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Abstract— Cluttered garments manipulation poses significant
challenges due to the complex, deformable nature of gar-
ments and intricate garment relations. Unlike single-garment
manipulation, cluttered scenarios require managing complex
garment entanglements and interactions, while maintaining
garment cleanliness and manipulation stability. To address
these demands, we propose to learn point-level affordance, the
dense representation modeling the complex space and multi-
modal manipulation candidates, while being aware of garment
geometry, structure, and inter-object relations. Additionally,
as it is difficult to directly retrieve a garment in some ex-
tremely entangled clutters, we introduce an adaptation module,
guided by learned affordance, to reorganize highly-entangled
garments into states plausible for manipulation. Our framework
demonstrates effectiveness over environments featuring diverse
garment types and pile configurations in both simulation and
the real world. Project page: https://garmentpile.github.io/.

I. INTRODUCTION

Garments, such as shirts, dresses, and socks, are essential
in daily life and pose significant challenges for human-
assistive robots. Most studies focus on single-garment manip-
ulation, such as unfolding [3], folding [11] and hanging [8].
However, many real-life scenarios involve multiple cluttered
garments, such as arranging clothes on a bed or retrieving
items from a washing machine. In these cases, it is crucial to
maintain cleanliness and avoid disturbing adjacent garments
(failure cases in Figure 1).

Manipulating cluttered garments presents greater chal-
lenges than single-garment due to the complex states in the
clutters and the complicated interrelations between garments.
Moreover, garment piles often involve multiple plausible
retrieval garments (Figure 1, row 1), further increasing the
demands on the multi-modal representation capability of the
learned manipulation policy.

Point-level affordance, derived from 3D point cloud input
and representing the per-point actionability on the ob-
ject for downstream tasks, is a suitable representation for
cluttered garments manipulation. First, the per-point space
supports representing complex states of cluttered scenes.
Also, the per-point score can easily represent the multi-
modal policy outputs (Figure 1, row 1). Most importantly,
the feature of each point is extracted from local to global,
capable of representing the local geometry information for
grasping, the structural information of each garment, and
the interrelations between garments (Figure 1, row 2). For
unseen garment clutters, the above extracted information
(garment geometry, structure and relations) is consistent
across scenes, making the representation easily generalize
to novel scenarios.
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Fig. 1: Point-Level Affordance for Cluttered Garments. A
higher score denotes the higher actionability for downstream
retrieval. Row 1: per-point affordance simultaneously reveals
2 garments suitable for retrieval. Row 2: it is aware of
garment structures (grasping edges leads other parts con-
tacting floor) and relations (retrieving one garment while
dragging nearby entangled garments out), and thus avoids
manipulating on points leading to such failures. Row 3 and 4:
highly tangled garments may not have plausible manipulation
points, affordance can guide reorganizing the scene, and thus
garments plausible for manipulation will exist.

However, affordance alone is not a universal solution. In
extreme cases, such as highly tangled garments, there may
not exist manipulatable positions (Figure 1, row 3), and thus
need the robot to first reorganize the garments to a new
state plausible for manipulation (Figure 1, from row 3 to
row 4). Therefore, we further introduce a novel adaptation
module. By iteratively executing the pick-and-place actions,
the adaptation module can use learned point-level affordance
as the signal to efficiently reorganize cluttered garments.

https://garmentpile.github.io/


The absence of suitable simulation environments also
partly obstructs the research on cluttered garment manipu-
lation. Previous works have primarily focused on the sim-
ulation and manipulation of single garments or simpler
deformable objects [1], [6], [7], [9], [10], [12], [13], rather
than tackling the challenges posed by cluttered scenarios. To
address this, we propose a new evaluation environment based
on GarmentLab [4], including 9 garment categories with
various deformations and 3 representative scenarios: sofa,
washing machine, and basket. Both qualitative and quanti-
tative results from simulations and real-world experiments
demonstrate the effectiveness of our framework.

In conclusion, our contributions mainly include:
• We propose to study the novel task of cluttered garments

manipulation, and build the pioneering environment
with diverse scenarios covering different garment cat-
egories.

• We introduce point-level affordance learning for clut-
tered garments manipulation, with multiple novel de-
signs to efficiently represent highly complex state and
action spaces, and multi-modal policy outputs.

• We further develop the adaptation module guided by
learned affordance, to efficiently adapt the cluttered
garments to states easy to successfully manipulate.

II. PROBLEM FORMULATION

Given a clutter of k garments and its 3D point cloud
observation O ∈ RN×3, we study garment retrieval, aiming
to retrieve k garments one-by-one while avoiding 2 common
issues that may lead to uncleanliness or unsafety:

• The target garment contacts the floor during the re-
trieval. (Figure 1, row 2, column 2).

• When the retrieving one garment, others are dragged
out. (Figure 1, row 2, column 3).

We use pick-and-place as action primitive. We use the grasp
point pretrieve ∈ R3 with heuristic retrieval orientation as
retrieval action. In case plausible retrieval garment is not
available, we use pick-and-place action (ppick ∈ R3 and
pplace ∈ R3) as adaptation action to reorganize the scene.

We define point-level retrieval / pick / place affordance
maps Aretrieve, Apick, Aplace

ppick
∈ RN , each digit normalized

to [0,1], indicating per-point actionability for retrieval / pick
/ place. The point with highest score will be selected.

III. METHOD

A. Point-Level Affordance for Retrieval

As described in Introduction and Problem Formulation,
the Retrieval Affordance Module (also denoted as Affordance
Module for simplicity) Mretrieve predicts the per-point score
map Aretrieve for each point. Taking as input the point cloud
observation O of the garment clutter, we extract the per-point
feature using PointNet++ [5] backbone feature extractor
Fretrieve. The per-point feature of PointNet++ aggregates the
information of local geometry, global structure and garment
relations, each of which is essential for predicting whether
the manipulation on the target point will succeed. For the

point p, we get the feature fretrieve
p ∈ R128, and parse it

into Multi-Layer Perceptrons (MLPs) with sigmoid [2] ac-
tivation function for normalization, we can get 1-dimension
affordance prediction ĝretrievep on p. We define the ground
truth retrieval affordance score gretrievep on p as 1 (success)
or 0 (failure), by directly executing the retrieval action on p
and acquiring the manipulation result. We use Binary Cross
Entropy (BCELoss) Lretrieve to calculate the loss.

With trained Mretrieve, given the 3D point cloud ob-
servation O ∈ RN×3, we can first infer the point-level
retrieval affordance map Aretrieval ∈ RN and select the
point pretrieval with the highest score for the retrieval action.

B. Retrieval Affordance Guided Adaptation

Garments in clutters might be highly entangled, making it
difficult to retrieve one garment without disturbing others in
some situations, where all points would have low affordance
scores, indicating that no point could be manipulated. To deal
with this situation, people often reorganize the garments (by
picking-placing or stirring), until finding a plausible scene
where the subsequent manipulation could be successful.
Therefore, we mimic what people often do and propose
the adaptation module by iteratively executing the pick-and-
place actions to reorganize the scene. The construction of the
adaptation module depends on the learned affordance, as it
indicates whether the scene is plausible for manipulation.

As pick-and-place composites a large action space, which
is difficult for learning, we divide each adaptation action into
first predicting the pick point ppick and then the place point
pplace conditioned on ppick. As the state after placing can be
estimated by the learned manipulation (retrieval) affordance,
we first learn the actionability for placing on each point given
a specific pick point, supervised by the retrieval affordance
after the execution of (ppick, pplace) action (Section III-B.1).
Then, with the learned place affordance for adaptation, we
learn the affordance for ppick (Section III-B.2).

1) Place Affordance: The adaptation action is composed
of a pick point ppick and a place point pplace. With a pick
point ppick, the Place Affordance Module Mplace rates the
actionability of each point p on whether placing ppick on p
will improve the scene. The pick action ppick is difficult to
directly get supervision, due to the diversity of the following
place actions. On the contrary, the place action p conditioned
on ppick can get the direct feedback from the adapted scene
by checking the scene actionability (i.e., retrieval affordance)
improvement. Therefore, we first train Mplace.

For a target place point p, given as input the 3D point cloud
O and ppick, two PointNet++, F1

place and F2
place, respectively

extracts the point feature fplace1
ppick

and fplace2
p . Then, their

feature concatenation is parsed into MLPs to predict the place
affordance ĝplacep|ppick

normalized to [0, 1]. We execute the pick-
and-place action from ppick to p and get the new point cloud
O′, with the new affordance map. If the new affordance map
exceeds the initial one by a margin, the ground truth place
affordance gplacep|ppick

is set as 1 otherwise 0. We use BCELoss

Lplace to calculate the loss between gplacep|ppick
and ĝplacep|ppick

.
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Fig. 2: Framework Overview. Given the observed point cloud, the Affordance Module predicts the initial point-level
manipulation (retrieval) affordance score. When actionability is not good enough, the framework proposes the adaptation
pick-place action. It first predicts per-point pick affordance, and selects the pick point with the highest score, conditioned
on which it predicts place affordance and selects the place point. After executing adaptation action, it receives a new point
cloud and generates new affordance. When actionability is good enough, the robot retrieves on the point with the highest
affordance score. This loop is executed until all garments are retrieved.

With the trained Mplace, given the 3D point cloud ob-
servation O ∈ RN×3 and a specific ppick, we can infer the
point-level place affordance map Aplace

ppick
∈ RN and select the

point pplace with the highest score for the place action.

2) Pick Affordance: With a stable Place Module that rates
the actionability for each place point conditioned on any pick
point, we can further train the Pick Module that rates the
actionability gpickp for each point p, supervised by the best
following place action conditioned on p.

Taking as input the point cloud observation O of the
garment clutter, we extract the per-point feature using Point-
Net++ backbone feature extractor Fpick. For the point p, we
get the feature fpick

p ∈ R128, and parse it into MLPs to
predict the pick affordance ĝpickp normalized to [0, 1]. To get
the groud truth score of p, we use Mplace to find the most
suitable pplace corresponding to p, and then execute the pick-
and-place action from p to pplace to get the new point cloud
O′, with the new affordance map. If the new affordance map
exceeds the initial one by a margin, the ground truth pick
affordance gpickp is set as 1 otherwise 0. We use BCELoss
Lpick to calculate the loss between gpickp and ĝpickp .

With the trained Mpick, given the 3D point cloud observa-
tion O ∈ RN×3, we can infer the point-level pick affordance
map Apick ∈ RN and select the point ppick with the highest
score for the pick action.

C. Inference and Training Details

Figure 2 (caption) describes inference pipeline and details.
For training data, epoches and computing resources,

we use NVIDIA GeForce 4090 for training. We set batch
size to be 128 to train (Retrieval) Affordance and Pick
Affordance. While for Place Affordance, we set batch size
to be 64 because there are two PointNet++ networks. We
collect 20,000 pieces of data and train Retrieval Affordance
for 120 epoches, as well as 8,000 pieces of data and train
Pick and Place Affordance for 80 epoches. It takes fewer
than 24 hours to train each module.

We further use online data to boost the robustness during
training. Since cluttered garments have exceptionally diverse
states, the model trained on offline data might not work
well in some unseen clutters. Therefore, based on the offline
trained models, we first gather a set amount of online data,
and then combine it with an equal amount of offline data
to train the model. This approach enhances the model’s
robustness while preserving the knowledge learned from the
offline data.

We iterate this process as the sampled mistake distribu-
tions might have changes, until the model shows consistent
performance with low variance. As we can acquire the ma-
nipulation or adaptation execution results for each module,
the online adaptation proceeded for all modules.
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