL task. While a whole range of such auxiliary tasks
has been proposed in the literature, a comparison on typical continuous control
benchmark environments is computationally expensive and has, to the best of our
knowledge, not been performed before. This paper presents such a comparison
of common auxiliary tasks, based on hundreds of agents trained with state-of-the-
art off-policy RL algorithms. We compare possible improvements in both sample
efficiency and returns for environments ranging from simple pendulum to a com-
plex simulated robotics task. Our findings show that representation learning with
auxiliary tasks is beneficial for environments of higher dimension and complex-
ity, and that learning environment dynamics is preferable to predicting rewards.
We believe these insights will enable other researchers to make more informed
decisions on how to utilize representation learning for their specific problem.

1 INTRODUCTION

In reinforcement learning (RL), the often complex interplay of observations, actions and rewards
means that algorithms are often sample-inefficient or cannot solve problems altogether. State rep-
resentation learning tackles this issue by making information encoded in observations, and possibly
actions, more accessible. Mnih et al. (2013) first introduced deep RL to extract information from the
high-dimensional observations provided by Atari games. Later, Munk et al. (2016) and then Stooke
et al. (2020) made a case for decoupling representation learning from solving the RL task of max-
imizing cumulative rewards. As decoupling amounts to using a separate neural network (or other
method) to calculate representations, we will call this explicit, rather than implicit, representation
learning – although the distinction is not always so clear, for instance when a number of layers are
merely furnished with different prediction heads. Munk et al. (2016) additionally introduce predic-
tive priors, learning targets that differ from the RL task but are also based on data generated by the
environment. Other authors such as Legenstein et al. (2010) Wahlström et al. (2015), Anderson et al.
(2015) and Shelhamer et al. (2017) have proposed further learning targets and started to call these
auxiliary tasks. Not all the listed works learn explicit representations, although doing so comes with
advantages: Representations generated by separate networks can replace raw observations and, op-
tionally, actions as inputs to an RL algorithm. The individual parts of such agents then have distinct
purposes. Different tasks do not interfere with each other, and representations can remain agnostic
to the RL task. Individual components can easily be exchanged, making this approach flexible.

Most of the works above learn representations for discrete control on environments with high-
dimensional visual observations. Recently, it has been shown that representation learning can im-
prove returns also on non-visual continuous control benchmark problems of RL, such as the MuJoCo
control tasks (Ota et al. (2020)). As far as we know, a comparative study of auxiliary tasks on these
continuous control benchmark environments has not been done before, despite their importance to
RL research. This paper presents such a study of auxiliary tasks. We hope it provides other re-
searchers with an unbiased and, within the limits of our computational restraints, broad comparison
that can assist them in selecting auxiliary tasks for representation learning in the context of their
research problems.
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We conduct our comparison by investigating returns and sample efficiencies achieved with com-
mon auxiliary tasks on five diverse environments. These environments cover a range of observation
and action dimensionalities, and varying levels of complexity concerning the relationship between
observations, actions and rewards. Explicit representations are computed with OFENet (Ota et al.
(2020)), and used as inputs to the off-policy RL algorithms TD3 and SAC. Since one environment,
FetchSlideDense-v1, cannot be solved with baseline TD3 or SAC, we additionally train agents with
hindsight experience replay (HER). Our results show that representation learning with auxiliary
tasks significantly increases both maximum returns and sample efficiency for high-dimensional and
complex environments, although it has little effect on simpler, smaller environments. We find that
learning representations based on environment dynamics, for instance by predicting the next obser-
vation, is superior to using reward prediction. Interestingly, adding representation learning to TD3
makes it possible to train somewhat successful agents on the FetchSlideDense-v1 environment, even
if baseline TD3 cannot learn anything at all.

2 RELATED WORK

Many works in recent years have made use of some auxiliary task to learn state representations. We
cite multiple of these in Section 3. Ota et al. (2020) for instance, whose representation learning
network we use here, predict the next observation from current observation and action. There are
however few papers which compare auxiliary tasks to each other. Lesort et al. (2018) have written
a thorough survey of state representation learning which summarizes different auxiliary tasks and
includes a comprehensive list of publications. It is however a purely theoretical discussion of meth-
ods without any empirical comparisons or results. There are two empirical comparisons of auxiliary
tasks (Shelhamer et al. (2017) and de Bruin et al. (2018)), which differ in various aspects from ours.
Shelhamer et al. (2017), like us, compare auxiliary tasks on various environments. In contrast to us,
they use Atari games with visual observations. Another difference is that Shelhamer et al. (2017)
don’t fully decouple representation learning from the RL algorithm. Instead, they merely connect a
different prediction head to train the initial, convolutional part of the deep RL algorithm on auxiliary
targets. Their results generally vary across environments. An interesting feature of their paper is the
comparison of individual auxiliary tasks to a combination of several. Curiously, the combination
never clearly outperforms the respective best individual tasks. The second comparison, de Bruin
et al. (2018), uses only one car race environment but with several race tracks. It provides multi-
modal observations which again include of visual data. In contrast to our approach, loss functions of
auxiliary tasks and RL task are linearly combined, and auxiliary tasks are investigated by removing
their individual loss terms from the combination. Representations are hence learned implicitly.

3 AUXILIARY TASKS

In this section we present common auxiliary tasks, of which we will empirically compare the first
three while the last two do not work with our setup. An overview of the tasks is presented in Figure 1.
To discuss these tasks, we first need to briefly formalize the reinforcement learning problem: An
environment provides reward rt and observation ot at time step t. The agent then performs an action
at, which generates a reward rt+1 and leads to the next observation ot+1. This cycle is modeled
by a Markov decision process, which means that there can be randomness in the transition from ot
to ot+1, given some at. The Markov property implies that ot+1 only depends on ot and at which
already contain all past information. It does not depend on previous states or actions. The goal of
the RL agent is to maximize cumulative reward (return). Altogether, these components are the ones
available to auxiliary tasks, and various possible combinations are used.

Reward prediction (rwp) is the task of predicting rt+1 from ot and at. Works that use rwp include
Munk et al. (2016), Jaderberg et al. (2016), Shelhamer et al. (2017), Oh et al. (2017) and Hlynsson
& Wiskott (2021). With explicit representation learning, rwp is limited in that it can only be applied
to environments which provide non-trivial rewards. Representations might otherwise become de-
coupled from ot and at if rt+1 is constant. A RL algorithm trained on these representations could
not learn anything at all. It can be argued that representations based on reward prediction have an
advantage over those learned with other auxiliary tasks as they are optimized towards the actual RL
task. On the other hand, rwp is somewhat redundant to the RL task of maximizing returns, although
it only considers the immediate next reward and is therefore less noisy (Shelhamer et al. (2017)).
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Figure 1: An overview of inputs and prediction targets of common auxiliary tasks.

Forward state prediction (fsp) is the task of predicting ot+1 from ot and at. It is a popular task and
used e.g. by Wahlström et al. (2015), Munk et al. (2016), van Hoof et al. (2016), Pathak et al. (2017)
and Ota et al. (2020). In contrast to our work, several of these deal with high-dimensional image
observations and therefore try to predict the next representation rather than the next observation in
time. The fsp task, as opposed to rwp, can be applied to any kind of environment without conditions.
Its task amounts to learning environment dynamics as it is done e.g. in model-based RL. The fsp task
can thus be considered model-based RL, although we combine it with model-free RL algorithms.

Forward state difference prediction (fsdp) describes the task of predicting (ot+1 − ot) from ot
and at. Anderson et al. (2015) and Jaderberg et al. (2016) use fsdp. Conceptually, it is very similar
to fsp. While fsdp also learns environment dynamics, Anderson et al. (2015) claim that successive
observations are very similar and predicting only the difference thus gives more explicit insight
into environment dynamics. The fsdp task requires a notion of difference, though this is not a
practical issue as observations are usually encoded as numerical vectors. In comparison with fsp,
the fsdp task should provide an advantage in environments without excessive noise or stark changes
between successive observations. This would make fsp more robust, but fsdp particularly suited for
environments simulating real-world physics.

State reconstruction (sr) (used e.g. in Jaderberg et al. (2016) and Shelhamer et al. (2017)) is the
task of reconstructing ot (and possibly at) from ot and at. This is the classical autoencoder task,
but does not make sense in our setup where data dimensionality is expanded by concatenation. Our
representations thus always contain the raw ot and at, and reconstruction would amount to simply
filtering these out. No useful representations could be learned. In general, sr is related to fsp but,
crucially, does not learn environment dynamics. It therefore seems reasonable to assume that fsp will
in most cases be a better choice for learning representations for RL. The results of both Jaderberg
et al. (2016) and Shelhamer et al. (2017) confirm this.

The inverse dynamics model (inv), framed as a learning task, predicts at from ot and ot+1. Works
using this task include Shelhamer et al. (2017) and Pathak et al. (2017). While fsp and fsdp focus on
learning transition probabilities of the environment, the inv task considers how actions of the agent
correlate with changes in the environment. We cannot use the inv task here because learning these
representations is not possible in conjunction with actor-critic algorithms: Gradients would have to
pass through the – usually not differentiable – environment in order to be propagated back from
critic to actor. Section A.1 in the appendix provides a detailed explanation.

Various other priors have been proposed by different authors (for a list, see Lesort et al. (2018)).
Noteworthy examples include the slowness principle used in Legenstein et al. (2010) and the robotics
prior by Jonschkowski & Brock (2015). However, these are not as commonly used as the previously
mentioned tasks and some of them are even specific to certain problem settings. We thus exclude
them from our comparison.

In addition to the tasks above, there are several works on combining auxiliary tasks. A popular
combination is fsp or fsdp with rwp (e.g. Munk et al. (2016), Jaderberg et al. (2016)), various others
exist. Lin et al. (2019) have even proposed a method to adaptively weigh different auxiliary tasks.

4 METHODS

This section explains the neural network we use to learn representations with the auxiliary tasks, the
RL algorithms we train on these representations and the environments we use for training.
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4.1 REPRESENTATION LEARNING NETWORK

To train explicit representations on auxiliary tasks, we use the network architecture of OFENet by
Ota et al. (2020). The architecture is composed of two parts. Its first part calculates a representation
zot of ot, and the second part calculates a representation zot,at

of zot and at. Internally, the parts
stack MLP-DenseNet blocks which consist of fully connected and concatenation layers. The whole
arrangement is visualized in Figure 2. For our experiments we give both parts of OFENet the same
internal structure (apart from input dimensionality), but adjust parameters to different environments
as described in Table 1 in the appendix. The auxiliary loss is calculated as the mean squared error
between predicted and actual target.

Figure 2: Sketch of the OFENet architecture, modified from Ota et al. (2020). Observation ot and
action at are used to calculate representations zot and zot,at

. These, in turn, are passed into the RL
algorithm (light grey). The prediction target necessary to evaluate the auxiliary loss is calculated
with one fully connected layer (FC, light grey) from zot,at

.

OFENet is a good choice for comparing auxiliary tasks as it is a rather generic architecture for
learning representations of expanded dimensionality. Besides OFENet, we are not aware of any
other approaches in the field of RL to learn representations without dimensionality reduction. Most
works use (variational) autoencoders, which have been shown to be very powerful especially for
image data. An advantage of the dimensionality expansion approach of OFENet, however, is that it
can be applied to smaller, simpler environments. In the context of a comparison, this might eliminate
some excess factors of variation potentially introduced by more complex network architectures.
As a matter of fact, Ota et al. (2020) show that their dimensionality expansion approach can even
be successful for environments of somewhat high dimensionality such as Humanoid-v2 with 292-
dimensional observations. We make use of that in our study.

4.2 REINFORCEMENT LEARNING ALGORITHMS

To solve the RL task of maximizing returns, we use TD3 (Fujimoto et al. (2018)) and SAC (Haarnoja
et al. (2018)), two well-known state-of-the-art RL algorithms. They are both model-free off-policy
actor-critic methods. Comparing auxiliary tasks against these two presents a trade-off between the
computational expense of training all agents required for our comparison (hundreds per RL algo-
rithm) and investigating more than one algorithm to avoid results being biased. We chose these
two algorithms in particular because they are powerful and also quite popular, which makes them a
testbed that is both non-trivial and particularly relevant to potential readers.

We study one environment, FetchSlideDense-v1, which is too difficult to solve with baseline TD3
and SAC. It does however become at least partially solvable when adding hindsight experience
replay, first proposed by Andrychowicz et al. (2017). HER infuses the replay buffer used by off-
policy algorithms with additional samples copied from previous episodes. In these copied samples,
it changes the reward signal to pretend the agent had performed well, in order to present it with
positive learning signals. Additional supposedly successful episodes provide a stronger incentive
for the agent to learn, which makes learning in complex environments easier. Nowadays it is wide-
spread practice to use HER for robotics tasks such as FetchSlideDense-v1.

4.3 ENVIRONMENTS

We perform our study on five different environments: A simulated pendulum, three MuJoCo control
tasks and a simulated robotics arm. They span a large range of size and complexity. Size, here,
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refers to the dimensionality of observation and action space, while complexity is about how difficult
it is to learn a sufficient mapping between observation space, action space, and rewards. The three
MuJoCo control tasks differ in size but are controlled by similar dynamics, which allows for a very
direct comparison. All studied environments are depicted in Figure 3. Sizes of observation and
action spaces, and of the corresponding representations learned with OFENet, are listed in Table 1
in the appendix.

In the following, all five environments we use are briefly described. For further details on the first
four, we refer the reader to the documentation of OpenAI Gym (Brockman et al. (2016)).

Figure 3: Sample images rendered to visualize the environments. The image of FetchSlideDense-v1
is from Plappert et al. (2018).

Pendulum-v1 is a simple and small classic control environment in which a pendulum needs to be
swung upwards and then balanced in this position by applying torque. Its observations quantify
angle and angular velocity of the pendulum. The reward at each time step is an inversely linear
function of how much the angle differs from the desired goal, how much the angle changes, and
how much torque is applied.

Hopper-v2 is the first of three MuJoCo control tasks we consider here. It is based on a physical
simulation of a two-dimensional single leg with four parts, which can be controlled by applying
torque to the three connecting joints. This makes it comparatively small and simple as well. The
observation contains some of the angles and positions of parts and joints, as well as their velocities.
The reward at a given time step mostly depends on how much the hopper has managed to move
forward, plus a constant term if it has not collapsed.

HalfCheetah-v2 is another two-dimensional MuJoCo control task, similar to Hopper-v2 but larger
and more complex. It already consists of 9 links and 8 joints, with action and observation space
similar in nature to those of Hopper but consequently of larger dimension. The reward is again
based on how much the HalfCheetah has moved forward since the last time step.

Humanoid-v2 is the last MuJoCo control task we use in our comparison. As opposed to the previous
two, it is three-dimensional. It roughly models a human, which leads to actions and observations that
are similar to those of Hopper-v2 and HalfCheetah-v2, but of far higher dimension. In comparison,
Humanoid-v2 is a very large environment. The reward is once again primarily based on forward
movement plus a constant term if the robot has not fallen over.

FetchSlideDense-v1 (Plappert et al. (2018)) is an environment which incorporates a simulated
robotics task. It is not much larger than HalfCheetah-v2, but much more complex than any of
the other tasks. A three-dimensional arm needs to push a puck across a low-friction table so that it
slides to a randomly sampled goal position which is out of reach of the arm. The action controls
where to move the tip of the arm, while the observation encodes position and velocities of arm and
puck as well as the position of the goal. The reward is the negative distance between puck and goal
position, which makes it constant as long as the arm does not hit the puck. In their technical report,
the authors show that this task is very difficult to solve even with state-of-the-art methods, unless
additional methods such as HER are deployed. Instead of return, FetchSlideDense-v1 is evaluated
by success rate, which describes in how many cases out of 100 the puck ended up close to its goal.

5 EXPERIMENTS

To compare the auxiliary tasks, we train agents with baseline TD3 and SAC on raw observations
(baseline) and on representations learned with auxiliary tasks. We do this for each of the five en-
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vironments. Additionally, for FetchSlideDense-v1, we combine TD3 and SAC with HER and train
these on raw observations as well as on representations learned with auxiliary tasks. All of the afore-
mentioned experiments are conducted five times with the same set of random seeds. We do regular
evaluations over several evaluation episodes throughout training, and their average return/success
rate is what we report here. Configurations used for OFENet, including representation size and
pretraining, are listed in Table 1 in the appendix. In Section A.4 in the appendix, we additionally
examine and discuss the effect different representation sizes and amounts of pretraining would have
on Hopper-v2, HalfCheetah-v2, and Humanoid-v2.

For our experiments we use the PyTorch implementations of TD3 by Fujimoto (2022) and SAC by
Yarats & Kostrikov (2022), together with our own PyTorch implementation of OFENet based on
the Tensorflow code provided by Ota et al. (2020). For the experiments with HER, we modified the
Stable-Baselines3 code by Raffin et al. (2021) to include OFENet. Hyperparameters we used for all
runs are reported in the appendix, Section A.2. For the experiments done with Stable-Baselines3,
we took hyperparameters from the RL Baselines3 Zoo repository (Raffin (2020)). In all other ex-
periments, hyperparameters are either the default ones provided by the respective RL algorithm
implementation or the OFENet implementation of Ota et al. (2020).

In all cases, we pretrain OFENet by a certain number of steps which are reported in Section A.2 of
the appendix. We set training steps to 0 when pretraining is completed and the RL algorithm starts
training. For the remaining time, the system alternates between training OFENet on its auxiliary
task and the RL algorithm on its RL task, while freezing the weights of the respective other. Repre-
sentations are thus continuously updated during the training process and become optimized on those
states and actions relevant to the agent.

In terms of computation time, adding OFENet to the RL algorithms roughly doubles to trebles the
training time of our agents, which appears little given the stark increase in dimensionality. We
speculate that this factor is mainly caused by a doubling in backward passes for gradient updates
plus some additional overhead in handling two separate networks for two separate tasks.

6 RESULTS

The returns or success rates on all different environments are shown in Figures 4 and 5 for all
auxiliary tasks and baseline algorithms. For a more normalized comparison, Figure 6 plots the
normalized maximum return/success rate against sample efficiency. To measure sample efficiency,
we calculate the fraction of training steps (and therefore samples) which are required to reach 80% of
the maximum return of the baseline algorithm, calibrated against the untrained baseline algorithm.
We call this measure SE80. Section A.3 of the appendix presents a discussion on the appropriate
percentage value.

In the following, the word performance shall refer to the combination of maximum return and sam-
ple efficiency. If only one of the two is concerned, it will be named explicitly. It is apparent that
all three auxiliary tasks lead to a significant increase in performance for high-dimensional, com-
plex environments. For the low-dimensional and simple Pendulum-v1, a slight increase in sample
efficiency but not in best return can be achieved. In fact, improvements in sample efficiency are
achieved across almost all environments. Increases in maximum returns follow a certain pattern:
they seem to increase with problem complexity rather than strictly dimensionality, although the two
go hand in hand. When using HER to solve FetchSlideDense-v1, however, representation learning
only leads to minor improvements. This is a special case discussed in Subsection 6.1.

6.1 REPRESENTATION LEARNING FOR DIFFERENT TYPES OF ENVIRONMENTS

Our experiments show different behavior for small and simple environments compared to larger and
more complex environments. The small environments we study here can easily be solved by baseline
TD3 or SAC and none of the auxiliary tasks leads to a noteworthy increase in maximum returns. For
the very small and simple Pendulum-v1 environment, representation learning with auxiliary tasks
does not significantly benefit sample efficiency either. For the slightly larger and less simple Hopper
environment, the picture is ambiguous with an increase in sample efficiency for TD3 but not for SAC.
For the remaining larger and more complex environments, however, representation learning with
auxiliary tasks provides clear performance gains over baseline TD3 and SAC. These gains seem to
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Figure 4: Returns/success rates achieved with TD3 and different auxiliary tasks on various environ-
ments. The shaded areas show minimum and maximum performance achieved across 5 runs, while
the lines represent the means. Values have been smoothed slightly for better visualisation.

Figure 5: Returns/success rates achieved with SAC and different auxiliary tasks on various environ-
ments. The shaded areas show minimum and maximum performance achieved across 5 runs, while
the lines represent the means. Values have been smoothed slightly for better visualisation.

scale with complexity rather than size of the environments, as the difference in performance between
HalfCheetah-v2, FetchSlideDense-v1 and Humanoid-v2 is not proportionate to their difference in
size.

An interesting case is the FetchSlideDense-v1 environment. It is too complex for any learning to
occur with baseline TD3 or SAC (without HER). Because of its initially constant rewards, rwp is not
able to learn anything at all. Adding HER to the RL algorithm, however, seems to speed up learning
enough to generate meaningful rather than trivial reward signals very soon and to successfully train
rwp, as evidenced by the fact that agents using rwp are competitive with those trained on other tasks.

The inventors of HER, Andrychowicz et al. (2017), argue that in cases such as FetchSlideDense-v1
too few learning impulses, in the form of rewards, are provided to meaningfully update network
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Figure 6: Sample efficiency on different environments compared to normalized best returns/success
rates. Note the different scales on the axes. The markers describe average performance, error bars
(solid for TD3 and dotted for SAC) mark best and worst case out of 5 runs. Where markers or error
bars are missing, agents in question never reached the return/success rate required to calculate SE80.

weights in the RL algorithm. When using TD3 with HER, the auxiliary tasks do not seem to offer
any benefits. For SAC with HER, the agents trained with auxiliary tasks are on average better than
those without. This is misleading as baseline SAC with HER can perform as well as with auxiliary
tasks, but its mean is lowered considerably by two agents which did not learn at all. These results
suggest that adding a learning signal through HER already enables the RL algorithm itself to learn
meaningful patterns from original observations (i.e. HER significantly reduces the complexity of the
problem), even if not quite as reliably as with additional representations learned on auxiliary tasks.

Furthermore, FetchSlideDense-v1 becomes at least partially solvable for TD3, even without HER,
when fsp or fsdp are used. This is an interesting result which shows that even if an environment is too
complex for a RL algorithm, adding representation learning might still enable successful training of
agents. There is however no such improvement in the same experiment with SAC, which shows that
this strategy has its limits. We hypothesize the learned representations recast observations, actions
and thereby the entire RL problem into a less complex manifold. At least some dimensions of the
representation learned with OFENet would then contain more informative features than the original
observation. For FetchSlideDense-v1 the representation might for instance contain a feature encod-
ing distance between arm and puck, instead of just the absolute positions from raw observations.
When the arm accidentally hits the puck, the RL algorithm could then relate observation and reward
more easily. Another possible factor, proposed by Ota et al. (2020), is that the added depth and
width of OFENet enable the agent to learn more complex and therefore more successful solutions.
In this case, however, additional expressivity through added weights alone does not reduce problem
complexity which is caused by initially constant rewards. It can therefore not explain why fsp and
fsdp make FetchSlideDense-v1 learnable for TD3 without HER. We thus consider simplification of
the learning problem to be the dominant factor at least in this environment.

6.2 COMPARISON OF AUXILIARY TASKS

This section presents a direct comparison of auxiliary tasks across the different algorithms and envi-
ronments. Since HER seems to significantly distort the performance of auxiliary tasks compared to
just using baseline RL algorithms, the FetchSlideDense-v1 solved with HER will not be considered.

The rwp task performs worst out of the three investigated auxiliary tasks. For the complex and
high-dimensional environments it is quickly overtaken by fsp and fsdp, even though it appears com-
petitive for environments with less complex dynamics where the choice of auxiliary task is not very
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important. The superior performances of fsp and fsdp are approximately on par, although one of the
two usually outperforms the other by a slight but noteworthy margin. There is however no apparent
pattern to this. When used with TD3, there might be a slight tendency for fsdp to outperform fsp, but
results are too inconclusive to confidently make this claim, especially since it cannot be observed
with SAC-based agents.

There are two obvious causal factors which might explain why rwp performs worse. Firstly, due
to its dimensionality alone, the prediction target rt+1 of rwp does not convey the same amount
of information as the prediction targets of fsp and fsdp, which might slow down rwp compared
to the other two. Secondly, representations learned on environment dynamics will likely contain
environment information that is not as easily accessible by only predicting rewards with the original
RL task or rwp auxiliary task. The latter point would underline the redundancy claim regarding rwp.
However, neither of the two factors is easy to investigate without studying the representations. Their
large dimensionality makes such an endeavor difficult and we defer this to future work.

The absence of a consistent difference in performance between fsp and fsdp suggests that the the-
oretical advantages of each, discussed in Section 3, are either not very important or cancel each
other out. Our studied environments are well behaved since they all simulate real world physics.
Consequently, they do not confront the algorithm with abrupt state changes or excessive noise. The
fact that fsp on average still works about as well as fsdp, despite those properties, suggests that the
advantages considered for fsdp in particular do not play a large role in practice.

7 CONCLUSION

In this paper we have compared common auxiliary tasks for representation learning in RL. To this
end we have used five common continuous control benchmark environments and two different state-
of-the-art off-policy RL algorithms. The representation learning is done explicitly, i.e. decoupled
from the RL algorithm with a distinct neural network, rather than implicitly. Representations are
then used as input to the RL algorithm instead of observations or, in case of the critic, actions.

We find that representation learning in general significantly improves both sample efficiency and
maximum returns for larger and more complex environments. It makes little difference with smaller
and simpler environments, where we observe a slight increase in sample efficiency at most. In
general, auxiliary tasks which encourage learning environment dynamics considerably outperform
reward prediction. A particularly encouraging result is that the FetchSlideDense-v1 environment,
a simulated robotics arm, becomes partially solvable when adding representation learning to the
otherwise unsuccessful TD3 algorithm. We interpret this as an indication that explicit representation
learning with auxiliary tasks can reduce problem complexity in RL. Across all experiments, we
found that results were quite different with different RL algorithms, even when using the same
representation learning techniques.

Due to the prohibitive computational costs of training hundreds of agents, we were limited in the
amount of environments and auxiliary tasks we could investigate. In the future, however, it would be
interesting to compare tasks also on non-physical, stochastic and noisy environments. In addition,
our comparison might be extended with further, less common auxiliary tasks or combinations of
multiple tasks as described in Section 3.
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A APPENDIX

In Section A.1 of this appendix to discuss in detail why the inverse dynamics auxiliary task does not
work with actor critic algorithms. In Section A.2 we describe hyperparameters for all our experi-
ments to establish reproducibility of our results. Then, in Section A.3 we debate our SE80 measure
of sample efficiency. Section A.4, finally, contains an investigation of the impact of parameters rep-
resentation size and amount of pretraining for different auxiliary tasks on the three MuJoCo control
environments.

A.1 INVERSE DYNAMICS WITH ACTOR-CRITIC ALGORITHMS

Representations zot only depend on ot (see Figure 2), while zot,ot+1 learned with the inv auxiliary
task depend on both ot and ot+1. The zot is passed into the actor and zot,ot+1 into the critic. The
latter is a problem when updating the actor, which calculates the policy, during training. For policy
updates, ot is provided by the replay buffer and at then proposed by the actor. The policy is updated
by backpropagating the gradient of the critic loss with respect to the proposed action. The critic
loss, however, also depends on ot+1 which is dynamically retrieved from the environment for the
proposed at. Backpropagation is thus not possible if the environment is not differentiable, which is
usually the case. This is visualized in Figure 7. It is possible to additionally pass at into the critic to
establish a direct differentiable connection between critic and actor. The gradient computed purely
through this connection is naturally not the true gradient, as long as the loss still also depends on
ot+1 which, in turn, depends on at. However, one might assume that in practice the contribution to
the gradient through ot+1 amounts only to a minor perturbation and could be ignored when at is also
passed directly into the critic. In our experiments we could empirically establish that this is not the
case. Having any dependency of the critic loss on ot+1 whatsoever prevented learning completely.

Figure 7: Diagram of information flow in an actor-critic setup with the inv auxiliary task where the
critic receives ot and ot+1 (and potentially at) as input. If ot+1 is part of the input to the critic, either
directly or through a representation learning network such as OFENet, the gradient of the critic loss
cannot be propagated back to the actor, as long as the environment (red) is not differentiable. This
is true even if the action is additionally passed into the critic directly (dashed grey line).

A.2 EXPERIMENT PARAMETERS

For all environments we investigate, Table 1 lists the dimensionalities of observations ot, actions at,
of OFENet representations zot and zot,at , and finally also the OFENet configurations used to obtain
them.

The hyperparameters we used for different runs were left largely untouched from their defaults in
the respective implementation. Batch sizes and learning rates are reported in Table 2. For those
runs without HER we have used defaults of the individual TD3 and SAC implementations, and
configured OFENet according to the last column of Table 1. For the runs with HER, we have used
defaults of Stable-Baselines3 but adjusted the ones suggested in RL Baselines3 Zoo for FetchSlide-
v1 according to values proposed in this file.

OFENet was pretrained with 10000 steps for all environments except Pendulum-v2, where 1000
pretraining steps were used. In Section A.4 of this appendix we study how a change in pretrain-
ing steps between values 0, 10000 and 100000 affects results for Hopper-v2, HalfCheetah-v2, and
Humanoid-v2.
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Table 1: Dimensions of observations, actions, representations and OFENet parameters used to
achieve them. Layers per part describes the total amount, and individual width, of fully connected
layers per OFENet part. Numbers in brackets are lower and higher representation sizes used in the
comparison in Section A.4

Environment dim(ot) dim(at) dim(zot ) dim(zot,at
) Layers/part

Pendulum-v1 3 1 23 44 2 x 10
Hopper-v2 11 3 251 (59, 971) 494 (110, 1934) 6 x 40 (x8, x160)
HalfCheetah-v2 17 6 257 (65, 977) 503 (119, 1943) 8 x 30 (x6, x120)
FetchSlideDense-v1 31 4 271 515 8 x 30
Humanoid-v2 292 17 532 (340, 1252) 789 (405, 2229) 8 x 30 (x6, x120)

Table 2: Batch sizes and learning rates used for training different agents.

Agent Batch size Learning rate

SAC 256 0.0003
SAC + HER 2048 0.001
TD3 256 0.0003
TD3 + HER 2048 0.001

A.3 MEASURING SAMPLE EFFICIENCY

In the literature, sample efficiency is commonly measured by setting a return threshold and evaluat-
ing how many training steps are required to reach it. In our case, we want to compare agents relative
to some baseline agent. We therefore make the threshold dependent on maximum performance of the
baseline agent. This raises the question what percentage of that maximum performance is a reason-
able pick for a threshold. We select 80% as a good threshold for our comparison. It is high enough to
yield sample efficiency values similar to a threshold of 100%, i.e. the 80% values reasonably reflect
how much faster an alternative can reach full maximum performance of the baseline algorithm. On
the other hand, 80% can also reflect how agents with auxiliary tasks (or, in some cases, the baseline
algorithms) can learn a bit faster before reaching the same value of maximum performance. When
all agents reach approximately the same maximum performance, as in Pendulum-v1 and Hopper-v2,
setting the threshold to 100% is also problematic for a second reason: Sample efficiency can not be
calculated at all, as soon as maximum performance of the baseline algorithm happens to be even just
a tiny fraction larger than the maximum performance of agents with auxiliary tasks.

Figures 8 and 9 plot how the sample efficiency measure (vertical axis) changes with different percent
values for the threshold (horizontal axis). Even though we initially generated these figures merely
to establish a reasonable percentage value, it turned out that effects visible in these plots are quite
interesting. They make explicit how agents using auxiliary tasks, on some environments, learn
much quicker than the baseline algorithms right from the start of training (e.g. HalfCheetah-v2
or FetchSlideDense-v1 with TD3). On other environments, however, the advantage only builds
over time (HalfCheetah-v2 or FetchSlideDense-v1 with HER on SAC). On Humanoid-v2, finally,
an increase in sample efficiency only occurs once the baseline algorithm approaches asymptotic
behavior and is overtaken confidently by agents that use auxiliary tasks.

A.4 EFFECTS OF REPRESENTATION SIZE AND PRETRAINING

In addition to the direct comparison of auxiliary tasks, we also investigate the effect of hyperparam-
eters representation size and amount of pretraining on performance. Figures 10 and 11 show how
average performances change for different auxiliary tasks when these are modified. The markers of
intermediate size (pretraining of 10000 and representations with 240 added dimensions) correspond
to the experiments discussed in Section 6, while smaller and larger markers represent increased and
decreased values for the respective hyperparameter. We have only conducted these experiments for
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Figure 8: Sample efficiencies of auxiliary tasks used with TD3, for different environments. If values
are missing – either of the mean or the min-max range – this is because their return/success rate
never reached the baseline return/success rate.

Figure 9: Sample efficiencies of auxiliary tasks used with SAC, for different environments. If values
are missing – either of the mean or the min-max range – this is because their return/success rate
never reached the baseline return/success rate. Note that the plot for FetchSlideDense-v1 without
HER is misleading as it is based on agents that have not learned anything and behave randomly (see
Figure 5).
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Hopper-v2, HalfCheetah-v2 and Humanoid-v2 since such an investigation becomes very expensive
due to the amount of different configurations.

While the results are certainly interesting, our findings exhibit limited consistency across different
hyperparameter values and do not directly affect our main comparison of auxiliary tasks in Section 6.

Figure 10: Comparison of different representation sizes. Within OFENet 48, 240 or 960 dimensions
were added to the original observations and actions (see Table 1). The marker size corresponds to
the representation size. Each marker represents a mean across five runs with different seeds.

Figure 11: Comparison of different amounts of pretraining. The pretraining was performed for 0,
10000 or 100000 steps. The marker size corresponds to the amount of pretraining. Each marker
represents a mean across five runs with different seeds.

For representation sizes used with SAC and fsp or fsdp, it is apparent that smaller environments can
be solved better with smaller representations and larger environments with larger representations.
For TD3, representations of medium size generally lead to the best trade-off between maximum
return and sample efficiency. In general, differences in representation sizes seem to cause smaller
performance changes than with SAC. For both TD3 and SAC there is a significant amount of noise
to the respective pattern.

The picture is somewhat different for varying amounts of pretraining. There are variations in per-
formance but effects are somewhat inconsistent. For Hopper-v2, the only apparent result is that the
largest amount of pretraining hurts performance in all cases except rwp with SAC. For HalfCheetah-
v2, maximum returns are barely affected, but at least for TD3 a large amount of pretraining seems
to improve sample efficiency. For SAC, there are no clear patterns to what amount of pretraining
best benefits sample efficiency. Lastly, for Humanoid-v2, the largest amount of pretraining seems
to correlate with the largest performance gains. With TD3, specifically, improvements are however
mostly in maximum returns rather than sample efficiency.
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