
Under review as a conference paper at ICLR 2022

CONTRASTIVE LEARNING FOR SOURCE CODE WITH
STRUCTURAL AND FUNCTIONAL PROPERTIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Pre-trained transformer models have recently shown promises for understanding
the source code. Most existing works expect to understand code from the textual
features and limited structural knowledge of code. However, the program func-
tionalities sometimes cannot be fully revealed by the code sequence, even with
structure information. Programs can contain very different tokens and structures
while sharing the same functionality, but changing only one or a few code tokens
can introduce unexpected or malicious program behaviors while preserving the
syntax and most tokens. In this work, we present BOOST, a novel self-supervised
model to focus pre-training based on the characteristics of source code. We first
employ automated, structure-guided code transformation algorithms that generate
(i.) functionally equivalent code that looks drastically different from the original
one, and (ii.) textually and syntactically very similar code that is functionally dis-
tinct from the original. We train our model in a way that brings the functionally
equivalent code closer and distinct code further through a contrastive learning
objective. To encode the structure information, we introduce a new node-type
masked language model objective that helps the model learn about structural con-
text. We pre-train BOOST with a much smaller dataset than the state-of-the-art
models, but our small models can still match or outperform these large models in
code understanding and generation tasks.

1 INTRODUCTION

Large pre-trained models have been applied for source code and reported promising performance for
code understanding and generation tasks. These models have successfully captured the code features
by treating code as a sequence of text (Feng et al., 2020; Buratti et al., 2020; Kanade et al., 2020).
Some works further explored the potentials of leveraging structural characteristics of programming
languages (e.g., abstract syntax tree and code graph) to understand code (Guo et al., 2021; Jiang
et al., 2021).

However, even with a good understanding of code syntax (i.e., tokens and structures), such pre-
trained models can get confused when understanding code functionalities. For instance, two code
fragments having identical functionality (a.k.a. semantic clones) but different syntax may not be
recognized as similar by the existing models. Likewise, these models cannot distinguish between
two code fragments that differ in functionalities but share close syntactic resemblance. For exam-
ple, consider an if statement if(len(buf) < N) checking buffer length before accessing the
buffer. Keeping the rest of the program the same, if we simply replace the token ‘<’ with ‘≤’, the
modification can potentially trigger security vulnerability e.g., buffer overflow bug1. It is challeng-
ing for existing pre-training techniques to capture such subtle differences in the functionalities. In
addition, existing pretraining techniques rely on huge volume of training corpus that is randomly
selected. Given the main motivation of pretraining is to understand program’s functionality (Ah-
mad et al., 2021), such a random selection of training data is not tailored for explicitly learning the
functionalities.

To address these limitations, we present BOOST, a self-supervised pre-trained model that jointly
learns code tokens, structures and functionalities. For understanding code tokens, we use a stan-
dard masked language model (MLM). To learn about the structural code properties, we propose a

1https://en.wikipedia.org/wiki/Buffer overflow
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new pre-training task, node-type masked language model (NT-MLM), which embeds the local tree-
based contexts together with the token-based contexts into each token. Finally, to capture functional
properties, we carefully design the pre-training to recognize the structurally different yet function-
ally identical programs (i.e., positive samples) as similar and to differentiate between structurally
close but functionally different programs (i.e., negative samples). We apply contrastive learning
to bring the functionally similar code embeddings closer in the vector space and vice versa. We
design structure-guided code transformation heuristics to automatically augment each training sam-
ple with one positive and one hard negative contrasts. Since the model explicitly learns to reason
about a code w.r.t. its functional equivalent and different counterparts during pretraining, we expect
BOOST to learn sufficient knowledge for downstream applications from limited amount of data,
consequently saving computing resources.

We pre-train BOOST on a small dataset, with only 865 MB of C code and 992 MB Java code from
100 most popular GitHub repositories, and evaluate the model on code understanding and generation
tasks: vulnerability detection, code clone detection and code summarization. Experiments show that
our small models outperform baselines that are pre-trained on 20× larger datasets. Our analysis
further illustrates that by adding carefully crafted positive and negative code samples and the new
NT-MLM objective, the model better understands code during pre-training. The ablation study also
reveals that pre-training our model with 10× larger datasets further improves the performance up to
8.2%.

In summary, our major contributions are: 1) We design structure-guided code transformation heuris-
tics to automatically augment training data without human labels. We introduce negative code sam-
ples (carefully crafted to inject real-world bugs) for the first time, to better learn code contrasts. 2)
We propose a new pre-training task, NT-MLM, to embed structural context to each token embed-
ding. 3) We develop BOOST, a self-supervised pre-training technique that jointly and efficiently
learns the textual, structural and functional properties of code. Even though pre-trained with signif-
icantly less data, BOOST matches or outperforms the state-of-the-art models on code understanding
and generation tasks.

2 RELATED WORKS

Token-based Pre-training for Code Researchers have been passionate about pre-training trans-
former models (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019) for source code and
reported promising results in code understanding and generation tasks (Feng et al., 2020; Pei et al.,
2020; Kanade et al., 2020; Ahmad et al., 2021; Buratti et al., 2020). Such models are pre-trained
with different token level objectives e.g., masked language model (MLM) (Kanade et al., 2020; Bu-
ratti et al., 2020), next sentence prediction (NSP) (Kanade et al., 2020), replaced token detection
and bi-modal learning between source code and natual languages (Feng et al., 2020). While such
pre-training objectives show promise in several source code understanding downstream tasks, they
all ignore the syntactic and functional features of programming languages, which are crucial for
understanding and reasoning about source code (Zhou et al., 2019; Chakraborty et al., 2021). In this
work, we design BOOST to comprehensively understand code with three pre-training objectives, in
a self-supervised style, to capture the textual, syntactic and functional aspects respectively.

Modeling Code as Structured Data Prior works aimed to understand the strict-defined structure
of source code leveraging AST (Bui et al., 2021b; Alon et al., 2019; Chakraborty et al., 2020), con-
trol/data flow graphs (Hellendoorn et al., 2020; Allamanis et al., 2018; Yin et al., 2019; Dinella
et al., 2020; Zhou et al., 2019; Chakraborty et al., 2021). While these techniques explicitly take the
structure of the source code as input, other approaches aim at learning about source code through
objective functions (Jiang et al., 2021; Guo et al., 2021). BOOST takes the advantage of both tech-
niques. BOOST takes an additional input of AST node types into the model to capture code structure.
BOOST also implicitly learns to reason about the structure by (a.) contrasting between syntactically
and functionally equivalent and contradictory code examples, and (b.) learning to predict the AST
node type of a token with node type masked language model (NT-MLM).

Self-supervised Contrastive Learning Self-supervised contrastive learning, originally proposed
for computer vision (Chen et al., 2020), has gained a lot of interest in language processing (Giorgi
et al., 2021; Wu et al., 2020; Gao et al., 2021). The common practice of self-supervised contrastive
learning is building similar counterparts for the original samples and force the model to recognize
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(a) Original Code (b) Functionally Equivalent Code (c) Bug Injected Code

Figure 1: An example illustrating data augmentation. 1a shows the original code that is adapted from
the CVE-2021-38094 patch. 1b shows functionality equivalent code of 1a where the original code
is transformed by renaming and statements permutation. 1c shows a small variation from 1a where
a potential integer overflow bug is injected.

such similarity from a batch of randomly selected samples. Therefore, how to build similar counter-
parts without human interference will significantly affect the model’s overall quality. Corder (Bui
et al., 2021a) leverages contrastive learning to understand similarity between a code and its function-
ally equivalent code. While Corder approach will help code similarity detection type of applications,
their pretraining does not learn to differentiate syntactically very close, but functionally different
programs. Such differentiation is crucial for models to work well for bug detection (Ding et al.,
2020). ContraCode (Jain et al., 2020) also leverages contrastive learning. However, they generate
negative contrast for a code from unrelated code examples, not from variant of same code. They
also do not encode the structural information into the code as we do. Inspired by the empirical
findings that hard negative image and text samples are beneficial for contrastive learning (Gao et al.,
2021; Robinson et al., 2021), BOOST learns both from equivalent code as positive contrast, and
functionally different yet syntactically close code as hard-negative contrast. BOOST’s heuristics for
generating equivalent code (see Section 3.2) are inspired by source code obfucation Rozière et al.
(2021). We also design heuristics (see section 3.1) to generate hard-negative samples by injecting
small but crucial bugs in the original code.

3 DATA AUGMENTATION WITHOUT HUMAN LABELS

Goal of our pre-training is to identify the similar programs that can be structurally different (positive
sample) and differentiate the buggy programs (negative sample) that share structural resemblances
with the benign ones. Thus, for each original sample, we need a labeled positive and a negative
example. Manually collecting them is expensive, especially at the scale of pre-training. Thus, we
design code transformation heuristics to automatically generate such positive and negative samples,
so that the transformation can be applied to any amount of programs without human efforts.

We first represent a code sample as Abstract Syntax Tree (AST), and build a control/data flow graph
from the AST. The code transformation heuristics are then applied on this graph. For every original
code sample (x), we apply semantic preserving transformation heuristics (§3.2) to generate a positive
sample (x+), and a bug injection heuristics (§3.1) to generate a hard-negative code example (x−).
We design the heuristics in a way that makes x+ be the functional equivalent or semantic clone of
x, and x− be the buggy/noisy version of x. Note that, not all heuristics are applicable to all code
samples; we decide on applicable heuristics based on the flow graph of original code. Figure 1
shows an example of the code transformation.

3.1 BUG INJECTION

For generating hard negative sample (x−) from a given code (x), we define six categories of bug in-
jection heuristics. Here our goal is to maintain maximum token-level similarity to the original code,
so that the model can learn to analyze source code beyond token-level similarity. These heuristics
are inspired by the buggy code patterns from a wide number of Common Weakness Enumeration
(CWE) types (Appendix A.1). While it is very difficult to guarantee that x− will exhibit vulnerabil-
ity or security bug, our heuristics will force x− to exhibit different functionality than x.

Misuse of Data Type. Usage of a wrong data type can trigger several security flaws. For instance,
using a smaller data type (e.g., short) in place of a larger one (e.g., long) may result in overflow
bug (e.g., CVE-2021-38094 (2021)). Such errors are very difficult to track since they are usually
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exhibited in input extremities (i.e., very large or very small values). For languages allowing implicit
type casting, such incorrect type may even cause imprecision, resulting in the unpredictable behavior
of the code. We intentionally change the data types in x with wrong ones to inject potential bugs.

Misuse of Pointer. Incorrect pointer usage is a major security concern. Accessing uninitialized
pointers may lead to unpredictable behavior. A NULL pointer or freed pointer could lead to Null
Pointer Dereferencing vulnerability (e.g., CVE-2021-3449 (2021)). To inject such bugs, we ran-
domly remove the initialization expression during pointer declaration, or set some pointers to NULL.

Change of Conditional Statements. Programmers usually check necessary preconditions using
if-statement before doing any safety critical operation. For instance, before accessing an array
with an index, a programmer may add a condition checking the validity of the index. Lack of such
checks can lead to buffer-overflow bug in code (e.g., CVE-2020-24020 (2020)). We introduce bug
in the code by removing such small if-statement statement. In addition, we also inject bug
by modifying randomly selected arithmetic conditions— replace the comparison operator (<, >, ≤,
≥, ==, ! =) with another operator, to inject potential out-of-bound access, forcing the program to
deviate from its original behavior.

Misuse of Variables. When there are multiple variables present in a code scope (e.g., a if block
surrounding number of statement), incorrect use of variables may lead to erroneous behavior of the
program. Such errors are known as VARMISUSE bug (Allamanis et al., 2018). We induce code with
such bugs by replacing a variable with another. To keep the resultant code compilable, we perform
scope analysis on the AST and replace a variable with another variable reachable in the same scope.

Misuse of Values. Uninitialized variables, or variables with wrong values may alter the program
behavior, may even cause security flaw (e.g., CVE-2019-12730 (2019)). We modify the origi-
nal code by removing the initializer expression of variable. In addition, to induce the code with
divide-by-zero vulnerability, we identify the potential divisor variables from the flow graph
and forcefully assign zero values to them immediately before the division.

Change of Function Calls. We induce bug in the code by randomly changing arguments of func-
tion call. For a randomly selected function call, we add, remove, swap or assign NULL value to
arguments, forcing the code to behave unexpectedly.

3.2 SIMILAR CODE GENERATION

To generate positive samples (x+) from a given code, we use three different heuristics. In this case,
our goal is to generate functionally equivalent code while inducing maximum textual difference.
These heuristics are inspired by code clone literature (Funaro et al., 2010; Sheneamer et al., 2018).

Variable Renaming. Variable renaming is a typical code cloning strategy and frequently happens
during software development (Ain et al., 2019). To generate such a variant of the original code,
we either (a.) rename a variable in the code with a random identifier name or (b.) with an abstract
name such as VAR i (Rozière et al., 2021). While choosing random identifier names, we only
select identifiers that are available in the dataset. For any variable renaming, we ensure that both the
definition of the variable and subsequent usage(s) are renamed. We also ensure that a name is not
used to rename more than one variable.

Function Renaming. We rename function calls with abstract names like FUNC i. By doing this,
we make more tokens different compared with the original code but keep the same syntax and
semantics. We do not rename library calls for the code (e.g., memcpy() in C).

Statement Permutation. Relative order among the program statements that are independent of each
other can be changed without altering the functionality of code. More specifically, we focus on the
variable declaration or initialization statements. We first conduct dependency analysis to identify
a set of local variables that do not depend on other values for initialization. Then we move their
declaration statements to the beginning of the function and permute them.

4 BOOST

This section presents the model architecture, input representation and pre-training tasks. BOOST
uses a 12-layered transformer encoder (Vaswani et al., 2017) model similar to BERT (Devlin et al.,
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Figure 2: An illustration of BOOST pre-training with a minibatch of three. The original code and its
node types will be randomly masked with [MASK], and the final representation of masked tokens
will be used to recover their source tokens and node types. The original code, say x, will also be
transformed to build (x, x+, x−). Then the pair will be fed into the same transformer encoder and
get the embedding of each sequence with [CLS] tokens for contrastive learning.

2019). We feed the model with both source code text and structure (AST) information (§4.1). We
pretrain BOOST using three different pretraining tasks (§4.2). Figure 2 depicts an example workflow
of BOOST. We randomly select tokens in the original sample and mask them and their node types,
and then use the embedding of these masks to predict them back. We further extract the sequence
embeddings within a minibatch and learn to contrast them based on the code functionality.

4.1 INPUT REPRESENTATION

Source Code. Given a program (x), we apply a lexical analyzer to tokenize it based on the lan-
guage grammar and flatten the program as a token sequence (x1x2...xm, where xi is ith token in
the code). We further train a sentencepiece (Kudo & Richardson, 2018) tokenizer based on such
flattened code token sequences with vocabulary size 20,000. We use this tokenizer to divide the
source code tokens into subtokens. We prepend the subtoken sequence with a special token [CLS]
and append with a special token [SEP]. Finally, BOOST converts the pre-processed code sequence
C = {[CLS], c1, c2, ..., ck, [SEP ]} to vectors V src = {vsrc[CLS], v

src
1 , vsrc2 , ..., vsrck , vsrc[SEP ]} with a

token embedding layer.

AST Node Types. For every token in input code, we extract the node type (tt) from the syntax
tree. Since such types are all terminal node types (e.g., keyword, identifier, punctuation), we do not
get enough information about the structure only with these types. In order to add more information
about the tree, for each token, we also extract its parent type (pt). Such parent type provides us
with information about the context of a token. For instance, when parent type of an idenfier is
Function-Declarator, we know that that identifier is a function name. In contrast, when the
identifier’s parent is a Binary Expression, it should a variable. Consequently, we anno-
tate each code sub-token ci with a type token t = tt#pt. It is worth noting that, subtokens coming
from the same original code token will all have the same node type. Therefore, we have the node
type sequence for the code T = {[CLS], t1, t2, ..., tk, [SEP ]}, and BOOST converts it as vectors
V type = {vtype[CLS], v

type
1 , vtype2 , ..., vtypek , vtype[SEP ]} with a type embedding layer. Appendix Table 7

shows an example of code tokens and their node types. BOOST generates token representation vi of
subtoken ci as a sum of token embedding vsrci and type embedding vtypei . Thus, V = V src+V type.

4.2 PRE-TRAINING

Our aim for pretraining BOOST is to train the model to learn robust representation of the source
code. We aim training the BOOST to learn representation of source code based on (a.) textual
context, (b.) syntax tree, and (c.) code functionality. In that spirit, we pretrain BOOST to optimize
on three different objectives, i.e., Masked Language Model (MLM), Node Type - Masked Language
Model (NT-MLM), and Contrastive Learning (CLR).
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For a given code x, we first embed the tokens and node-types to vectors V =
{v[CLS], v1, ..., v[SEP ]}. We optimize MLM loss (LMLM ) (§4.2.1) and NT-MLM loss
(LNT−MLM ) (§4.2.2) based on x. These two loss functions learn about the textual and syntac-
tic context of source code. For every code x in a minibatch of input, we generate positive example
x+ and hard-negative example x− using the heuristics described in Section 3. We optimize CLR
loss ( LCLR) (§4.2.3) on original code and its positive and hard-negative counterparts. The final loss
function to optimize for pretraining BOOST is

L(θ) = LMLM (θ) + LNT−MLM (θ) + LCLR(θ) (1)

4.2.1 MASKED LANGUAGE MODEL

We apply the standard masked language model to the original code (x). Given a source code se-
quence C, we randomly choose 15% of tokens and replace them with a special token [MASK] for
80% of the time and a random token for 10% of the time and leave the rest 10% unchanged. We
record the indices of masked token as locm, replaced token as locr and unchanged tokens as locu
for node-type MLM. We define the union of these indices as M = locm ∪ locr ∪ locu. MLM will
learn to recover the masked source code {ci|i ∈M} given the transformer encoder’s output hi. We
present the loss for MLM as LMLM =

∑
i∈M −logP (ci|hi)

4.2.2 NODE-TYPE MASKED LANGUAGE MODEL

Token-based MLM re-builds the token using its surrounding tokens and successfully encodes the
contextual information into each token representation. Motivated by MLM, we propose the tree-
based context-aware pre-training task, to encode the structural context, such as parent, sibling and
children nodes. As we shown in Figure 2, we flatten the ASTs as sequences and we expect the
flattened trees can well preserve the local structure information (i.e., sub-trees containing terminal
nodes), and existing work (Chakraborty et al., 2020) has empirically shown such potentials. To this
end, we introduce node-type masked language model (NT-MLM). Given the corresponding node
type sequence T of source code C, we mask the node types {tp|p ∈ locm} with the special token
[MASK], and replace the node types {tq|q ∈ locr} with random tokens. Specifically, by doing
this, we make sure that if a source code token is chosen to be masked or replaced, its corresponding
node type will perform the same operation. NT-MLM will learn to recover the masked source
code {ti|i ∈ M} given the transformer encoder’s output hi. We present the loss for NT-MLM as
LNT−MLM =

∑
i∈M −logP (ti|hi)

4.2.3 CONTRASTIVE LEARNING

We adopt contrastive learning to focus on the functional characteristics of code. With the structure-
guided code transformation algorithms in Section 3, we are able to generate a positive sample (x+
in Figure 2) and a hard negative sample (x− in Figure 2) for each program in the dataset. More
specifically, we have a minibatch of N programs, and for each program, we extract the sequence
representation from the transformer outputs h = h[CLS]. We will augment every sequence in the
minibatch with positive and negative samples, and then the minibatch is extended to N pairs of
(h,h+,h−). We refer to the contrastive loss with hard negative samples from Gao et al. (2021) and
we adapt it to our scope as follows. We use cosine similarity as the sim() function and τ is the
temperature parameter to scale the loss, and we use τ = 0.05.

LCLR = − log
esim(h,h+)/τ∑N

n=1

(
esim(h,h+

n )/τ + esim(h,h−
n )/τ

) (2)

5 EXPERIMENTS

In this section, we will explain our experiments settings and report the results. We evaluate our
model on vulnerability detection, code clone detection and code summarization tasks.

5.1 PRE-TRAINING

Data. We collect our pre-training corpus from open-source C and Java projects. We rank Github
repositories by the number of stars and focus on the most popular ones. After filtering out forks from
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existing repositories, we collect the dataset for each language from top-100 repositories. We only
consider the “.java” and “.c” files for Java and C repositories respectively, and we further remove
comments and empty lines from these files. The corresponding datasets for Java and C are of size of
992MB and 865MB, respectively. Our datasets are significantly smaller than existing pre-training
models (Feng et al., 2020; Ahmad et al., 2021; Guo et al., 2021). For example, while CodeBERT
and GraphCodeBERT are trained on 20GB data, we used an order of magnitude less data. Details
of our datasets and the comparison can be found in Appendix Table 8.

Models. To study the impacts of different design choices, we train three variations of BOOST.
(i) MLM+CLR±+NT-MLM is trained by all the three tasks with hard negative samples. (ii)
MLM+CLR±. The input of this model only considers the source code token and ignores the node
type token. This model helps us to understand the impact of objective NT-MLM. (iii) MLM+CLR+.
This variant evaluates the the effectiveness hard negative code samples, by contrasting its perfor-
mance with MLM+CLR±. The detailed model configuration can be found in Appendix A.4

5.2 VULNERABILITY DETECTION

Vulnerability detection is the task to the identify programs with security bugs: given a source code
function, the model will predict 0 (benign) or 1 (vulnerable) as binary classification.

Table 1: Vulnerability Detection Results on REVEAL
Dataset.

Model Prec. (%) Rec. (%) F1 (%)
VulDeePecker 17.7 13.9 15.7
SySeVR 24.5 40.1 30.3
Devign 34.6 26.7 29.9
REVEAL 30.8 60.9 41.3
Transformer 41.6 45.3 43.4
RoBERTa (code) 44.5 39.0 41.6
CodeBERT 44.6 45.8 45.2
GraphCodeBERT 47.9 43.9 45.8
BOOST
MLM+CLR+ 38.6 47.7 42.6
MLM+CLR± 39.4 50.5 44.2
MLM+CLR±+NT-MLM 48.3 44.6 46.4

Dataset and Metrics. We consider
two datasets for this task: RE-
VEAL (Chakraborty et al., 2021) and
CodeXGLUE (Lu et al., 2021; Zhou et al.,
2019). In the real-world scenario, vulner-
able programs are always rare compared
to the normal ones, and Chakraborty et al.
(2021) have shown such imbalanced ratio
will bring challenges for deep-learning
models to pinpoint the bugs. To imitate
the real-world scenario, they collect
REVEAL dataset from Chromium (open-
source project of Chrome) and Linux
Debian Kernel, which keeps the the ratio
of vulnerable to benign programs to be
roughly 1:10. Following Chakraborty
et al. (2021), we consider precision, recall
and F1 as the metrics.

CodeXGLUE presents another dataset of security vulnerabilities. It is a balanced dataset and has
been frequently used by existing transformer-based models to evaluate their tools for the vulnerabil-
ity detection task. To compare with these baselines, we use CodeXGLUE train/valid/test splits for
training and testing. We use accuracy as the metrics.

Table 2: Results on CodeXGLUE dataset
for vulnerability detection

Model Acc (%)
Transformer 62.0
RoBERTa (code) 61.0
CodeBERT 62.1
PLBART 63.2
CBERT 63.6∗

BOOST
MLM+CLR+ 64.4
MLM+CLR± 63.6
MLM+CLR±+NT-MLM 63.8

*We take this result from Buratti et al. (2020). They
did not use CodeXGLUE splits, so the test data can
be different with other baselines.

REVEAL. Table 1 shows the results. We com-
pare with four deep-learning-based vulnerability detec-
tion tools. VulDeePecker (Li et al., 2018b) and Sy-
SeVR (Li et al., 2018a) apply program slices and sequence-
based RNN/CNN to learn the vulnerable patterns. De-
vign (Zhou et al., 2019) uses graph-based neural net-
works (GNN) to learn the data dependencies of pro-
gram. REVEAL (Chakraborty et al., 2021) applies GNN
+ SMOTE (Chawla et al., 2002) + triplet loss during train-
ing to handle the imbalanced distribution. We also consider
pre-trained RoBERTa, CodeBERT and GraphCodeBERT,
and a 12-Layer Transformer model trained from scratch.

In our case, the best BOOST variation with contrastive
learning and NT-MLM objective outperforms all the base-
lines, including the graph-based approaches and models
pre-trained with larger datasets. This empirically proves
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that BOOST can efficiently understand the code semantics and data dependencies from limited
amount of data. Such understanding help identification of the vulnerable patterns. We also no-
tice that hard negative samples (i.e., buggy code contrasts) helps BOOST improve the performance.
The reason is that REVEAL contains thousands of (buggy version, fixed version) pairs for the same
function. Two functions in such a pair are different by only one or a few tokens. Such real-world
challenges align well with our automatically generated buggy code, and pre-training with these ex-
amples teaches the model better distinguish the buggy code from the benign ones. We provide an
example in Appendix Figure 4 to illustrate this situation.

CodeXGLUE. We consider four pre-trained models: RoBERTa (code), CodeBERT, PLBART and
CBERT. The first three are pre-trained on much larger (up to 100 times) datasets than ours. How-
ever, even trained with small dataset, all three variations of BOOST again outperforms the larger
models. Unlike REVEAL, CodeXGLUE does not have those challenging pairs of functions’ buggy
and patched version; thus the hard negative contrast in BOOST does not help the model much.

5.3 CLONE DETECTION

Table 3: Clone detection results on POJ104 and Big-
CloneBench

Model POJ104 BigCloneBench

MAP@R Prec.(%) Rec.(%)
Transformer 62.11 - -
MISIM-GNN 82.45 - -
RoBERTa (code) 76.67 - -
CodeBERT 82.67 94.7 93.4∗

GraphCodeBERT - 94.8 95.2∗

BOOST
MLM+CLR+ 82.44 93.9 93.7
MLM+CLR± 82.73 95.1 93.3
MLM+CLR±+NT-MLM 82.77 94.2 94.6

*The authors of both works fixed bugs in their evaluation tool and updated the
results in their Github repositories. We take their latest results and use their latest
evaluation tool for fair comparisons.

Clone detection aims to identify the
programs with similar functionality.
It also can help detecting security
vulnerabilities—given a known vulner-
ability, we can scan the code base with
clone detector and check for similar
code snippets.

Dataset and Metrics. We consider
POJ-104 (Mou et al., 2016) and Big-
CloneBench (Svajlenko et al., 2014) as
the evaluation datasets. We again strictly
follow the CodeXGLUE train/dev/test
splits for experiments. We use MAP@R
as the metric for POJ-104 and pre-
cision/recall/f1 as the metric for Big-
CloneBench.

POJ-104. We consider three pre-trained models, one graph-based model (Ye et al., 2020) and one
12-layer Transformer model trained from scratch as baselines. From Table 3, all three variations
of BOOST can outperform RoBERTa that only considers MLM for pre-traing. This well explains
the effectiveness of our multi-task pre-training. Further, with hard negative contrast (HN) and NT-
MLM, BOOST outperforms all baselines including CodeBERT, which is pre-trained on much larger
datasets . This highlights the significance of learning the code contrasts together with syntactical
information to better capture the functional similarities of programs.

Table 4: Result of code summariza-
tion

Model BLEU-4
Seq2Seq 15.09
Transformer 16.26
Roberta (code) 16.47
CodeBERT 17.65
BOOST
MLM+CLR+ 17.89
MLM+CLR± 17.76
MLM+CLR±+NT-MLM 17.78

BigCloneBench. Our best model achieves slightly better
precision than the baselines indicating that our designs with
contrastive learning and structure information can compen-
sate the loss brought by less data. However, our recall is
slightly worse than GraphCodeBERT, since they are pre-
trained on large datasets with code graph. We conclude that
enlarging our Java pre-training dataset is necessary for code
clone detection and we regard this as future work.

5.4 CODE SUMMARIZATION

Besides the sequence understanding tasks, we also hope to
see the potentials of our model in sequence generation task,
so we choose code summarization. For this task, the model
will take the source code as input and generate the natural
language description in a auto-regressive style with a decoder. Note that our pre-training do not
involve any decoder and we initialize the decoder from scratch for this fine-tuning task.

8
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Dataset and Metric. We consider the CodeXGLUE splits of CodeSearchNet (Husain et al., 2019)
for this task. Since our model is trained with Java and C, we will only conduct experiments on the
Java code summarization data. We use smoothed-BLEU-4 as the metric.

Results. We consider the baselines reported by CodeXGLUE: Seq2seq, Transformer, RoBERTa
and CodeBERT. Table 4 shows that BOOST is outperforming all the baselines. Contrastive learning
objective contributes the most to such an improvement since it helps the model learn the code func-
tionality and consequently generate better summarization. From the result of BOOST variations, we
conclude that the buggy contrast and tree structure have limited advantages for code summariza-
tion (Ahmad et al., 2020).

6 ANALYSIS

Figure 3: The evaluation perplexity of last
five epochs for different BOOST variations.

Impacts of Augmented Samples and NT-MLM. Lan-
guage model perplexity is an important metric to evaluate
the quality of pre-trained embeddings. To better under-
stand how data augmentation and NT-MLM objective af-
fect the pre-training quality, we keep evaluating the per-
plexity of BOOST’s three variations (Section 5.1) on the
held-out data during pre-training.

We plot the last five epochs in Figure 3. As we explained
in Figure 2, we only apply MLM to the original sample
x regardless of the existence of (x+, x−), so it is fair to
compare among three models. We can see that the model
with hard negative samples keeps having lower perplexity
than MLM+CLR+model, and the model with node type
information has even lower perplexity than both mod-
els that only consider source code tokens. This indicates
that even if the models always come across the same se-
quences for MLM, learning the contrast of the hard nega-
tive pairs with tree-based context can further help the model understand the sequence.

Table 5: Results for the best baseline, small
BOOST and medium BOOST for each downstream
task. POJ-104 is for code clone task; VD-CXG is
for CodeXGLUE vulnerability detection; VD-RV
is for REVEAL vulnearbility detection

Model POJ-104 VD-CXG VD-RV
(MAP@R) (Acc) (F1)

BOOSTsmall 82.8 63.8 46.4
BOOSTmedium 83.5 64.6 50.2
Baselinelarge 82.7 63.6 45.8

Medium Pre-trained Model As shown in Sec-
tion 5, BOOST trained on a small dataset achieves
comparable or even better performance than mod-
els pre-trained on large datasets in code under-
standing and generation tasks (Let’s call this ver-
sion BOOSTsmall). We further explore the bene-
fits of pre-training using larger data. We pre-train
a MEDIUM model, BOOSTmedium, on our extended
datasets with top-10,000 C-language Github repos-
itories (13G). We evaluate BOOSTmedium on C-
language tasks. The results are shown in Table 5.
Increasing the pre-training dataset improves the per-

formance of downstream tasks. Note that our medium dataset is still smaller than the large dataset
of the baseline models (13G vs. 20G).

7 CONCLUSION

To sufficiently learn the code functionalities with unlabeled data, we first propose structure-guided
code transformation algorithms to generate semantically equivalent code and inject bugs to programs
without human efforts. Then we present BOOST, a pre-trained model that learns to identify code
similarity and separate buggy programs from benign ones with the automatically generated code
contrasts. We also introduce a new pre-training objective, NT-MLM, to encode the structural context
to each token embedding. Our evaluation on code understanding and generation tasks reveals that
BOOST pretrained with smaller dataset can still match the large models’ performance and thus prove
the effectiveness of our design.
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A APPENDIX

A.1 BUG INJECTION HEURISTICS AND COMMON WEAKNESS ENUMERATION TYPES

Our automated bug injection heuristics are motivated by the real-world security bugs that are always
small but hazardous. We empirically conclude the frequently happened vulnerable patterns based on
the concrete CWE types. Table 6 shows that each of our operation is relating to several CWE types.
We inject all these security issues automatically and ask model to distinguish them with the benign
samples.

Table 6: Common Weakness Enumeration (CWE) types covered by our bug injection heuristic

Operation Potential CWE types

Misuse of Data Type

CWE-190: Integer overflow
CWE-191: Integer Underflow
CWE-680: Integer Overflow to Buffer Overflow
CWE-686: Function Call With Incorrect Argument Type
CWE-704: Incorrect Type Conversion or Cast
CWE-843: Access of Resource Using Incompatible Type

Misuse of Pointer
CWE-476: NULL Pointer Dereference
CWE-824: Access of Uninitialized Pointer
CWE-825: Expired Pointer Dereference

Change of Conditional Statements

CWE-120: Buffer Overflow
CWE-121: Stack-based Buffer overflow
CWE-122: Heap-based Buffer overflow
CWE-124: Buffer Underflow
CWE-125: Out-of-bounds Read
CWE-126: Buffer Over-read
CWE-129: Improper Validation of Array Index
CWE-787: Out-of-bounds Write
CWE-788: Access of Memory Location After End of Buffer
CWE-823: Use of Out-of-range Pointer Offset

Misuse of Values

CWE-369: Divide By Zero
CWE-456: Missing Initialization of a Variable
CWE-457: Use of Uninitialized Variable
CWE-908: Use of Uninitialized Resource

Change of Function Calls

CWE-683: Function Call With Incorrect Order of Arguments
CWE-685: Function Call With Incorrect Number of Arguments
CWE-686: Function Call With Incorrect Argument Type
CWE-687: Function Call With Incorrectly Specified Argument Value
CWE-688: Function Call With Incorrect Variable or Reference

A.2 NODE TYPE DETAILS

We parse the source code into ASTs and extract the node type and parent node type for each token.
Table 7 shows an example after parsing. We can see that, with the parent node type, each token can
be well embedded with its local structure contexts. Considering two tokens that are distant from
each other: if and else. With only node types, we just know these two tokens are keywords, but
with parent node type, we can easily know that they are from the same if-statement and they
are siblings in the AST.
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Table 7: Examples for tokens and their AST node types

token node type parent node type token node type parent node type
int type func definition ) punctuation parenthesized expr
foo identifier func declarator return keyword return stmt
( punctuation param list ( punctuation parenthesized expr
int type parameter declaration 1 number literal parenthesized expr
bar identifier parameter declaration ) punctuation parenthesized expr
) punctuation parameter list ; punctuation return stmt
{ punctuation compount stmt else keyword if stmt
if keyword if stmt return keyword return stmt
( punctuation parenthesized expr ( punctuation parenthesized expr
bar identifier binary expr 0 number literal parenthesized expr
< operator binary expr ) number literal parenthesized expr
5 number literal binary expr ; punctuation return stmt

} punctuation compount stmt

A.3 DATASET

Pre-training We collect our dataset from C and Java Github repositories. Our main dataset is the
combination of Java SMALL and C SMALL. From Table 8, we can see that our dataset is significantly
smaller than the existing pre-trained models. For an ablation study (§ 6) with enlarged dataset, we
collect a MEDIUM dataset of C language. We have seen the improvement using such larger dataset,
but even MEDIUM dataset is still much smaller than other datasets.

Table 8: Comparison of pre-training dataset size between ours and other related work

Dataset Instance Count Total Size
BOOST
Java SMALL 187 K 992 MB
C SMALL 64 K 865 MB
C MEDIUM 860 K 12 GB
CodeBERT 8.5 M 20 GB
GraphCodeBERT 2.3 M 20 GB
CuBERT 7.4 M -
DOBF - 45 GB
PLBART - 576 GB

Datasets for downstream tasks We provide dataset details of our downstream tasks in Table 9.
Noted that for POJ-104 (Mou et al., 2016), Table 9 only shows the number of code samples, and
we follow the design of CodeXGLUE that build positive and negative pairs during the minibatch
generation. The amount of pairs for training is much larger than the number of samples.

Table 9: Details of downstream tasks datasets.

Task Dataset Language Train Valid Test

Vulnerability Detection Chakraborty et al. (2021) C/C++ 15,867 2,268 4,535
Zhou et al. (2019) C/C++ 21,854 2,732 2,732

Clone Detection Mou et al. (2016) C/C++ 32,000 8,000 12,000
Svajlenko et al. (2014) Java 901,028 415,416 415,416

Code Summarization Husain et al. (2019) Java 164,923 5,183 10,955

A.4 CONFIGURATION

BOOST is built based on a stack of 12 layers transformer encoder with 12 attention heads and 768
hidden sizes. Longer sequences are disproportionately expensive so we follow the original BERT
design by pre-training the model with short sequence length for first 70% steps and long sequence
length for the rest 30% steps to learn the positional embeddings. BOOST is trained with Java SMALL
and C SMALL for 24 hours in total with two 32GB NVIDIA Tesla V100 GPUs, using 128 sequences
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× 256 tokens and 64 sequences × 512 tokens. BOOST is also trained with C MEDIUM for 3 days,
using 1024 sequences × 256 tokens and 512 sequences × 512 tokens. We use the Adam optimizer
and 1e-4 as the pre-training learning rate. For fine-tuning tasks, we use batch size of 8 and the
learning of 8e-6. We train the model with train split and evaluate the model during the training using
validation split. We pick the model with best validation performance for testing.

A.5 CASE STUDY

We studied the model performance on REVEAL dataset for vulnerability detection. Figure 4 shows
two samples inside REVEAL. We can recognize that they are from the same program. We further
checked the details of these two example and we found the code on the left is a buggy version, and
it is fixed by adding an argument of value 0 to the function call. This real-world situation actually
matches our ”Change of Function Calls” (§ 3.1) bug injection operation. In the REVEAL dataset,
the patched code is in the training corpus while the buggy one is in the test split. Interestingly, during
the inference, BOOST MLM+CLR HN can correctly predict the buggyiess while MLM+CLR fails.
This empirically prove our bug injected samples can help the model identify small but siginicant
real-world vulnerabilities.

... 
if (( ret = ff_get_buffer ( avctx, frame )) < 0 ) { 
    av_log ( avctx, AV_LOG_ERROR, STR ) ; 
    return ret ; 
} 
... 

Buggy Code

... 
if (( ret = ff_get_buffer ( avctx, frame , 0 )) < 0 ) { 
    av_log ( avctx, AV_LOG_ERROR, STR ) ; 
    return ret ; 
} 
... 

Patched Code

Figure 4: An example in REVEAL dataset. The patched code happens to be in the train split and
the buggy code is in the test split. During inference, BOOST MLM+CLR HN model can correctly
predict the buggy code as vulnerable, while MLM CLR predicts it as benign.
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