
Rapidly Adapting Policies to the Real-World via
Simulation-Guided Fine-Tuning

Patrick Yin∗ Tyler Westenbroek∗ Simran Bagaria Kevin Huang Ching-An Cheng

Andrey Kolobov Abhishek Gupta

Abstract: Robot learning requires a considerable amount of data to realize the
promise of generalization. However, it can be challenging to actually collect the
required magnitude of high-quality entirely in the real world. Simulation can serve
as a source of plentiful data, wherein techniques such as reinforcement learning
can obtain broad coverage over states and actions. However, high-fidelity physics
simulators are fundamentally misspecified approximations to reality, making di-
rect zero-shot transfer challenging, especially in tasks where precise and force-
ful manipulation is necessary. This makes real-world fine-tuning of policies pre-
trained in simulation an attractive approach to robot learning. However, explor-
ing the real-world dynamics with standard RL fine-tuning techniques is to ineffi-
cient for many real-world applications. This paper introduces Simulation-Guided
Fine-Tuning, a general framework which leverages the structure of the simula-
tor to guide exploration, substantially accelerating adaptation to the real-world.
We demonstrate our approach across several manipulation tasks in the real world,
learning successful policies for problems that are challenging to learn using purely
real-world data. We further provide theoretical backing for the paradigm. Web-
site: weirdlabuw.github.io/sgft.

1 Introduction

Fig. 1: Contact-rich tasks solved with SGFT– Ham-
mering, pushing, and inserting.

Robot learning offers a pathway to building ro-
bust, general-purpose robotic agents which can
rapidly adapt their behavior to new environ-
ments and tasks. This shifts the burden from de-
signing accurate environment models and task-
specific controllers by hand to the problem of
collecting large behavioral datasets with suffi-
cient coverage. Yet this raises a fundamental
question: How do we cheaply obtain and lever-
age such data sets at scale? Real-world data
collection via teleoperation [1, 2] can gener-
ate high-quality trajectories, but scales linearly
with human effort. Community-driven teleoperation [3, 4] takes this idea further, but current datasets
are still orders of magnitude smaller than those powering vision and language applications.

Massively parallelized physics simulation [5, 6] can cheaply generate vast quantities of synthetic
robot data. Moreover, applying search techniques such as reinforcement learning (RL) in simulation
can yield near-optimal behavior. By exploiting techniques such as extensive randomization of initial
conditions, dynamics randomization [7, 8], and automatic scene generation [9, 10], these data sets
can obtain extensive coverage over situations a robot is likely to encounter in real.

Unfortunately, simulation-generated data is not a silver bullet. Even when considerable effort
is invested in constructing simulators, there is often an inherent, irreducible modeling gap between

∗These authors contributed equally.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

weirdlabuw.github.io/sgft

Fig. 2: Depiction of a model-based instantiation of SGFT: (1) A value function is learned in simulation to
guide real-world exploration with short-horizon reshaped rewards (2) a model fit to the real-world dynamics
generates short synthetic rollouts, providing a source of data augmentation. Together, this approach leverages
simulation data (through Vsim) to capture successful long-horizon behaviors, and small amounts of real world
data (through p̂) to learn how to execute these behaviors in real.

the physics of the simulation and of the real world. Thus, despite impressive performance for many
tasks, methods which transfer policies from simulation to reality zero-shot [11, 12, 7, 8] still display
failure modes when they encounter situations outside simulated training distribution [13]. While
efforts in system identification [14, 15] can resolve some of this modeling error, they do not address
situations where the simulation is fundamentally misspecified. Namely, cases where no choice of
simulator parameters accurately model reality. This arises, for instance, in behaviors like hammering
in a nail, where the modeling of high-impact, deformable contact remains an open problem [16, 17].

The question becomes: can inaccurate simulation models be useful in the face of fundamen-
tal misspecifications? A natural technique to leverage these inaccurate simulation models has been
to train a near-optimal policy in simulation, and use it as an initialization for RL fine-tuning in
the real-world using standard RL algorithms [13, 18]. Real world RL can overcome misspecifica-
tion by training directly on data from the target domain. However, tabula rasa exploration of the
real world dynamics is inefficient, leading to slow real-world policy improvement. Prior work has
additionally considered mixing simulated and real data during policy optimization, either through
co-training [19], simply initializing the replay-buffer with simulation data [20, 21], or by adaptively
sampling the simulated data set and to up-weight transition which approximately match the real-
world dynamics [22, 23, 24, 25]. While these data augmentation approaches are effective in regimes
where the simulation model is accurate, the do not accelerate the discovery of successful action in
regions where the model is fundamentally inaccurate due to misspecification.

In this work we argue that, despite inherently getting the finer details wrong, physics simulators
capture the rough structure of real-world dynamics well enough to provide guidance for targeted, ef-
ficient real-world exploration. Leveraging this insight, we propose Simulation-Guided Fine-Tuning
(SGFT), a general framework for efficient real-world fine-tuning. SGFT takes the perspective that
the rough structure of successful behaviors (such as moving an object closer to a goal position) are
preserved between simulation and reality, even if the low-level sequences of states and action needed
to realize those behaviors in the two domains differ substantially in the short term. Thus, pre-trained
simulation policies can be viewed as ‘approximate’ experts for controlling the real world. The goal
of SGFT is to rapidly adapt this behavior to the nuisances of real-world dynamics, while preserving
as much of the structure of the pre-trained policy as possible.

SGFT optimizes an auxiliary short-horizon H-step look ahead objective wherein the value func-
tion from simulation Vsim approximately bootstraps long-horizon returns. Reducing the search
horizon makes the real-world policy search problem significantly more sample-efficient [26, 27].
Intuitively, Vsim roughly captures the behaviors of πsim in a form that is robust to dynamics shifts.
Indeed, by optimizing the aforementioned objective, SGFT discovers sequences of actions which
will increase Vsim over H-step interval under the real dynamics. This will cause the fine-tuned pol-
icy to approximately match the observed behavior of πsim in simulation, but when operating in real.
Crucially, we keep Vsim frozen during training to preserve this strong learning signal during the fine-
tuning process. We observe that this prevents catastrophic forgetting, wherein policies completely
de-learn useful behaviors during fine-tuning. We summarize our contributions as follows.

2

Hardware Results: We instantiate the SGFT framework using two base model-based reinforce-
ment learning algorithms and evaluate the framework in situations where direct sim-to-real transfer
fails. Across a variety of dynamic real-world manipulation tasks, we find that SGFT learns substan-
tially more performant policies than baseline finetuning methods with substantially fewer samples.

Theory: In Appendix B, we provide theoretical backing for these empirical results. Specifically,
we demonstrate 1) SGFT can lead to highly effective policies even when there is a large dynamics
gap and 2) SGFT can be paired with a base model-based RL method to learn effectively in low-
data regimes where the learned model is likely to be highly inaccurate. Specifically, we show that
our approach enables the use of short-horizon model predictions, which overcomes the fundamental
challenge of compounding errors [28] faced by MBRL methods.

Related Work: A detailed discussion of prior work is left to appendix A.
Preliminaries: Let s ∈ S and a ∈ A be state and action spaces. Our goal is to control a
real-world environment defined by unknown dynamics s′ ∼ preal(·|s, a) by solving the MDP
Mr = (S,A, preal, ρ0real, r, γ) with initial real-world state distribution ρ0real, reward function r,
and discount factor γ ∈ [0, 1). Given policy π, we let dπreal(s) denote the distribution over trajec-
tories generated by applying π with initial condition s0 = s. Defining the value function under π
by V π

real(s) = Est∼dπ
real(s)

[
∑

t γ
trt(st)], our objective is: π∗

real ← supπ Es∼ρ0
real

[V π
real(s)]. De-

fine the optimal value V ∗
real(s) := supπ V

π
real(s). We assume access to a simulation environment

s′ ∼ psim(s, a) which defines an approximation Msim := (S,A, psim, ρ0sim, r, γ). We let πsim

denote a policy pretrained inMsim, with Vsim the associated value function.

2 Simulation-Guided Fine-Tuning
2.1 Reward Shaping and Horizon Shortening

We implement our horizon-shortening approach using the Potential-Based Reward Shaping (PRBS)
formalism [29], which replaces the reward r(s) with r̄(s, s′) = r(s) + γΦ(s′) − Φ(s) for some
function Φ. Rather than optimizing the original infinite-horizon objective we will instead investigate
optimizing the H-step return

∑H−1
t=0 γtr̄t =

∑H−1
t=0 γtrt + γHΦ(sH) − Φ(s0), where the equality

follows by telescoping out terms. Intuitively, the addition of the potential term encourages policy
search algorithms to follow Φ by increasing its value during each transition. Here, the γHΦ(sH)
term can be interpreted as a fixed approximation to the true long-horizon returns γHV ∗

real(sH),
while −Φ(s0) again acts as a baseline to reduce variance. While this biases the returns, optimizing
the H-step return from a given initial condition presents a significantly more tractable problem.

2.2 H-step Simulation-Guided Expert Policies

We propose to set Φ(s) = Vsim(s) (i.e. the value of the policy πsim with respect to Msim) and
optimize the reshaped reward r̄(s, s′) = r(s) + γVsim(s′) − Vsim(s) over H-steps from every
initial condition s ∈ S , as a mean to adapt πsim fromMsim toMreal. We will use ‘tilde’ notation
π̃H = {πH,0, πH,1, . . . , πH,H−1} to denote non-stationary policies of horizon H , where πH,t is the
policy applied at time t. Consider the following H-step returns under the real-world dynamics:

V π̃H

H (s) = E

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)− Vsim(s0)

∣∣∣∣s0 = s, at ∼ πH,t(·|st)

]
. (1)

V ∗
H(s) := sup

π̃H

V π̃H

H (s) Q∗
H(s, a) = Es′∼preal(s,a)

[
γV ∗

H−1(s
′) + r̄(s, s′)

]
(2)

Note that the −Vsim(s0) term in Equation (3) is not affected by the choice of π̃H , and does not
affect the ordering of policies. Thus, V π̃H

H is equivalent to the planning objective used by model
predictive control (MPC) methods [30, 31, 32, 33] with H-step look-ahead and a terminal reward of
Vsim (when the ground truth dynamics are known). Thus, we define the H-step simulation guided
MPC expert via: π∗

H(·|s) ← maxπ Q
∗
H(s, π(s)), which simply applies the optimal action under

the H-step look ahead at each state. Intuitively, π∗
H will greedily follow Vsim at every state when

H = 1, and as we take H →∞ the behavior of πH will recover the behavior of π∗
real. Thus, π∗

H can
be viewed as a policy which has adapted the behavior of πsim to follow Vsim along the real-world

3

dynamics, and for smaller values of H we should expect π∗
H to retain more of the behavior of πsim.

However, because we do not know the preal we do not know the actions taken by this expert policy.

2.3 The SGFT Framework Algorithm 1 Simulation-Guided Fine-tuning (SGFT)

Require: Pretrained policy πsim and value function Vsim

1: π ← πsim

2: for each iteration k do
3: for time step t = 1, ..., T do
4: at ∼ π(·|st)
5: Observe the state st+1 and the reward rt.
6: r̄t ← rt + γVsim(st+1)− Vsim(st)
7: D ← D ∪ (st, at, r̄t, st+1)
8: end for
9: Approx. optimize π ← maxπ Q

∗
H(s, π(sj))

∀sj ∈ D using observed transitions D.
10: end for

Even though we do not have di-
rect access to π∗

H , we can implic-
itly learn its actions by optimizing
policies to maximize the H-step re-
turn Equation (3) starting from every
initial condition s ∈ S . Thus, we
propose the conceptual Simulation-
Guided Fine-Tuning (SGFT) frame-
work, which is defined via pseudo-
code in Algorithm 1. SGFT fine-
tunes πsim to succeed under the real-
world dynamics by iteratively 1) un-
rolling the current policy to collect transitions from preal and 2) using the current data set D of
transitions to approximately optimize π ← maxπ Q

∗
H(s, π(sj)) at each state sj the agent has

visited. In [32] a model-free method for approximating the optimization in step 2) is proposed,
and we discuss how this step can be performed with model-based methods below. By optimizing
π ← maxπ Q

∗
H(s, π(sj)), SGFT is implicitly attempting to learn and approximate the actions taken

π∗
H at every state the agent has visited (which is reminiscent of the learning loop used by DAgger

[34], with the obvious caveat that in our case the expert are not directly available).

2.4 Leveraging Short Model Roll-outs

Model-based reinforcement learning (MBRL) holds the promise of learning a generative model p̂
to rapidly learn effective policies with significantly less real-world data than model-free methods
[28]. However, as discussed in appendix A, the central challenge for MBRL is that small errors in p̂
can quickly compound over multiple steps, degrading the quality of predictions. As a consequence,
learning a model which is accurate enough to solve long-horizon problems can often take as much
data as solving the task with modern model-free methods [35, 36]. By boot-strapping Vsim in
simulation where data is plentiful, the SGFT framework enables agents to act effectively over long
horizons using only short, local predictions about the real-world dynamics. As our experiments
demonstrate, this substantially improves performance compared to model-free approaches. In what
follows, we denote the following returns under the model for π̃H = {πH,t}H−1

t=0 :

V̂ π̃H

H (s) = E

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)− Vsim(s0)

∣∣∣∣s0 = s, at ∼ πH,t(·|st), st+1 ∼ p̂(st, at)

]

V̂ ∗
H(s) := sup

π̃H

V̂ π̃H

H (s) Q̂∗
H(s, a) = Es′∼p̂(s,a)

[
γV̂ ∗

H−1(s
′) + r̄(s, s′)

]
. (3)

Note the corresponding MPC policy which uses p̂ is given by: π̂∗
H(·|s)← argmaxπ Q̂

∗
H(s, π). We

next discuss two broad approaches which use p̂ to approximately learn π̂∗
H at each iteration.

Improved Sample Efficiency with Data Augmentation (Algorithm 2). The generative model p̂
can be used for data augmentation by generating a data set of synthetic rollouts D̂ to supplement the
real-world data setD [28, 37, 38]. The combined data-set can then be fed to any policy optimization
strategy, such as generic model-free algorithms. We are specifically interested in state-of-the-art
Dyna-style algorithms [28] which, in our context, branch H-step rollouts from states the agent has
visited previously. As Algorithm 2 shows, after each data-collection phase, this approach updates
the generative model then repeatedly a) generates a data set D̂ of synthetic H-step rollouts under
the current policy π starting from states in D b) approximately solves π ← maxπ̄ Q

∗
H(s, π̄(s)) at

observed real-world states using the augmented data set D̂ ∪ D and a base model-free method. In
Section 3, we implement this approach with SAC [39].

4

Algorithm 2 Dyna-SGFT

Require: Policy πsim and value Vsim. Set π ← πsim.
1: for each iteration k do
2: Generate rollout {(st, at, rt, st+1)}Tt=0 under π.
3: r̄t ← rt + γVsim(st+1)− Vsim(st)
4: D ← D ∪ (st, at, r̄t, st+1)
5: Fit generative model p̂ with D.
6: Generate synthetic branched rollouts D̂ under π.
7: Approx. optimize π ← maxπ Q

∗
H(s, π(sj))

∀sj ∈ D using augmented dataset D̂ ∪ D
8: end for

Algorithm 3 MPC-SGFT

Require: Pretrained value Vsim and initialized model p̂.
1: for each iteration k do
2: Generate rollout {(st, at, rt, st+1)}Tt=0 under π̂∗

H .
3: r̄t ← rt + γVsim(st+1)− Vsim(st)
4: D ← D ∪ (st, at, r̄t, st+1).
5: Fit generative model p̂ with D.
6: end for

Online Planning (Algorithm 3).
The most straightforward way to ap-
proximate the behavior of π∗

H is sim-
ply to apply the MPC controller π̂∗

H

generated using the current best guess
for the dynamics p̂. Algorithm 3 pro-
vides general pseudo code for this ap-
proach, which iteratively 1) rolls out
π̂∗
H (which is calculated using online

optimization and p̂ [40]) then 2) up-
dates the model on the current data set of transitions D. This broad approach encompasses a wide
array of methods [41, 42] . In Section 3, we implemented this approach using the TDMPC-2 [31].

3 Experiments

We aim to answer the following questions: (1) Can SGFT facilitate tractable online fine-tuning of
policies for dynamic, real-world manipulation tasks? (2) Does SGFT improve the sample-efficiency
of online fine-tuning over benchmarks? (3) Can SGFT learn policies which outperform direct trans-
fer techniques which leverage extensive domain randomization and/or system identification?

To answer these questions, we test a variety of methods on three real-world manipulation tasks
illustrated in Figure 3, demonstrating that both instantiations of SGFT excel at learning policies with
minimal real-world data. Specifically, we consider Hammering, Insertion, and Pushing tasks, and
detail the task set-ups and sim-to-real gaps in Appendix D. Each of these tasks is evaluated using
a Franka FR3 robot operating with either Cartesian position control or joint position control. We
evaluate the following classes of methods:

Fig. 3: Sim-to-Real Setup Simulation setup for
pretraining (top) and execution of real-world fine-
tuning (bottom) of real-world hammering (left),
insertion (middle), and pushing (right).

Fig. 4: Real-world success rates during the course
of online fine-tuning. We plot task success rates over
number of finetuning rollouts for the tasks described in
Sec. 3. We see that SGFT yields significant improve-
ments in success and efficiency.

5

SGFT Instantiations. We implement concrete instantiations of the general Dyna-SGFT and
MPC-SGFT frameworks sketched in Algorithms 2 and 3. SGFT-SAC fits a model to real world
transitions to perform data augmentation and uses SAC as a base model-free policy optimization
algorithm. We use H = 1 for all our expirements. SGFT-TDMPC-2 uses TDMPC-2 [31] as a
backbone. The base method learns a critic, a policy, and an approximate dynamics model through
interaction data. It then performs MPC using the approximate model and learned critic as a terminal
reward. To integrate this method with SGFT, when transferring to the real-world we simply freeze
the critic learned in simulation and use the reshaped objective in Equation (3) for the online planning
objective. For our experiments, we use H = 4 and default hyperparameters [31].

Baseline Fine-tuning Methods. The SAC baseline fine-tunes the pre-trained policy to solve the
original MDPMreal using SAC [39] – it does not use of shaping or horizon shortening. PBRS fine-
tunes the policy under a reshaped infinite-horizon MDP using the reshaped reward r̄ and SAC [39]
as the policy optimizer; namely, this approach does not leverage horizon shortening. TDMPC-2
fine-tunes the entire TDMPC-2 architecture [31] in the real world, but does not leverage reward
shaping. This serves as a state-of-the-art baseline for MBRL. IQL fine-tunes the pre-trained policy
to solve the original MDPMreal using IQL [43]. It does not make use of reward shaping or horizon
shortening. This serves as a state-of-the-art baseline for fine-tuning methods.

Baseline Sim-to-Real Methods. Our Domain Randomization baseline refers to policies trained
with extensive domain randomization in simulation and transferred directly to the real world. These
policies rely only on the previous observation. Recurrent Policy + Domain Randomization uses
policies conditioned on histories of observations, similar to methods such as [11]. ASID [14] is
a system identification method that performs targeted exploration in the real-world to identify the
dynamics parameters of the simulator that best match the real-world scene. Once the parameters are
identified, a policy is trained under the parameters in simulation then deployed zero-shot.

3.1 Analysis

The results for real-world evaluation during fine-tuning on these three tasks are presented in Fig. 4.
For all three tasks, zero-shot performance seen at the start of the plot is quite poor due to the dy-
namics gap between sim and real. Moreover, the poor performance of system identification methods
such as ASID highlight the fact that these gaps are due to more than parameter misidentification, but
rather stem from fundamental misspecification.

The second class of comparison methods include offline pretraining with online finetuning tech-
niques like IQL [43] and SAC [39]. Whether model-free or model-based, the SGFT finetuning
methods (ours) substantially outperform these techniques in terms of efficiency and asymptotic per-
formance. Moreover, they prevent catastrophic forgetting, wherein finetuning leads to periods of
sharp degradation in the policies effectiveness. This suggests that simulation can offer more guid-
ance during real-world policy search than just an initialization for subsequent finetuning. Our full
system consistently leads to significant improvement from fine-tuning, achieving 100% success for
hammering within a few minutes and pushing within an hour, and 70% success for the long-horizon
insertion task within two hours. The fact that SGFT outperforms both TD-MPC2 [31] and PBRS-
SAC, suggests that efficient finetuning requires a combination of both short model rollouts plus
value-driven reward shaping. And lastly, note that SGFT offers improvements on top of both SAC
and TDMPC2, showing the generality of the proposed paradigm. Additional evaluations and vi-
sualizations are in the Appendix, namely a set of sim-to-sim transfer results following standard
benchmarks (Appendix H), and visualizations of transferred value functions (Appendix G).

4 Limitations and Future Work

In this work, we present SGFT , a technique for efficient sim-to-real finetuning using off-policy
RL. The key idea in SGFT is to leverage learned value functions and models from simulation to
provide guidance for exploration even when simulation does not perfectly match reality through a
combination of short-horizon model hallucinations and potential-based reward shaping. There are

6

several limitations of SGFT that open avenues for improvement. Firstly, scaling SGFT to work
from raw perceptual inputs rather than low-dimensional states would make this paradigm broadly
applicable. Secondly, it is important to scale SGFT to higher dimensional action spaces and longer
horizon tasks. Thirdly, our choice of off-policy RL method can display a degree of instability and a
more efficient and stable base algorithm should be considered.

References
[1] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch,

Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning (CoRL), 2023.

[2] D. C. team. Droid: A large-scale in-the-wild robot manipulation dataset. In Robotics Science
and Systems (RSS), 2024.

[3] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imita-
tion. In Conference on Robot Learning, 2018.

[4] O.-X.-E. Collaboration. Open x-embodiment: Robotic learning datasets and rt-x models. 2024.

[5] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
IROS, 2012.

[6] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning. In NeurIPS-2021 Datasets and Benchmarks Track, 2021.

[7] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[8] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[9] Z. Chen, A. Walsman, M. Memmel, K. Mo, A. Fang, K. Vemuri, A. Wu, D. Fox, and A. Gupta.
Urdformer: A pipeline for constructing articulated simulation environments from real-world
images. arXiv preprint arXiv:2405.11656, 2024.

[10] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han, E. Kolve,
A. Kembhavi, and R. Mottaghi. ProcTHOR: Large-scale embodied AI using procedural gen-
eration. In Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/

2022/hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html.

[11] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: rapid motor adaptation for legged robots. In
RSS, 2021.

[12] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[13] L. M. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In ICRA, 2022.

[14] M. Memmel, A. Wagenmaker, C. Zhu, P. Yin, D. Fox, and A. Gupta. ASID: active exploration
for system identification in robotic manipulation. CoRR, abs/2404.12308, 2024.

7

http://papers.nips.cc/paper_files/paper/2022/hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html

[15] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis, B. Chen, and D. Zhao. What
went wrong? closing the sim-to-real gap via differentiable causal discovery. In J. Tan, M. Tou-
ssaint, and K. Darvish, editors, Conference on Robot Learning, CoRL 2023, 6-9 November
2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine Learning Research, pages
734–760. PMLR, 2023. URL https://proceedings.mlr.press/v229/huang23c.html.

[16] B. Acosta, W. Yang, and M. Posa. Validating robotics simulators on real-world impacts. IEEE
Robotics and Automation Letters, 7(3):6471–6478, 2022.

[17] J. Levy, T. Westenbroek, and D. Fridovich-Keil. Learning to walk from three minutes of data
with semi-structured dynamics models. In 8th Annual Conference on Robot Learning, 2024.
URL https://openreview.net/forum?id=evCXwlCMIi.

[18] Y. Zhang, L. Ke, A. Deshpande, A. Gupta, and S. S. Srinivasa. Cherry-picking with reinforce-
ment learning. In RSS, 2023.

[19] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal. Reconciling
reality through simulation: A real-to-sim-to-real approach for robust manipulation. CoRR,
abs/2403.03949, 2024. doi:10.48550/ARXIV.2403.03949. URL https://doi.org/10.

48550/arXiv.2403.03949.

[20] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

[21] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. In International Conference on Machine Learning, pages 1577–1594. PMLR,
2023.

[22] B. Eysenbach, S. Asawa, S. Chaudhari, S. Levine, and R. Salakhutdinov. Off-dynamics
reinforcement learning: Training for transfer with domain classifiers. arXiv preprint
arXiv:2006.13916, 2020.

[23] J. Liu, H. Zhang, and D. Wang. Dara: Dynamics-aware reward augmentation in offline rein-
forcement learning. arXiv preprint arXiv:2203.06662, 2022.

[24] K. Xu, C. Bai, X. Ma, D. Wang, B. Zhao, Z. Wang, X. Li, and W. Li. Cross-domain policy
adaptation via value-guided data filtering. Advances in Neural Information Processing Systems,
36:73395–73421, 2023.

[25] H. Niu, Y. Qiu, M. Li, G. Zhou, J. Hu, X. Zhan, et al. When to trust your simulator: Dynamics-
aware hybrid offline-and-online reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 35:36599–36612, 2022.

[26] C. Laidlaw, S. J. Russell, and A. Dragan. Bridging rl theory and practice with the effective
horizon. In Advances in Neural Information Processing Systems, volume 36, pages 58953–
59007, 2023.

[27] Y. Li, R. Wang, and L. F. Yang. Settling the horizon-dependence of sample complexity in
reinforcement learning. In 62nd IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 965–976. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00097. URL https://doi.org/10.1109/FOCS52979.2021.

00097.

[28] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[29] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pages 278–287, 1999.

8

https://proceedings.mlr.press/v229/huang23c.html
https://openreview.net/forum?id=evCXwlCMIi
http://dx.doi.org/10.48550/ARXIV.2403.03949
https://doi.org/10.48550/arXiv.2403.03949
https://doi.org/10.48550/arXiv.2403.03949
http://dx.doi.org/10.1109/FOCS52979.2021.00097
http://dx.doi.org/10.1109/FOCS52979.2021.00097
https://doi.org/10.1109/FOCS52979.2021.00097
https://doi.org/10.1109/FOCS52979.2021.00097

[30] A. Jadbabaie, J. Yu, , and J. Hauser. Unconstrained receding-horizon control of nonlinear
systems. IEEE Transactions on Automatic Control, 46(5):776–783, 2001.

[31] N. Hansen, H. Su, and X. Wang. TD-MPC2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Oxh5CstDJU.

[32] W. Sun, J. A. Bagnell, and B. Boots. Truncated horizon policy search: Combining reinforce-
ment learning & imitation learning. arXiv preprint arXiv:1805.11240, 2018.

[33] M. Bhardwaj, S. Choudhury, and B. Boots. Blending mpc & value function approximation for
efficient reinforcement learning. arXiv preprint arXiv:2012.05909, 2020.

[34] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[35] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning
fast without a model. arXiv preprint arXiv:2101.05982, 2021.

[36] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout q-functions for
doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.

[37] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Machine learning proceedings 1990, pages 216–224. Elsevier,
1990.

[38] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International conference on machine learning, pages 2829–2838. PMLR,
2016.

[39] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018. URL http:

//proceedings.mlr.press/v80/haarnoja18b.html.

[40] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From
theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357,
2017.

[41] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[42] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. Solar: Deep struc-
tured representations for model-based reinforcement learning. In International conference on
machine learning, pages 7444–7453. PMLR, 2019.

[43] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
In International Conference on Learning Representations, 2021.

[44] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. D. Ratliff, and D. Fox.
Closing the sim-to-real loop: Adapting simulation randomization with real world experience.
In ICRA, 2019.

[45] F. Ramos, R. Possas, and D. Fox. Bayessim: Adaptive domain randomization via probabilistic
inference for robotics simulators. In RSS, 2019.

[46] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-hand object rotation via rapid motor
adaptation. In CoRL, 2022. URL https://proceedings.mlr.press/v205/qi23a.html.

9

https://openreview.net/forum?id=Oxh5CstDJU
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v205/qi23a.html

[47] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In RSS, 2017. URL http://www.roboticsproceedings.

org/rss13/p48.html.

[48] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

[49] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[50] H. Hu, S. Mirchandani, and D. Sadigh. Imitation bootstrapped reinforcement learning. arXiv
preprint arXiv:2311.02198, 2023.

[51] M. Nakamoto, S. Zhai, A. Singh, M. Sobol Mark, Y. Ma, C. Finn, A. Kumar, and S. Levine.
Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. Advances in Neural
Information Processing Systems, 36, 2024.

[52] A. Gupta, A. Pacchiano, Y. Zhai, S. M. Kakade, and S. Levine. Unpacking re-
ward shaping: Understanding the benefits of reward engineering on sample complexity.
In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/

6255f22349da5f2126dfc0b007075450-Abstract-Conference.html.

[53] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume
3, AAAI’08, page 1433–1438. AAAI Press, 2008. ISBN 9781577353683.

[54] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[55] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A
general framework for data-driven reward definition. NeurIPS, 2018.

[56] K. Li, A. Gupta, A. Reddy, V. H. Pong, A. Zhou, J. Yu, and S. Levine. Mural: Meta-learning
uncertainty-aware rewards for outcome-driven reinforcement learning. In ICML, 2021.

[57] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[58] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez,
L. Hasenclever, J. Humplik, et al. Language to rewards for robotic skill synthesis. arXiv
preprint arXiv:2306.08647, 2023.

[59] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. Int. J. Robotics Res., 43(4):572–587, 2024. doi:10.1177/02783649231224053.
URL https://doi.org/10.1177/02783649231224053.

[60] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

[61] C.-A. Cheng, A. Kolobov, and A. Swaminathan. Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34:13550–13563, 2021.

[62] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry, and K. Sreenath. Lyapunov design for
robust and efficient robotic reinforcement learning. arXiv preprint arXiv:2208.06721, 2022.

10

http://www.roboticsproceedings.org/rss13/p48.html
http://www.roboticsproceedings.org/rss13/p48.html
http://papers.nips.cc/paper_files/paper/2022/hash/6255f22349da5f2126dfc0b007075450-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6255f22349da5f2126dfc0b007075450-Abstract-Conference.html
http://dx.doi.org/10.1177/02783649231224053
https://doi.org/10.1177/02783649231224053
http://arxiv.org/abs/1912.06680

[63] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, jul 1991. ISSN 0163-5719. doi:10.1145/122344.122377. URL https:

//doi.org/10.1145/122344.122377.

[64] T. Wang and J. Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

[65] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[66] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline re-
inforcement learning. Advances in neural information processing systems, 33:21810–21823,
2020.

[67] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine. Combining
model-based and model-free updates for trajectory-centric reinforcement learning. In Interna-
tional conference on machine learning, pages 703–711. PMLR, 2017.

[68] C.-A. Cheng, X. Yan, N. Ratliff, and B. Boots. Predictor-corrector policy optimization. In
International Conference on Machine Learning, pages 1151–1161. PMLR, 2019.

[69] C.-A. Cheng, X. Yan, and B. Boots. Trajectory-wise control variates for variance reduction in
policy gradient methods. In Conference on Robot Learning, pages 1379–1394. PMLR, 2020.

[70] T. Che, Y. Lu, G. Tucker, S. Bhupatiraju, S. Gu, S. Levine, and Y. Bengio. Combining model-
based and model-free rl via multi-step control variates. 2018.

[71] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[72] L. Grune and A. Rantzer. On the infinite horizon performance of receding horizon controllers.
IEEE Transactions on Automatic Control, 53(9):2100–2111, 2008.

[73] J. Wang, Q. Xue, L. Li, B. Liu, L. Huang, and Y. Chen. Dynamic analysis of simple pendulum
model under variable damping. Alexandria Engineering Journal, 61(12):10563–10575, 2022.

[74] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark for
long-horizon complex manipulation, 2023. URL https://arxiv.org/abs/2305.12821.

[75] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak. Auto-tuned sim-to-real transfer. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1290–1296.
IEEE, 2021.

11

http://dx.doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://arxiv.org/abs/2305.12821

A Related Work

Simulation-to-Reality Transfer. In this work, we assume that perception is approximately matched
and focus primarily on the dynamics gap. To bridge this dynamics gap, two classes of methods have
been popular - 1) adapting simulation parameters to real-world data and 2) learning adaptive or ro-
bust policies to account for changing real-world dynamics. While going back from the real world
to simulation can help target the simulation parameters more accurately [44, 45, 14], it cannot
overcome inherent model misspecification, as we show in our experimental evaluation. Learning
adaptive policies to account for changing real-world dynamics [46, 11, 47] can account for some
types of dynamics change, but is unable to guide exploration and adapt beyond the training range.
Perhaps most related is [13, 18], where simulation policies are fine-tuned with off-policy RL. How-
ever, besides initialization, simulation is not used to guide exploration throughout fine-tuning. In
contrast, our work proposes using simulation information throughout the process of fine-tuning to
improve efficiency.
Fine-tuning in Reinforcement Learning. Our work is related to algorithms for fine-tuning in
RL with online data collection, primarily from offline RL or imitation initializations. These algo-
rithms typically aim to provide an initialization that can continue improving with standard off-policy
RL [48, 49, 43, 50, 51]. They initialize policies and Q-functions from offline data and continue train-
ing them with standard RL methods, but do not use the pre-training data beyond initialization and
populating the replay buffer. In this work, we utilize the pretraining in simulation not just for initial-
ization, but also to provide guidance throughout the improvement process.
Reward Design in Reinforcement Learning. A significant component of our methodology is
learning dense reward shaping from simulation to guide real-world fine-tuning. This is closely tied
to the problem of reward design and reward inference in RL [52]. While a challenging problem
tabula rasa, prior techniques have attempted to infer rewards from expert demos [53, 54], success
examples [55, 56], LLMs [57, 58] or heuristics [59, 60]. We rely on simulation to provide reward
supervision using the PBRS formalism [29], and shorten the horizon of the learning task to im-
prove the sample comlexity of real-world learning [61, 62]. A final complementary line of work to
our comes from [22, 23, 24, 25] which relabels rewards from off-task (simulated) data, effectively
up-weighting transitions which approximately match the dynamics observed in the target domain.
While these works focus on the retrieval of useful samples from prior data sets with shifted dynam-
ics, our approach uses prior data to guided the discovery of novel sequences of states and actions in
the target domain. In principle, these techniques could be used in conjunction, although we leave
this to future work.
Model-Based Reinforcement Learning. A significant body of work on model-based RL learns
models for the dynamics to perform data augmentation [63, 64, 28, 65, 66] for downstream policy
optimization algorithms, plan online using the model [41, 42] and model predictive control (MPC),
or to be used as a control variate to reduce variance of policy gradient methods [67, 68, 69, 70].
The central challenge for each of these model-based methods is that small inaccuracies in predictive
models can quickly compound over time leading to large model-bias. An effective critic can be
used to shorten search horizons [31, 33, 71] yielding easier decision-making problems, but learning
such a critic from scratch can still require large amounts of on-task data. We demonstrate that for
many real-world continuous control problems critics learned entirely in simulation can be robustly
transferred to the real-world and substantially accelerate model-based learning.

B Theoretical Analysis

In this section we analyze the effectiveness of the H-step simulation-guided expert π∗
H . Specifically,

we seek suboptimality bounds for this agent and to understand when the behavior of this idealized
policy will be robust to the errors made by MBRL techniqus which leverage an approximate model p̂
for preal that has been learned from real-world data. We are particularly interested in understanding
how SGFT with short prediction horizons H can mitigate errors in p̂, as this will be the case we face
when fine-tuning in the real-world with a small number of samples. To set the stage for this analysis,
we first relate the results from several prior theoretical analyses from the RL literature.

12

Proposition 1. Suppose that maxs∈S |Vsim(s)−V ∗
real(s)| ≤ ϵ and that ∥p̂(s, a)−preal(s, a)∥ ≤ α.

Then for H sufficiently small and for each s ∈ S we have:

V ∗
real(s)− V

π̂∗
H

real(s) ≤ O

(
γ

1− γ
αH +

γH

1− γH
ϵ

)
, (4)

where π̂∗
H is the MPC policy under the approximate mode as in ??

This result is a direct translation of [33, Theorem 3.1] to the notation our setting, where the big
O notation suppresses problem dependent constants and lower-order terms for small values of H
which are not important for our discussion. To understand the bound, first set α = 0 so that there is
no modeling error (and we recover the behavior of π∗

H). In this case, we are incentivized to make
H larger. Intuitively, this follows from the fact that Vsim(sH) can be viewed as an approximation to
V ∗
real(sH) in the H-step look ahead objective Equation (3). Because this approximation is scaled by

γH , the effect of errors in Vsim is diminished for larger values of H . Note, however, that this result
scales poorly for small values of H . This is especially true for long-horizon problems where γ ≈ 1.
On the other hand, the term involving α captures how errors in the model accumulate for different
horizons H , leading to mistakes in decision making. This term incentivizes us to make H as small
as possible. In particular, we are interested in understanding how we can mitigate large values of α,
which will arise in low-data regimes.

However, because results like ?? simply assume uniform worst-cases bounds on the difference
between between the magnitudes of Vsim and V ∗

real, they do not capture the fact that Vsim may still
preserve an ordering over states that is useful for guiding real-world decision making. That is: when
the geometry of Vsim enables SGFT to guide policy search algorithms towards effective policies
under the real dynamics. We use the following definition from [61], which is similar to properties
from other works [62, 72]:
Definition 1. We say that Vsim is improvable with respect toMreal if for each s ∈ S we have:

max
a

Es′∼preal(s,a)[γVsim(s′)]− Vsim(s) ≥ −r(s). (5)

Namely, Vsim is improvable with respect to Mreal if there exists a policy which can increase
Vsim enough over time for each state (with respect to the reward function). A quick intuition we
make precise later is the following: as long as Vsim reaches a maximum at desirable states in the
real world (such as at desired positions for an object being manipulated), then if Vsim is improvable
with respect toMreal we can greedily follow Vsim over short horizon to reach these desirable states.
Vsim is learned under the simulation dynamics and policy πsim such that Vsim(s) = E[γVsim(s′)+
r(s)|s′ ∼ psim(s, a), a ∼ πsim(·|s)], and thus is constructed to be improvable with respect to
Msim. We use the following pedagogical example to begin building an intuition for why we might
expect Vsim to also be improvable with respect toMreal.

Pedagogical Example. Consider the following case where the real and simulated dynamics are
both deterministic, namely, s′ = freal(s, a) and s′ = freal(s, a) for some real and simulated tran-
sition maps freal and fsim. Further assume for simplicity that πsim is deterministic. Specifically,
consider the case where s = (s1, s2) ∈ S ⊂ R2, a ∈ A = R, and the dynamics are given by:

fsim(s, a) =

[
s′1
s′2

]
=

[
s1
s2

]
+∆t

[
x2

g
l sin(x1) + a

]
freal(s, a) =

[
s′1
s′2

]
=

[
s1
s2

]
+∆t

[
x2

g
l sin(x1) + a+ e(s1, s2).

]
These are the equations of motion for a simple pendulum [73] under an Euler discretization with
time-step ∆t, where s1 is the angle of the arm, s2 is the angular velocity, a is the torque applied by
the motor, g is the gravitational constant, and l is the length of the arm. The real-world dynamics
contains an unmodeled terms e(s1, s2), which might correspond to complex frictional or damping
terms. Consider the policy for the real-world given by: πreal(s) = πsim(s)− e(s1, s2), and observe
that fsim(s, πsim(s)) = freal(s, πreal(s)). This implies that γVsim(freal(s, πreal(s)))−Vsim(s) =
γVsim(fsim(s, πsim(s))) − Vsim(s) = −r(s), and thus Vsim is improvable with respect toMreal

(because it is improvable with respect toMsim by definition). Note that πsim and πreal can differ
substantially for a large gap e(s1, s2).

13

Main Insight. To make this property precise, we observe the fact: suppose for any state s, there
is some a such that preal(·|s, a) = psim(·|s, πsim(s)); then Vsim is improvable with respect to
Mreal. More generally, for many continuous control tasks, it is reasonable to expect that psim
approximately captures the geometry of what motions are possible under preal, even if the actions
required to realize those motions in the two MDPs differ substantially, and thus it is reasonable to
assume Vsim is improvable. This intuition is high-lighted by our real-world learning examples in
cases where we use SGFT with a prediction horizon of H = 1; in these cases the learned policy is
able to greedily follows Vsim at each state and reach the goal, even in the face of large dynamics
gaps. We now present our main theoretical result:

Theorem 1. Let the Assumptions of Proposition 1 hold. Further suppose that Vsim is improvable
with respect toMreal. Then for H sufficiently small and each s ∈ S we have:

V ∗
real(s)− V

π̂∗
H

real(s) ≤ O

(
γ

1− γ
αH + γHϵ

)
, (6)

where π̂∗
H is the MPC policy under the approximate mode as in ??.

Proof can be found in the Appendix. At a high-level, the proof uses arguments similar to [72] to
bound the suboptimality of the expert policy π∗

H , and then combines this bound with the perturbation
bounds from [33] to bound how errors in the dynamics lead to additional suboptimaly. Note that
that the dependence on H and α is identical to the bound from Proposition ?? above. However,
the scaling for the term involving ϵ is improved substantially for small values of H , especially for
long-horizon problems where γ ≈ 1. Thus, we can more readily use small values of H is combat
large model-bias when Vsim is improvable with respect toMreal. This provides insight into how
SGFT can rapidly learn effective policy in the real world by using short model rollouts with a coarse
model to approximate the behaviors of π̂∗

H .

C Proofs

We first present several Lemma’s used in the proof of 1.

Lemma 1. [33, Lemma A.1.] Suppose that ∥p̂(s, a) − preal(s, a)∥1 ≤ α. Further suppose ∆r =
maxsim r(s) − minsim r(s) and ∆V = maxsim Vsim(s) − minsim Vsim(s) are finite. Then, for
each policy π̃ we may bound the H-step returns under the model and true dynamics by:

∥V̂ π̃
H(s)− V π̃

H∥∞ ≤ γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (7)

Proof. This result follows imediatly from the proof of [33, Lemma A.1.], with changes to notation
and noting that we assume access to the true reward.

Lemma 2. Suppose that ∥p̂(s, a) − preal(s, a)∥1 ≤ α. Further suppose ∆r = maxsim r(s) −
minsim r(s) and ∆V = maxsim Vsim(s) −minsim Vsim(s) are finite. Then for each state s ∈ S
we have:

V
π̂∗
H

H (s)− V ∗
H(s) ≤

(
1− γH−1

1− γ
∆r + γH∆V

)
(8)

where π̂∗
H ← maxπ̃H

V̂ π̃H (s).

Proof. Let π̃∗
H ← maxπ̃H

V π̃
H(s) be the optimal policy under the true dynamics. By Lemma 1 we

have both that

V ∗
H(s) ≤ V̂ π̃∗

H (s) + γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (9)

V̂
π̂∗
H

H (s) ≤ V
π̂∗
H

H (s) + γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (10)

Combining these two bounds with the fact that V̂ π̃∗
H (s) ≤ V

π̂∗
H

H (s) yields the desired result.

14

Lemma 3. Suppose that supa Es∼preal(s,a)[γVsim(s′)]−Vsim(s) > −r(s). Then we have V ∗
H(s) ≥

V ∗
H−1(s) for each s ∈ S. Then for each s ∈ S we have:

V ∗
H(s) ≥ V ∗

H−1(s) (11)

Proof. Fix an initial condition s0 ∈ S. Let π be arbitrary, and fix the shorthand π∗ =
{π∗

0 , . . . , π
∗
H−1} for the time-varying policy π∗ ← maxπ̂ V

π̂
H−2(s0). Then, concatenate these poli-

cies to define: π̄ = {π∗
1 , . . . , π

∗
H−2, π}, which is simply the result of applying the optimal policy for

the (H − 1)-step look ahead objective Equation (3) starting from s0, followed by applying π for a
single step. Letting the following distributions over trajectories by generated by π∗, by the definition
of V ∗

H :

V ∗
H(s0)

≥ E

[
γHVsim(sH) +

H−1∑
t=1

γtr(st)− Vsim(s0)

]
= E

[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1)

]
+ E

[
γH−1Vsim(sH−1) +

H−2∑
t=1

γtr(st)− Vsim(s0)

]

= E
[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1) + V ∗

H−1(s0)

]
Now, since our choice of π used to define π̄ was arbitrary, we choose π to be deterministic and
such that Es′∼preal(s,a)[γVsim(s′)] − Vsim(s) > −r(s) at each state s ∈ S, as guaranteed by the
assumption made for the result. This choice of policy grantees that:

E
[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1)

]
≥ 0. (12)

The desired result follows immediately by combining the two preceding bounds, and noting that
our choice of initial condition was arbitrary, meaning the preceding analysis holds for all initial
conditions.

Lemma 4. Suppose that Vsim is improvable and further suppose that maxs∈S |Vsim(s) −
V ∗
real(s)| < ϵ. Then any policy π which satisfies A∗

H(s, π) = Q∗
H(s, π) − V ∗

H(s) ≥ −δ will
satisfy:

V ∗
real(s)− V π

real(s) ≤ γHϵ+
δ

1− γ
. (13)

Proof. Our goal is first to bound how Q∗
H(s, π) changes on expectation when applying the given

policy for a single step. We have that:

Q∗
H(s, π) + δ ≥ V ∗

H(s) (14)

V ∗
H(s) ≥ V ∗

H−1(s) (15)

Q∗
H(s, π) = E[γV ∗

H−1(s
′) + r̄(s, s′)] (16)

where the first inequality follows from the Assumption of the theorem, the second inequality follows
from Lemma 3 and is simply the definition of Q∗

H . Letting s′ ∼ preal(s, a) with a ∼ π(·|s), we can
take expectations can combine the previous relation to obtain:

γE [Q∗
H(s′, π) + r̄(s, s′)]+γδ ≥ γE [V ∗

H(s′) + r̄(s, s′)] + ≥ E
[
γV ∗

H−1(s
′) + r̄(s, s′)

]
= Q∗

H(s, π).
(17)

That is:
γE [Q∗

H(s′, π)] + r̄(s) + γδ ≥ Q∗
H(s, π). (18)

Alternatively:
r̄(s) ≥ Q∗

H(s, π)− γE[Q∗
H(s′, π)]− γδ. (19)

15

Next, we use this bound to provide a lower bound for V π
real(s). Because the previous analysis holds

at all states when we apply π, the following holds over the distribution of trajectories generated by
applying π starting from the initial condition s0 :

Eρπ
real(s)

[∞∑
t=0

γtr̄(st)

]
= V π

real(s)− Vs(s0)

≥ Eρπ
real(s)

[∞∑
t=0

γt

(
Q∗

H(st, π)− γQ∗
H(st+1, π)

)]
− γδ

∞∑
t=0

γt

= Q∗
H(s0, π)−

γδ

1− γ
,

where we have repeatedly telescoped out sums to cancel out terms.
Thus, we have the lower-bound:

V π
real(s) ≥ Q∗

H(s, π) + Vsim(s0)−
γδ

1− γ
(20)

Next, we may bound:

V ∗
H(s0) + Vsim(s0) ≥ E

ρπ∗
real (s0)

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)

]
(21)

= E
ρπ∗

real (s0)

[
γHVsim(sH)− γHV ∗

real(sH) + γHV ∗
real(sH) +

H−1∑
t=0

γtr(st)

]
= E

ρπ∗
real (s0)

[
γHVsim(sH)− γHV ∗

real(sH)
]
+ V ∗

real(s0).

Invoking the assumption that maxs |Vsim(s) − V ∗
real(s)| < ϵ, we can combined this with the pre-

ceding bound to yield:
V ∗
H(s0) + Vsim(s0) ≥ V ∗

real(s)− γHϵ. (22)

Finally, once more invoking the fact that Q∗
H(s, π) + δ ≥ V ∗

H(s) for each s ∈ S and combining this
with Equation (20) and Equation (21), we obtain that:

V π
real(s) ≥ Q∗

H(s, π) + Vsim(s0)−
γδ

1− γ

≥ V ∗
H(s0) + Vsim(s0)−

γδ

1− γ
− δ

≥ V ∗
real(s)−

γδ

1− γ
− δ − γHϵ

= V ∗
real(s)−

δ

1− γ
− γHϵ

from which the state result follows immediately.

Proof of Theorem 1:

Proof. The result follows directly from a combination of Lemma 4 and Lemma 2 by suppressing
problem-dependent constants and lower order terms in the discount factor γ.

D Environment Overviews:

Hammering is a highly dynamic task involving force and contact dynamics that are impractical to
precisely model in simulation. We construct such a task where the robot is tasked with hammering
a nail in a board. The nail has high, variable dry friction along its shaft. In order to hammer the nail
into the board, the agent must hit the nail with high force repeatedly. The dynamics are inherently
misspecified between sim and real here due to the infeasibility of precisely modeling the properties
of the nail and its contact behavior with the hammer and board.

16

Insertion [74] involves the robot grasping a table leg and accurately inserting it into a table hole. The
contact dynamics between the leg and the table differ between simulation and real-world conditions.
In the simulation, the robot successfully completes the task by wiggling the leg into the hole, but
in the real world this precise motion becomes challenging due to inherent noise in the real-world
observations as well as contact discrepancies between the leg and the table hole.
Pushing requires pushing a puck of unknown mass and friction forward to the edge of the table
without it falling off the edge. Here, the underlying feedback controller of the real world robot
inherently behaves differently from simulation. Additionally, retrieving and processing sensor in-
formation from cameras incurs variable amounts of latency. As a result, the controller executes each
commanded action for variable amounts of time. These factors all contribute to the dynamics shift
between sim and real, requiring real-world fine-tuning to reconcile.

E Environment Details

Sim2Real Environment. We use a 7-DoF Franka FR3 robot with a 1-DoF parallel-jaw gripper. Two
calibrated Intel Realsense D455 cameras are mounted across from the robot to capture position of
the object by color-thresholding pointcloud readings or retrieving pose estimation from aruco tags.
Commands are sent to the controller at 5Hz. We restrict the end-effector workspace of the robot in a
rectangle for safety so the robot arm doesn’t collide dangerously with the table and objects outside
the workspace. We conduct extensive domain randomization and randomize the initial gripper pose
during simulation training. The reward is computed from measured proprioception of the robot and
estimated pose of the object. Details for each task are listed below.

Hammering. For hammering, the action is 3-dimensional and sets delta joint targets for 3 joints
of the robot using joint position control. The observation space is 12-dimensional and includes end-
effector cartesian xyz, joint angles of the 3 movable joints, joint velocites of the 3 movable joints, the
z position of the nail, and the xz position of the goal. Each trajectory is 50 timesteps. In simulation,
we randomize over the position, damping, height, radius, mass, and thickness of the nail. Details
are listed in Tab. 1.

The reward function is parameterized as r(t) = −10 · rnail−goal(t) where rnail−goal = (rnail)z −
(rgoal)z represents the distance in the z dimension of the nail head to the goal, which we set to be the
height of the board the nail is on.

Puck Pushing. For puck pushing, the action is 2-dimensional and sets delta cartesian xy position
targets using end-effector position control. The observation space is 4-dimensional and includes
end-effector cartesian xy and the xy position of the puck object. Each trajectory is 40 timesteps. In
simulation, we randomize over the position of the puck. Details are listed listed in Tab. 2.

Let ree be the cartesian position of the end effector and robj be the cartesian position of the puck
object. The reward function is parameterized as r(t) = −ree−goal(t) − robj−goal(t) + rthreshold(t) −
rtable(t) where ree−goal(t) = ∥ree(t)−robj(t)+[3.5cm, 0.0cm, 0.0cm]∥ represents the distance of the
end effector to the back of the puck, robj−goal(t) = ∥(robj(t))x−55cm∥ represents the distance of the
puck to the goal (which is the edge of the table along the x dimension), rthreshold(t) = I[robj−goal(t) ≥
2.5cm] represents a goal reaching binary signal, and rtable(t) = I[(robj(t))z ≤ 0.0] represents a
binary signal for when the object falls of the table.

Inserting. For inserting, the action is 3-dimensional and sets delta cartesian xyz position tar-
gets using end effector position control. The observation space is 9-dimensional and includes
end-effector cartesian xyz, the xyz of the leg, and the xyz of the table hole. Each trajectory is
40 timesteps. In simulation, we randomize the initial gripper position, position of the table, and
friction of both the table and the leg.

Let rpos1(t) and rpos2(t) represent the Cartesian positions of the leg and table hole. Let:

xdistance(t) = clip (|rpos1,x(t)− rpos2,x(t)|, 0.0, 0.1)

ydistance(t) = clip (|rpos1,z(t)− rpos2,z(t)|, 0.0, 0.1)

zdistance(t) = clip (|rpos1,y(t)− rpos2,y(t)|, 0.0, 0.1)

17

Let the success condition be defined as:

rsuccess(t) = I [xdistance(t) < 0.01 and ydistance(t) < 0.01 and zdistance(t) < 0.01]

The reward function is now:

r(t) = rsuccess(t)− 100 ∗
(
xdistance(t)

2 + ydistance(t)
2 + zdistance(t)

2
)

Sim2Sim Environment. We additionally attempt to model a sim2real dynamics gap in simu-
lation by taking the hammering environment and create a proxy for the real environment by fixing
the domain randomization parameters, fixing the initial gripper pose, and rescaling the action mag-
nitudes before rolling out in the environment.

F Implementation Details

Algorithm Details. We use SAC as our base off-policy RL algorithm for training in simulation and
finetuning in the real world. For our method, we additionally add in two networks: a dynamics model
which predicts next state given current state and action, and a state-conditioned value network which
regresses towards the Q-value estimates for actions taken by the current policy. These networks are
training jointly with the actor and critic during SAC training in simulation.

Network Architectures. The Q-network, value network, and dynamics model are all parame-
terized by a two-layer MLP of size 512. The dynamics model is implemented as a delta dynamics
model where model predictions are added to the input state to generate next states. The policy net-
work produces the mean µa and a state-dependent log standard deviation log σa which is jointly
learned from the action distribution. The policy network is parameterized by a two-layer MLP of
size 512, with a mean head and log standard deviation head on top parameterized by a FC layer.

Pretraining in Simulation. For hammering and puck pushing, we collect 25,000,000 transitions
of random actions and pre-compute the mean and standard deviation of each observation across
this dataset. We train SAC in simulation on the desired task by sampling 50-50 from the random
action dataset and the replay buffer. We normalize our observations by the pre-computed mean
and standard deviation before passing them into the networks. We additionally add Gaussian noise
centered at 0 with standard deviation 0.004 to our observations with 30% probability during training.
For inserting, we train SAC in simulation with no normalization. We train SAC with autotuned
temperature set initially to 1 and a UTD of 1. We use Adam optimizer with a learning rate of
3× 10−4, batch size of 256, and discount factor γ = .99.

Finetuning in Real World. We pre-collect 20 real-world trajectories with the policy learned in
simulation to fill the empty replay buffer. We then reset the critic with random weights and continue
training SAC with a fixed temperature of α = 0.01 and with a UTD of 2d with the pretrained actor
and dynamics model. We freeze the value network learned from simulation and use it to relabel
PBRS rewards during finetuning. During finetuning, for each state sampled from the replay buffer,
we additionally hallucinate 5 branches off and add it to the training batch. As a result, our batch size
effectively becomes 1536. The policy, Q-network, and dynamics model are all trained jointly on the
real data during SAC finetuning. We don’t train on any simulation data during real-world finetuning
because we empirically found it didn’t help finetuning performance in our settings.

18

Table 1: Domain randomization of hammer-
ing task in simulation

Name Range

Nail x position (m) [0.3, 0.4]
Nail z position (m) [0.55, 0.65]
Nail damping [250.0, 2500.0]
Nail half height (m) [0.02, 0.06]
Nail radius (m) [0.005, 0.015]
Nail head radius (m) [0.03, 0.04]
Nail head thickness (m) [0.001, 0.01]
Hammer mass (kg) [0.015, 0.15]

Table 2: Domain randomization of puck
pushing task in simulation

Name Range

Puck x position (m) [0.0, 0.3]
Puck y position (m) [-0.25, 0.25]

G Qualitative Results

Fig. 5: Visualization of real rollout, hallucinated states, and
value function. The red dots indicate states along a real rollout
in simulation. The blue dots indicate hallucinated states branch-
ing off real states generated by the learned dynamics model. The
green heatmap indicates the value function estimates at different
states. A corresponding image of the state is shown for two states.
Since it is hard to directly visualize states and values due to the
high-dimensionality of the state space, we only show a part of the
trajectory where the puck does not move. This allows us to visual-
ize states and values along changes in only end effector xy.

We analyze the characteristics of hal-
lucinated states and value functions
in Fig. 5. We visualize a trajec-
tory of executing puck pushing in
simulation using the learned policy
in this plot. The red dots indicate
states along a real rollout in simula-
tion. The blue dots indicate halluci-
nated states branching off real states
generated by the learned dynamics
model. The green heatmap indicates
the value function estimates at differ-
ent states. A corresponding image of
the state is shown for two states. The
trajectory shown in the figure shows
the learned policy moving closer to
the puck before pushing it. The value
function heatmap shows higher val-
ues when the end effector is closer to
the puck and lower values when fur-
ther. Hallucinated states branching
off each state show generated states
for finetuning the learned policy.

Note that it is hard to directly
visualize states and values due to
the high-dimensionality of the state
space. To get around this for puck pushing, we only show a part of the trajectory where the puck
does not move. This allows us to visualize states and values along changes in only end effector xy.

19

H Sim-to-Sim Experiments

Here we additionally test each of the proposed methods on the sim-to-sim set-up from [75], which
is meant to mock sim-to-real gaps but for familiar RL benchmark tasks. The results are depicted
in Figure for the Walker Walk and Cheetah run environments. For both tasks, we use the precise
settings from [75]. Note that the general trend of these results matches our real world experiments –
SGFT substantially accelerates learning and overcoming the dynamics gap between the ‘simulation’
and ‘real environments’.

Fig. 6: Normalized Rewards for Sim-to-Sim Transfer. We plot the normalized rewards for two sim-to-sim
transfer tasks, where the rewards are normalized by the maximum reward achieved by any method.

20

	Introduction
	Simulation-Guided Fine-Tuning
	Reward Shaping and Horizon Shortening
	H-step Simulation-Guided Expert Policies
	The SGFT Framework
	Leveraging Short Model Roll-outs

	Experiments
	Analysis

	Limitations and Future Work
	Related Work
	Theoretical Analysis
	Proofs
	Environment Overviews:
	Environment Details
	Implementation Details
	Qualitative Results
	Sim-to-Sim Experiments

