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Abstract

This paper investigates the effectiveness of training-free structured pruning techniques
for Large Language Models (LLMs), with a particular focus on depth and width pruning
strategies. Through an extensive empirical evaluation across a diverse range of tasks, datasets
and modalities, we reveal critical limitations in current pruning methods. While some tasks
exhibit minimal performance degradation, others face significant deterioration, even at low
pruning rates, contradicting prior findings that often rely on selective benchmarks. Our
analysis also finds that depth pruning, despite its simplicity, usually outperforms the more
granular width pruning approaches in maintaining downstream task performance. Our
findings highlight that existing evaluations of pruned LLMs often overstate their effectiveness
due to incomplete or limited evaluation tasks, necessitating a critical reassessment of the
true value of pruning and emphasizing the need to explore more robust pruning algorithms.

1 Introduction

Due to their large size and complexity, Large Language Models (LLMs) face several challenges in deployment
for real-world applications (Thompson et al., 2022). This issue has sparked significant research focused on
creating lightweight LLMs (Mehta et al., 2024; Thawakar et al., 2024; Abdin et al., 2024) or compressing
existing models (Gu et al., 2024; Sreenivas et al., 2024) to enable efficient use in resource-constrained settings,
such as mobile devices, edge servers, and embedded systems. The primary goal of these efforts is to balance
model efficiency with minimal performance degradation, ensuring that LLMs remain functional across various
applications while reducing their resource demands.

To achieve this balance, multiple compression techniques such as pruning (Ma et al., 2023; An et al., 2023a),
quantization (Lin et al., 2024a; Frantar et al., 2023), matrix decomposition (Lin et al., 2024b; Chavan et al.,
2024a;b) and knowledge distillation (Sanh et al., 2020; Jiao et al., 2020; Gu et al., 2024) have been explored
that modify the structure and operation of LLMs to reduce their size and computation needs (Chavan
et al., 2024c). Structured pruning (Molchanov et al., 2016), in particular, has emerged as a key method for
compressing LLMs by selectively removing model components—such as layers or neurons—without extensive
retraining. Unlike unstructured pruning (Han et al., 2015a), which targets individual weights, structured
pruning offers the advantage of removing entire groups of parameters, thus yielding greater efficiency gains
and simplifying deployment.

However, traditional structured pruning methods often rely on retraining or fine-tuning to recover any
performance loss, which can be computationally costly and time-consuming, especially for very large models
(Frankle et al., 2020). In response to these limitations, there is a growing interest in training-free structured
pruning techniques, which avoid the need for additional retraining (Ma et al., 2023; An et al., 2023a;
?; Men et al., 2024). Despite their potential to enable faster deployment, training-free methods remain
underexplored, particularly in the context of how they impact model performance and generalization across
various downstream tasks.

In this study, we rigorously investigate training-free structured pruning techniques in the context of LLMs,
examining the performance implications of both depth pruning (removing entire layers) and width pruning
(removing neurons or channels) across diverse tasks. Our contributions are threefold:
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• Comprehensive Evaluation of Training-Free Structured Pruning of LLMs: We present an extensive
empirical analysis of recent training-free structured pruning methods applied to LLMs, extending
the evaluation to additional tasks and datasets beyond those previously reported. This broader
assessment allows us to identify patterns and limitations in pruning that were not apparent in prior
studies.

• Critical Benchmarking of Pruning Effects: Our findings reveal that even at minimal pruning rates,
significant performance degradation can occur on critical benchmarking tasks, which contrasts with
prior work that often reports results on selectively curated benchmarks. By evaluating the impact
of pruning across a representative set of standard benchmarks, we highlight the potential risks and
limitations associated with training-free structured pruning, underscoring the need for caution when
applying these methods broadly.

• Insights into various Pruning Strategies: We provide novel insights into the prunability of LLMs
across both depth and width pruning regimes. Our analysis reveals distinct pruning dynamics
across model sizes, challenging conventional assumptions by showing that depth pruning, despite its
simplicity, can sometimes outperform width pruning in maintaining task-specific performance. We
also explore the bias and fairness implications of pruning, highlighting ethical considerations that
have yet to be fully addressed in existing research.

Our findings raise important questions about the broader applicability of current pruning techniques and
contributes to the growing understanding of efficient LLM compression, providing actionable insights for
researchers and practitioners focused on deploying these models across resource-limited environments.

2 Related Work

Model Compression Techniques for LLMs have played an important role in enabling the deployment of LLMs
on resource constrained hardware. Traditional methods, such as quantization (Han et al., 2015b), reduce the
precision of weights and activations thereby reducing the memory and computational requirements (Lin et al.,
2024a; Frantar et al., 2023). Matrix decomposition techniques, such as low-rank factorizations, approximate
large weight matrices with smaller, more efficient representations, and have been utilized in LLMs to reduce
the number of parameters while maintaining model quality (Chavan et al., 2024a;b). Knowledge distillation,
aims at transferring knowledge from a larger teacher model to a smaller student model, allowing the creation
of smaller networks which inherently use fewer resources (Gu et al., 2024; Sreenivas et al., 2024). While these
approaches have demonstrated effectiveness in reducing the size and complexity of LLMs, they often require
additional training or fine-tuning steps, which can be computationally costly, especially for very large models.

Structured pruning has gained prominence as a particularly effective technique for reducing model size and
improving practical efficiency (Molchanov et al., 2016). By removing entire structures—such as channels, or
layers—structured pruning maintains a more interpretable and hardware-friendly model structure, unlike
unstructured pruning, which involves removing individual weights and can lead to sparse matrices that are
challenging to deploy (Li et al., 2017). Studies have shown that structured pruning can effectively compress
models without significant performance loss, especially when combined with fine-tuning (He et al., 2017a).

Training-Free Structured Pruning: While structured pruning methods have shown success, they often rely on
retraining to recover lost performance, a process that is resource-intensive for large models. To mitigate this,
recent research has explored training-free structured pruning techniques that aim to simplify models without
requiring additional training steps. Approaches in this domain include pruning based on weight magnitudes,
neuron activations, or structural properties of the model (Ma et al., 2023; Dery et al., 2024; Li et al., 2024;
An et al., 2023a).

Bias and Fairness in Pruned Models: The impact of model pruning on bias and fairness has become an area
of growing concern, especially as LLMs are increasingly applied to sensitive domains. Studies have shown that
pruning can unintentionally affect a model’s learned representations, potentially amplifying biases or reducing
performance on underrepresented groups (Hooker et al., 2020; Ramesh et al., 2023). Fairness-aware pruning
strategies have been proposed to mitigate these effects, typically by incorporating fairness constraints during
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the pruning process (Dai et al., 2023; Lin et al., 2022). However, little work has examined these impacts
specifically for pruning, leaving an important gap in the literature. In our study, we extend the analysis of
training-free pruning techniques to include the effects on bias and fairness, providing novel insights into the
ethical implications of model compression.

3 Background

This study investigates the impact of training-free structured pruning on large language models (LLMs). We
evaluate two main pruning strategies—depth and width pruning—across a variety of LLMs and downstream
tasks. Our analysis spans both standard and lesser-explored tasks, emphasizing the importance of comprehen-
sive task coverage when assessing pruning effects. Additionally, we examine the influence of pruning on model
fairness and bias, providing a holistic view of its implications on model performance, resource utilization, and
equitable treatment across demographic groups.

3.1 Training-Free Structured Pruning

Structured pruning has emerged as an effective technique for compressing deep neural networks by selectively
removing parts of the model in an interpretable manner. Unlike unstructured pruning, which removes
individual weights and can lead to sparse connections, structured pruning targets groups of parameters, such as
channels, or entire layers. This approach simplifies the final model structure, making it more compatible with
hardware accelerators and easier to deploy in real-world scenarios (Liu et al., 2018; He et al., 2017b). However,
structured pruning presents several challenges, particularly structured pruning is followed by resource intensive
fine-tuning in order to recover lost performance. This is especially problematic in the case of billion-scale LLMs
where retraining based on full-model gradients is limited to large enterprises (Liu et al., 2018). Training-free
structured pruning bypasses the need for retraining by directly pruning the model without any subsequent
optimization steps, making it highly suitable for scenarios with limited computational resources. They rely
on intrinsic properties of the model, such as weight magnitudes and activation fluctuations, to identify and
remove less critical components, often substituting the pruned components with additional bias terms (An
et al., 2023a). Training-free structured pruning is often complemented with parameter-efficient fine-tuning
(PEFT) techniques (Hu et al., 2021; Lian et al., 2022), however the improvements with PEFT are inferior
as compared to full-finetuning Ramesh et al. (2023). Nevertheless, training free structured pruning reduces
memory and computational costs, enabling deployment on resource-constrained devices or environments
where retraining infrastructure may not be available.

However, training-free pruning comes with significant trade-offs. Because these methods do not allow the
model to adapt post-pruning, they can lead to more pronounced performance degradation, especially for
complex tasks that rely on nuanced representations. Without the corrective phase of fine-tuning, training-free
pruned models may experience reduced accuracy, affecting their reliability across diverse applications. Unlike
smaller models, LLMs have extensive feature hierarchies and complex dependencies that may be disrupted by
pruning, particularly without the restorative benefits of fine-tuning. As such, while training-free pruning
provides efficiency, it may compromise task-specific performance, highlighting a need to balance compression
gains with acceptable accuracy loss.

3.2 Pruning Techniques

Our chosen pruning approaches encompass both depth and width pruning techniques independently, targeting
different aspects of model structure. Depth pruning involves the selective removal of entire model blocks,
guided by an activation similarity based importance criterion (Men et al., 2024; Gromov et al., 2024; Jha et al.,
2024; Liu et al., 2023), whereas width pruning leverages activation fluctuations to evaluate and adaptively
compress individual weight columns within model layers (An et al., 2023a; Ma et al., 2023). More details on
selected pruning methods are provided in Appendix.

Depth Pruning: We adopt activation similarity based depth pruning method (Men et al., 2024; Gromov
et al., 2024). ShortGPT calculates the cosine similarity between the input and output embeddings of the ith
block, using cosine similarity as a global pruning criterion across model layers. The rationale behind this
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approach is that if a block’s input and output features show minimal difference—as indicated by high cosine
similarity—then that block contributes less significantly, relative to other blocks with lower cosine similarity.

Width Pruning: Width pruning involves selectively pruning heads and channels from the attention and
MLP layers respectively within each module. In the attention layer, pruning is performed at the granularity of
heads, meaning that entire Key-Value (K-V) heads are removed. As a result, any associated Query heads are
also pruned, effectively reducing the dimensionality of the attention mechanism. This is especially relevant in
models which employ group-query attention wherein multiple query heads are attended by the same key-value
heads thus leading to the pruning of multiple query heads on the removal of a single key-value head. In the
case of MLP layers, traditional channel-pruning is adopted for the fully connected layers.

We adopt activation fluctuation based FLAP (An et al., 2023a) which is an approximate metric for structured
recoverability, referred to as the fluctuation metric. This metric is calculated by taking the sample variance
of each input feature and weighting it by the squared norm of the corresponding column in the weight matrix.
This approach allows us to estimate the recoverability of specific features in a structured manner.

The chosen pruning methods, ShortGPT for depth pruning and FLAP for width pruning, fairly represent
the state-of-the-art approaches in the literature for training-free structured pruning. ShortGPT captures
the essence of depth pruning by leveraging a straightforward yet effective activation similarity metric, which
aligns with the broader class of techniques that aim to identify and eliminate redundant layers based on their
contribution to the overall model representation. Similarly, FLAP embodies the principles of width pruning
by assessing the structured recoverability of channels and heads, which is consistent with other methods
that focus on pruning individual components within a layer. To ensure that FLAP adequately represents
the state-of-the-art in width pruning, we compare it against LLM-Pruner (Ma et al., 2023), a competitive
method in this domain, across our benchmark suite. The results, presented in the Appendix 6.5, consistently
demonstrate the superiority of FLAP over LLM-Pruner, thereby supporting our choice of width pruning
technique. By selecting these representative methods, we ensure that our evaluation encompasses the primary
paradigms of structured pruning while remaining computationally feasible for large-scale models.

3.3 Extended Evaluation

We present an extensive empirical analysis across multiple LLM application areas. Specifically, we focus on
the primary common sense reasoning tasks reported in existing works but we extend them to more niche and
practical application areas such as mathematics and coding ability. Additionally, we also focus on instruction
following ability of pruned LLMs and the influence of in-context prompts in model predictions. We also
investigate the impact of pruning on multimodal understanding of LLMs. Finally, we present a thorough
investigation on the bias and fairness of pruned LLMs. We compare all the above mentioned tasks across
depth and width pruning regimes and multiple compression ratios. This extended evaluation provides insights
into real world performance of pruned LLMs. Finally, we provide insights on the appropriate task-specific
pruning methodology.

4 Empirical Analysis

4.1 Choice of Datasets

This section outlines datasets for evaluating pruned LLMs across reasoning, language modeling, code
generation, instruction following, fairness, and multimodal tasks. Key benchmarks include ARC, GSM8k,
MMLU, Wikitext-2, HumanEval, IFEVAL, StereoSet, POPE, TextVQA, and MMMU. These datasets assess
linguistic, logical, and multimodal capabilities comprehensively. The details of each of the mentioned tasks
are provided in the Appendix.

4.2 Choice of LLMs

We selected a diverse range of large language models for pruning and evaluation on reasoning-based tasks,
including LLaMA-3-8B (Dubey et al., 2024), Gemma-2-9B, Gemma-2-2B (Team et al., 2024), and Qwen-2-
1.5B (Yang et al., 2024). These models were chosen for their mass adoption in real-world applications and
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parameter scale where pruning matter much more as compared to >50B parameters. By applying pruning
techniques, we assess each model’s efficiency in terms of throughput and their performance on a diverse
selection of tasks. For tasks requiring instruction following, we use instruction-tuned versions of LLaMA-3-8B
and Gemma-2-9B. These instruction-tuned models are optimized to better understand and follow task-specific
instructions.

4.3 Incompleteness of current evaluation schemes for LLM pruning
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(a) Width Pruned Gemma-2-9B
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(b) Width Pruned LLaMA-3-8B
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(c) Depth Pruned Gemma-2-9B
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(d) Depth Pruned LLaMA-3-8B

Figure 1: Evaluations on Extended Benchmarks for Width and Depth Pruned Models : The
figure compares the performance of width-pruned (1a, 1b) and depth-pruned (1c, 1d) versions
of Gemma-2-9B and LLaMA-3-8B across varying compression ratios (10%, 20%, and 30%) on
extended reasoning benchmarks: BoolQ, WinoGrande, ARC-Easy, ARC-Challenge, MMLU, and
GSM8K. Baseline performances and random thresholds are included for reference.

This section highlights the impact of depth and width pruning on numerous downstream tasks across varying
budgets. BoolQ, ARC-Challenge, ARC-Easy, and WinoGrande are widely recognized common sense reasoning
benchmarks, frequently reported in the majority of pruning literature as performance metrics. In addition to
these, we propose evaluating models on MMLU and GSM8K, which are knowledge-based reasoning tasks.
MMLU serves as a benchmark for assessing the knowledge acquired by language models during pre-training,
covering 57 categories and making it a knowledge-intensive task. In contrast, GSM8K is designed to evaluate
high-school-level mathematical reasoning skills. While foundational models frequently report performance on
these benchmarks, we argue that it is equally important to include these evaluations in pruning literature.
Doing so provides a more comprehensive understanding of the capabilities of compressed models. Papers
introducing foundational models Dubey et al. (2024); Yang et al. (2024) typically present a comprehensive
suite of benchmarks to demonstrate the model’s versatility across diverse tasks. In contrast, pruning literature
often focuses on a limited set of simpler benchmarks, primarily in the domain of common sense reasoning. In
rare instances, datasets like MMLU are included, highlighting a narrower scope of evaluation. Our findings in
Figure 1 support Siddiqui et al. (2024), which shows significant performance drops in depth-pruned models
on GSM8K even at low compression ratios. Extending this trend, we find that width-pruned models exhibit
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a similar decline. The complete evaluations of Qwen-2-1.5B and Gemma-2-2B across varying budgets using
both depth and width pruning are provided in the Appendix.

4.4 Evaluation beyond the norm

Coding Ability

We evaluate the code completion ability using the HumanEval dataset, focusing on functional correctness. For
each sample in the test set, we generate five completions with a temperature setting of 0.8 and compute the
pass@1 metric across the entire dataset to assess performance. We conduct evaluations on the Gemma-2-9B
and LLaMA-3-8B models, compressed by 10% and 20% using both depth and width pruning methods. Our
findings as shown in Figure 2 indicate that pruning has a profoundly negative impact on the code completion
abilities of models. Regardless of the pruning method employed, even a modest compression ratio of 10%
results in a significant decline in pass@1 performance. This pattern is consistent across both the Gemma-2-9B
and LLaMA-3-8B model series. Furthermore, we observe that both depth and width pruning methods have a
similarly detrimental effect on the models’ code completion capabilities. At higher compression ratios, the
models lose their ability to maintain proper syntax and begin generating outputs with random, repetitive
tokens, further highlighting the adverse effects of aggressive pruning on their functionality. These findings
underscore that existing evaluations of pruned LLMs often overstate their effectiveness due to incomplete or
limited evaluation tasks, necessitating a critical reassessment of the true value of pruning.
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(a) Pass@1 performance of Depth Pruned Models
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(b) Pass@1 performance of Width Pruned Models

Figure 2: The figure illustrates the Pass@1 performance of depth-pruned 2a and width-pruned 2b
versions of LLaMA-3-8B and Gemma-2-9B models on Human-Eval at different compression ratios
(10% and 20%), alongside their respective baselines.

Instruction Following

The evaluations in Table 1 reveals that the performance degradation becomes significant as compression ratios
increase, with width pruning generally leading to sharper declines compared to depth pruning. While depth
pruning retains better performance at lower compression levels, the gap narrows at higher ratios, where both
strategies exhibit severe losses. This benchmark is often overlooked in pruning literature, as our evaluations
reveal a far greater loss in performance compared to the more commonly reported metrics.

4.5 Depth vs. Width pruning of LLMs

We now investigate how depth and width pruning affects model performance, focusing on their unique impact
across various tasks. Based on our evaluations presented in Figure 3 we find that depth pruning performs
better overall compared to width pruning. Depth pruning, while reducing the number of layers, appears to
preserve the model’s ability to extract meaningful hierarchical features, which are crucial for tasks involving
logical reasoning and factual knowledge. ARC-Easy, ARC-Challenge and BoolQ consistently benefit from
depth pruning as compared to width pruning while on the other hand MMLU and GSM8k show mixed
results depending on the model and compression level. When we run standard evaluations on Llama-3-70B
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Table 1: IFEVAL scores for LLaMA-3-8B and Gemma-2-2B Instruction Tuned Model computed
across varying budgets (10%, 20% and 30% specifically for LLaMA-3-8B)

Model Strategy Compression (%) Score

LLaMA-3-8B

Baseline - 0.410

Depth
10 0.356
20 0.216
30 0.130

Width
10 0.301
20 0.258
30 0.110

Gemma-2-2B

Baseline - 0.321

Depth 10 0.255
20 0.144

Width 10 0.125
20 0.097

Table 2: Depth and width pruned LLaMA-3-70B results on 20% and 40% compression on reasoning
and Wikitext

Method Compression (%) ARC_E ARC_C Winogrande WikiText BoolQ MMLU
Baseline 0 86.91 64.33 80.58 2.91 85.17 75.02

Depth 20 80.85 57.25 79.40 9.02 85.56 74.65
40 58.04 42.15 76.08 >1e6 66.85 68.07

Width 20 32.42 42.13 65.35 2.9e5 84.34 62.99
40 31.65 29.60 65.75 >1e6 46.36 72.08

for reasoning tasks, we observe a similar trend where depth pruned models consistently outperform those
that are width pruned on average. This observation, as detailed in Table 2, reinforces our claim that depth
pruning better preserves the model’s critical reasoning capabilities while achieving compression.. We find that
the Gemma-2 series of models is particularly susceptible to significant performance deterioration introduced
by width pruning. As observed in our evaluations in Figure 3a and Figure 3c, the degradation becomes more
pronounced as the pruning ratio increases, with tasks like ARC-Easy, ARC-Challenge, and MMLU showing
clear advantages for depth pruning over width pruning.

However, we also find that perplexity reflects higher degradation upon depth pruning compared to width
pruning as shown in Figure 4. This trend indicates that depth pruning, while preserving performance
on certain reasoning tasks, significantly disrupts the model’s ability to generalize across broader language
modeling objectives. At higher pruning ratios, the difference in perplexity between depth-pruned and width-
pruned models becomes substantial, often reaching an order or even multiple orders of magnitude higher.
This highlights a critical trade-off: while depth pruning retains task-specific performance more effectively,
it imposes a severe penalty on perplexity, suggesting a greater loss of overall language modeling capacity
compared to width pruning.

4.6 Throughput Measurement of Depth and Width Pruned Models

To evaluate the efficiency of depth and width pruned models across different pruning budgets, we measure
throughput in terms of tokens generated per second with a batch size of 1. This setup as shown in Table 3
allows us to observe the effect of varying pruning strategies on single-token generation speed. Depth pruning
and width pruning achieve computational reductions in fundamentally different ways. Depth pruning focuses
on removing entire transformer blocks, significantly decreasing both memory usage and inference latency,
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(b) LLaMA-3-8B
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(c) Gemma-2-2B
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(d) Qwen-2-1.5B

Figure 3: Difference in Performance of Depth and Width Pruned Models :The figure showcases the
performance difference between depth-pruned and width-pruned models (Depth - Width) across
varying compression ratios (10%, 20%, and 30%) on extended reasoning benchmarks.
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Figure 4: Perplexity Performance on WikiText-2 for Compressed Models : The figure compares the natural
log of perplexity for depth- and width-pruned models at compression ratios of 10%, 20%, and 30% on the
WikiText-2 dataset. Subfigure (4a) shows the results for LLaMA-3-8B and Gemma-2-9B, while subfigure (4b)
presents those for Qwen2-1.5B and Gemma-2-2B. The baseline perplexity for each model is represented by
dashed lines.

as it directly reduces the number of sequential operations in the forward pass. In contrast, width pruning
targets the model’s internal structures, such as reducing the number of attention heads or the size of MLP
layers within transformer blocks. While width pruning reduces the per-layer computation cost and memory
requirements, it does not reduce the depth of the model, meaning the number of sequential layers remain
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Table 3: Throughput in tokens/second for LLaMA-3-8B and Gemma-2-2B. The table reports the
throughput (measured in tokens per second) for LLaMA-3-8B and Gemma-2-2B models under
different pruning strategies (Depth and Width) and compression ratios (10%, 20%, and 30%). The
baseline throughput without pruning is included as a reference.

Model Pruning Strategy Compression % Value (Tokens/Second)

LLaMA-3-8B

Baseline - 37.16

Depth
10% 41.90
20% 45.72
30% 54.40

Width
10% 38.26
20% 37.98
30% 39.12

Gemma-2-2B

Baseline - 31.35

Depth
10% 31.95
20% 35.87
30% 44.54

Width
10% 28.65
20% 28.48
30% 28.66

constant. As a result, depth pruning offers more pronounced reductions in latency as compared to width
pruning.

4.7 Effect of Pruning on Bias and Fairness

For a holistic evaluation scheme, we evaluate stereotypical biases in LLaMA-3-8B ( Figure 5 ) and Gemma-2-9B
models ( Figure 7 ), both depth and width pruned, by reporting the ICAT scores on the StereoSet dataset.
The evaluation includes bias measurements across categories such as race, religion, gender, and profession,
along with the computation of the overall ICAT score for each model. It has been noted that biases tend to
decrease as language models undergo higher compression Ramesh et al. (2023). Through our experiments, we
find that the overall stereotypical bias remains intact consistently across budgets and models. Interestingly,
in certain individual categories such as race, we observe an improvement in ICAT scores when compared to
the baseline after pruning, indicating a reduced stereotypical bias post-pruning.

4.8 Effect of pruning on multimodal ability

Vision-Language Models (VLMs) integrate visual and textual modalities to perform tasks requiring cross-
modal understanding, such as image captioning and visual question answering. To evaluate the effect of depth
and width pruning on the multimodal performance of VLMs, we first isolate the language model of Idefics3-8B
(Laurençon et al., 2024), which is a fine-tuned LLaMA3-8B model, and prune it under various budgets. The
pruned language model is then reconnected to the vision encoder, and the full model’s performance is assessed
across multiple multimodal benchmarks as shown in Table 4. Through this experiment we find that depth
pruning performs better overall which aligns with our previous findings. Moreover, we observe that while
performing width pruning, as we increase the compression ratio POPE score decreases drastically suggesting
that the model begins to hallucinate although it’s performance on other benchmarks is retained comparatively.
However, during depth pruning the model loses its Text Understanding capabilities as the pruning ratio
increases.

4.9 Effect of pruning on long-context handling ability

We present evaluations on long-context benchmarks using the LLaMA3-8B-Instruct model within the LEval
framework (An et al., 2023b) in Table 5. LEval includes multiple challenging tasks: QuALITY, which consists
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Figure 5: ICAT Scores for Depth and Width Pruned LLaMA-3-8B. The figure presents the ICAT
scores across five domains—Gender, Profession, Race, Religion, and Overall—for depth-pruned
(5a) and width-pruned (5b) versions of LLaMA-3-8B at varying compression levels (10% and 20%)
and the baseline.

Table 4: The table presents the performance of Idefics3-8B across three benchmarks—POPE,
TextVQA, and MMMU—under varying pruning strategies (Depth and Width) and compression
ratios (10% and 20%).

Pruning Strategy Compression % POPE TextVQA MMMU
Baseline - 86.72 60.42 43.33

Depth 10% 87.17 54.66 41.56
20% 72.71 25.38 38.44

Width 10% 86.99 50.16 42.56
20% 54.24 37.20 39.11

of questions based on long literary stories from Gutenberg; Coursera, designed to assess the reasoning ability
of LLMs on complex and difficult-to-comprehend course materials; SFiction, which features questions that
contradict real-world principles, testing the model’s ability to rely on input context rather than pretrained
knowledge; and GSM100, a subset of 100 grade school math problems from the GSM8K dataset, aimed
at evaluating few-shot learning capabilities in very long-context scenarios. The table below presents the
performance of different pruning strategies at 10% and 20% compression on long-context benchmarks,
compared to the Baseline. Depth pruning initially improves performance on SFiction but degrades on
Coursera and GSM100 as pruning increases. Width pruning shows a trade-off, with 10% pruning slightly
improving overall performance but 20% pruning significantly reducing accuracy, especially on GSM100.
Overall in the case of long context understanding, we do not see a clear pattern with respect to performance
degradation.

4.10 Choosing the right pruning strategy

Depth pruning has been shown to outperform width pruning at moderate compression ratios, particularly
for reasoning-intensive tasks such as GSM8K and knowledge benchmarks like MMLU. However, perplexity
evaluations demonstrate that depth pruning can significantly degrade language modeling capabilities. The
removal of entire layers disrupts the model’s depth-driven representation learning, which is essential for
capturing sequential dependencies in language tasks.
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Table 5: Comparison of pruning strategies at different compression levels across long-context
evaluation benchmarks

Strategy Pruning (%) Quality Coursera SFcition GSM100
Baseline - 62.38 52.33 69.53 80.00

Depth 10% 62.38 47.24 75.00 74.00
20% 62.87 42.88 67.19 39.00

Width 10% 63.86 44.19 70.31 65.00
20% 60.40 51.45 67.97 39.00

In contrast, width pruning achieves compression by reducing the dimensionality of individual layers. This
method is more effective for maintaining language modeling performance, as it preserves the model’s depth.
However, at higher compression levels, width pruning disproportionately reduces the model’s representational
capacity, leading to a sharper decline in downstream task performance, particularly for reasoning and
knowledge-intensive tasks.

Depth pruning is therefore more suitable for scenarios that involve reasoning-intensive tasks, require moderate
compression ratios of 10–20%, and prioritize significant inference speedups. It is less effective when language
modeling capabilities are central to task performance. Conversely, width pruning is more appropriate to
preserve language modeling capabilities with minimal performance loss.

In cases where both efficiency and hierarchical depth are critical, combining depth and width pruning in a
hybrid approach can help balance compression performance and retention of downstream task accuracy. By
strategically leveraging the strengths of both methods, it is possible to mitigate the trade-offs associated with
either pruning strategy.

4.11 Fairing Against Unstructured Pruning on Extended Benchmarks

While we focus on evaluating structured pruning methods, it is important to understand how these fair against
unstructured pruning methods such as Wanda and SparseGPT on our extended benchmarks. Our experiments
with SparseGPT (Frantar and Alistarh, 2023) and Wanda (Sun et al., 2024) on LLaMA3-8B, Table 6, span
common sense reasoning tasks, mathematical reasoning (GSM8K), Code Eval, and Instruction Following
(IFEVAL). Our findings suggest that unstructured and semi-structured pruning methods, which allow for finer
granularity, generally preserve downstream task performance better than structured pruning approaches that
reduce model depth or width. The only task where these methods exhibit significant performance degradation
is mathematical reasoning. These results offer further insight into the impact of unstructured pruning on
LLMs and highlight that, when the target hardware supports unstructured sparsity, these methods may be
preferable over structured pruning techniques.

Table 6: Results for unstructured pruning methods on extended benchmarks with different
compression ratios.

Pruning Method Compression (%) ARC_C ARC_E Winogrande BoolQ MMLU GSM8K CodeEval WikiText IFEVAL

Wanda
10% 79.88 50.42 73.40 81.47 61.81 50.03 48.11 5.58 40.29
20% 79.71 49.14 72.61 81.87 61.11 47.83 49.90 5.71 39.18
30% 78.57 48.38 73.40 81.80 59.31 41.39 48.11 6.03 41.03

SparseGPT
10% 80.38 50.34 72.92 81.71 61.69 47.91 49.14 5.58 41.22
20% 79.59 49.31 72.85 81.68 60.95 48.06 48.28 5.72 41.77
30% 78.70 47.61 74.11 81.89 59.88 43.59 47.93 6.05 39.74

5 Conclusions

Training-free structured pruning of LLMs presents significant challenges, as evidenced by our comprehensive
evaluations. Our results demonstrate that such pruning methods can lead to substantial performance
degradation, particularly on benchmarks that are often overlooked. Highlighting these underperforming
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benchmarks is essential, as it encourages the development of new methods that address these shortcomings
and improve overall model robustness.

We have showcased the differences between depth and width pruning strategies to gain a deeper understanding
of their disparate impacts on downstream tasks. This disparity emphasizes the need for careful selection of
pruning strategies based on the specific requirements of the task at hand.

By bringing attention to these challenges and disparities, we hope this paper inspires future research in the
compression literature to evaluate their methods across a wider variety of tasks. Comprehensive evaluations
will not only illuminate the limitations of current approaches but also guide the development of more effective
pruning techniques that maintain performance while achieving desired levels of model compression.
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6 Appendix

6.1 Details on ShortGPT

ShortGPT calculates the cosine similarity between the input and output embeddings of the ith block, using
cosine similarity as a global pruning criterion across model layers.

Bi = 1 −

∑N
j=1

(
X

(j)
i−1 · X

(j)
i

)
N

(1)

In expression 1, Bi represents the pruning criterion for the i-th block, Xi denotes the output embedding
of the i-th layer, Xi−1 refers to the output embedding of the (i − 1)-th layer (serving as the input to the
i-th layer), N is the total number of samples used in calculating cosine similarity, and

∑N
j=1

(
X

(j)
i−1 · X

(j)
i

)
represents the summation over all samples, with X

(j)
i−1 and X

(j)
i being the embeddings from the (i − 1)-th

and i-th layers for the j-th sample. After calculating the Bi for each block, we sort them in an ascending
order based on the Bi values and prune k blocks with the lowest Bi. k is decided depending on the target
pruning ratio.
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6.2 Details on FLAP

Fluctuation metric S,:,j for the jth channel of the lth layer is defined as :

Sl,j = 1
N − 1

N∑
i=1

(X(i)
l,j − X̄l,j)2 · ∥Wl,j∥2 (2)

Here, N denotes the total number of calibration samples, and X
(i)
l,j is the value of the jth channel of the

input features at layer l for the ith sample. The term X̄l,j represents the mean of Xl,j across all N samples,
allowing us to calculate the variance of this feature. Additionally, ∥Wl,j∥2 refers to the squared norm of
the j-th column of the weight matrix in layer l, which weights the variance term in the metric calculation.
Together, these components form an estimate of each channel’s recoverability by quantifying its variance and
weighting it according to the model’s structure.

To ensure that the score can serve as a global approximation, the metric is standardized for each layer to a
common mean and standard deviation.

S′
l,j = Sl,j − E[Sl,j ]√

E[(Sl,j − E[Sl,j ])2]
(3)

where E[Sl,j ] denotes the expected value of the vector Sl,j , and
√

E[(Sl,j − E[Sl,j ])2] represents the standard
deviation, calculated as the square root of the variance.

6.3 Datasets

In this section, we describe the datasets used as part of our extended evaluation of pruned LLMs:

Common Sense Reasoning and Factual Question Answering :

• ARC Challenge and ARC Easy (Clark et al., 2018): These are standard benchmarks for common
sense reasoning and are widely referenced in pruning literature, providing a basis for comparison with
existing models.

• BoolQ (Clark et al., 2019) and Winogrande (Sakaguchi et al., 2020): Both datasets are used
for binary question-answering tasks that involve common sense and linguistic reasoning, making them
essential for understanding how pruning impacts nuanced reasoning abilities.

• GSM8k (Cobbe et al., 2021): A dataset designed to test mathematical and logical reasoning skills.
This dataset’s complexity surpasses that of traditional common sense tasks, offering insight into how
pruning affects tasks with higher-order reasoning requirements.

• MMLU (Hendrycks et al., 2021): Used alongside GSM8k to evaluate factual knowledge combined
with reasoning, allowing us to examine pruning performance on tasks requiring an integration of knowledge
domains.

Wikitext-2 (Perplexity): Wikitext-2 serves as a standard language modeling benchmark for measuring
model perplexity, providing insights into the fluency and coherence of pruned models. Perplexity is a
critical metric here, as it quantifies the model’s ability to predict word sequences effectively, highlighting any
degradation in linguistic capability due to pruning.

Code Completion on HumanEval (Chen et al., 2021): The HumanEval dataset is a benchmark for
evaluating the functional correctness of code generated by AI models. The primary purpose of the dataset is
to test the ability of models to generate syntactically correct and semantically meaningful code that passes
all provided unit tests, thus HumanEval emphasizes correctness over superficial metrics like BLEU or code
similarity.
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Instruction Following on IFEVAL (Zhou et al., 2023): The dataset comprises prompts utilized in the
Instruction-Following Evaluation (IFEVAL) benchmark, specifically designed for evaluating the performance of
large language models. It includes approximately 500 "verifiable instructions", which are carefully constructed
tasks that allow for objective and heuristic-based verification.

Fairness Evaluation on Stereoset (Nadeem et al., 2021): StereoSet is a benchmark designed to evaluate
the social bias present in language models across dimensions like gender, race, religion, and profession. It
tests a model’s tendency to exhibit stereotypical associations in natural language understanding tasks. A
combined metric, the Idealized Context Association Test (ICAT) Score, rewards models that exhibit low bias
while maintaining high language quality.

Multimodal Evaluation: To evaluate the multimodal capabilities of Vision-Language Models (VLMs),
we use three datasets: POPE (Li et al., 2023) for detecting object hallucinations; TextVQA (Singh et al.,
2019) for assessing the ability to read and reason about text in images; and MMMU (Yue et al., 2024), which
tests college-level subject knowledge and deliberate reasoning covering six core disciplines - Art & Design,
Business, Science, Health & Medicine Humanities & Social Science and Tech & Engineering.

6.4 Analysis of Pruned Models Under Varying Budgets

Here, we present the complete evaluations of Qwen2-1.5B and Gemma-2-2B (Figure 6) to assess the effects
of depth and width pruning on smaller-sized models. The results reveal a consistent trend of performance
degradation, particularly on the GSM8K benchmark, even at low compression ratios.

6.5 Comparing FLAP with LLM-Pruner

To establish FLAP as a state-of-the-art width pruning method, we compare it against LLMPruner (Ma et al.,
2023) across our benchmark suite. Table 7 presents a comparison of the zero-shot performance of LLaMA-7B
pruned using LLM-Pruner and FLAP at 20% and 50% pruning ratios, consistently demonstrating FLAP’s
superiority across tasks.

Table 7: Comparison of methods at different compression levels across multiple benchmarks.

Method Compression (%) ARC_C ARC_E BoolQ Winogrande
LLM-Pruner 20% 37.18 59.18 59.39 61.33
FLAP 20% 39.25 69.91 69.63 68.85
LLM-Pruner 50% 25.51 32.83 52.57 49.01
FLAP 50% 29.95 49.66 60.21 57.54

6.6 Bias and Fairness Evaluation in Gemma-2-9B

We evaluate Gemma-2-9B model (Figure 7) on the StereoSet dataset to analyze its behavior regarding
stereotypical biases under the influence of depth and width compression across varying budgets.

17



Under review as submission to TMLR

BoolQ WinoGrande ARC-Easy ARC-Challenge MMLU GSM8k
Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

Configurations
Random
Baseline
10%
20%
30%

(a) Width Pruned Gemma-2-2B
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(b) Width Pruned Qwen2-1.5B
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(c) Depth Pruned Gemma-2-2B

BoolQ WinoGrande ARC-Easy ARC-Challenge MMLU GSM8k
Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rfo

rm
an

ce

Configurations
Random
Baseline
10%
20%
30%

(d) Depth Pruned Qwen2-1.5B

Figure 6: Performance of Smaller Models on Extended Benchmarks : The figure presents the
performance of Gemma-2-2B (6c,6a) and Qwen2-1.5B (6d,6b) on extended reasoning benchmarks,
comparing depth and width pruning
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(a) Depth Pruned Gemma-2-9B
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(b) Width Pruned Gemma-2-9B

Figure 7: Bias Evaluations for Gemma-2-9B : The radar plots illustrate the ICAT scores across
domains—Gender, Profession, Race, Religion, and Overall—for depth-pruned (7a) and width-
pruned (7b) Gemma-2-9B
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