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(a) ActorsHQ dataset rendered by DEGAS (b) Our DREAMS-Avatar dataset rendered by DEGAS (c) Rich facial expressions rendered by DEGAS

Figure 1. Photorealistic rendering of full-body avatars using our method on (a) ActorsHQ dataset and (b) our proposed DREAMS-
Avatar dataset, (c) with rich facial expressions.

Abstract

Although neural rendering has made significant ad-
vances in creating lifelike, animatable full-body and head
avatars, incorporating detailed expressions into full-body
avatars remains largely unexplored. We present DEGAS,
the first 3D Gaussian Splatting (3DGS)-based modeling
method for full-body avatars with rich facial expressions.
Trained on multiview videos of a given subject, our method
learns a conditional variational autoencoder that takes both
the body motion and facial expression as driving signals
to generate Gaussian maps in the UV layout. To drive the
facial expressions, instead of the commonly used 3D Mor-
phable Models (3DMMs) in 3D head avatars, we propose to
adopt the expression latent space trained solely on 2D por-
trait images, bridging the gap between 2D talking faces and
3D avatars. Leveraging the rendering capability of 3DGS
and the rich expressiveness of the expression latent space,
the learned avatars can be reenacted to reproduce photo-
realistic rendering images with subtle and accurate facial
expressions. Experiments on an existing dataset and our
newly proposed dataset of full-body talking avatars demon-
strate the efficacy of our method. We also propose an audio-
driven extension of our method with the help of 2D talking

faces, opening new possibilities for interactive AI agents.
Project page: https://initialneil.github.io/
DEGAS .

1. Introduction
Photorealistic and animatable human modeling has been
an active research topic in computer vision and graphics
for decades. Interactive avatars that are capable of per-
forming natural body motions and subtle facial expressions
can benefit numerous downstream applications, e.g., tele-
presentation [30, 34], virtual companion [3], and extended
reality (XR) storytelling [8, 22].

With the rise of neural rendering such as Neural Radi-
ance Fields (NeRF) [42] and 3DGS [31], we observe a boost
in terms of quality and rendering efficiency for both full-
body avatars [25, 29, 38] and head avatars [52, 55, 56, 80].
Yet there is a lack of dataset and method for integrating the
two, i.e., expressive full-body avatars equipped with both
body pose control and rich facial expressions. We aim to fill
in the gap by proposing DEGAS (Detailed Expressions on
full-body Gaussian Avatars), the first 3DGS-based method
for modeling full-body talking avatars together with a new
dataset for evaluation.

https://initialneil.github.io/DEGAS
https://initialneil.github.io/DEGAS
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Figure 2. The pipeline of our method. DEGAS takes face signal from the pretrained expression encoder of DPE [44], which is injected
to the body signal from SMPL-X [46]. The pose-dependent Gaussian maps generated by the convolutional decoder are applied to the
pose-independent maps for 3DGS [31] rendering.

A naive way to enable facial expressions on full-body
avatars would be using 3DMMs for facial control, for exam-
ple, controlling the expression parameters of SMPL-X [46],
or using the parameters of FLAME [36] or BFM [47] as
driving signals. We find two drawbacks of such naive
methods. 1) The expressiveness of 3DMMs is limited [44,
59, 65]. Being coarse meshes, 3DMMs are essentially
not able to capture subtle facial changes. 2) Driving sig-
nal generation for a 3DMM is non-trivial. Both video-
driven [17, 41, 78] and audio-driven [1, 16, 50, 58, 65]
methods suffer from efficiency, accuracy, and expressive-
ness issues. Recent works [43, 52] have achieved photore-
alistic facial modeling in a very dense multi-view camera
set-up. However, accurate 3DMM registration is non-trivial
from a monocular camera [17, 41].

One important trend we observe in recent works on
2D talking faces is the learning of disentangled latent
spaces for identity, pose, and expression [15, 44, 62, 68].
Such a framework enables standalone extraction of identity-
agnostic pose and expression parameters from input images.
We propose to adopt the pretrained encoder for expression
from DPE [44] to generate driving signals for the facial con-
trol of our avatar modeling. To the best of our knowledge,
we are the first method to bridge the gap between 2D talk-
ing faces and 3D avatars. We take inspiration from the Score
Distillation Sampling proposed in DreamFusion [51] where
a pretrained 2D generative model lays the foundation for 3D
generative tasks.

One of the benefits of involving a pretrained encoder is
that we can extend audio-driven 2D talking faces to our 3D
avatars. Given one portrait image and an audio clip, we
first use SadTalker [74] to generate the corresponding talk-

ing head video, and then apply the pretrained expression
encoder to extract driving signals for our avatars.

Though both trained with registered meshes, head
avatars and full-body avatars usually face very different reg-
istration qualities. With well aligned mesh surfaces, the
binding of the 3D Gaussians and the underlying mesh is
usually simple for head avatars. Both SplattingAvatar [56]
and GaussianAvatars [52] propose to bind 3D Gaussians to
FLAME mesh triangles without any pose-dependent com-
pensations. Full-body avatars, on the other hand, usually
face the challenge of a much less accurate underlying mesh
because of clothing. D3GA [79] proposes to alleviate this
problem by modeling clothes with separate tetrahedron lay-
ers. We follow the practice of AnimatableGaussians [38]
and CodecAvatars [2] to leverage the ability of 2D CNNs
for the pose-dependent generation of 3DGS parameters.

In summary, our main contributions are as follows:

• We propose the first 3DGS-based method for full-body
talking avatars and a multi-view captured dataset of full-
body avatars with rich facial expressions.

• We propose to drive 3D avatars with 2D talking faces,
bridging the gap between these two research topics and
opening new possibilities for the reenactment of photo-
realistic avatars.

2. Related Work
2.1. 3D Avatar Representations

3D avatar modeling methods have three major design
choices to make: appearance representation, canonical
modeling, and posing method. The change of appearance



representation from mesh texture [2, 20, 40] to points [75],
NeRF [29, 80], and 3DGS [25, 38, 52, 56], has been the
driving force of quality improvements in this field.

In terms of canonical modeling, there are two major cate-
gories depending on whether the appearance is pixel-wisely
defined on the UV space or not. UV atlas of SMPL [39],
SMPL-X [46], and FLAME [36] provides a well aligned
layout for pixel-wise appearance representation. CodecA-
vatars [2, 40, 43], HDHumans [21], DDC [20], and UVVol-
umes [7] predict pixel-wise appearance features on the UV
space. RGCA [55], ASH [45], and GaussianAvatar [25]
construct pixel-wise 3D Gaussian parameters. Animatable-
Gaussians [38] further uses front and back planes to utilize
the geometry details from the mesh.

When the UV layout is not used, the canonical model is
usually defined tightly aligned to the underlying mesh. Neu-
ralBody [48, 49] encodes learnable latent codes to SMPL
mesh vertices. EditableHumans [24] assigns a learnable
codebook to the vertices of SMPL-X. SLRF [76] learns
structured local radiance fields attached to SMPL. Avatar-
Rex [77] models the appearance with feature planes aligned
to the canonical mesh. TAVA [35], TotalSelfScan [13], Po-
seVocab [37], InstantAvatar [29], and INSTA [80] propose
to build NeRF aligned with the canonical mesh. PointA-
vatar [75] constructs canonical points coupled with FLAME
canonical space. ARAH [60] and X-Avatar [57] define
pose-conditioned colors on the surface of the canonical
SDF. SplattingAvatar [56] and GaussianAvatars [52] learn
3D Gaussians embedded on the underlying mesh triangles.
3DGS-Avatar [53] and GauHuman [26] initialize 3D Gaus-
sians by sampling from SMPL. To take advantage of power-
ful 2D CNNs, our method falls in the former category with
pixel-wise 3DGS parameters defined as UV maps.

With the appearance and canonical modeling chosen, the
posing scheme helps warp sample points from the canoni-
cal space to the posed space or vice versa depending on the
need for rendering. Posed-dependent compensation is usu-
ally introduced together with LBS to achieve higher qual-
ity [2, 25, 38, 40, 55], while direct posing from mesh tri-
angles increases the inference FPS [52, 56, 80]. Appear-
ance modeling methods of texture, points, and 3DGS fa-
vor a forward posing scheme, i.e., per-primitive conversion
from the canonical space to the posed space. NeRF-based
methods [13, 29, 35, 37], on the other hand, usually require
the conversion of multiple samples on each ray from the
posed space back to the canonical space [5, 6].

2.2. Talking Face Video Generation

With rapid advances in GANs and diffusion models,
talking-face video generation has achieved remarkable
quality improvements. For instance, view-dependent land-
marks [61] and 3DMMs [70] have been leveraged to en-
hance the temporal consistency of synthesized facial ani-

mations. Recent investigations have focused on distilling
disentangled information such as emotion [4, 66], expres-
sion [44], and appearance [72], enabling face reenactment
and editing across identities. For producing different speak-
ing styles, image translation approaches [18, 28] are uti-
lized (e.g., HeadGAN [14] and SadTalker [74]). To express
a realistic appearance with natural pose modifications, re-
searchers have extended NeRF and 3DGS to talking face
tasks, as seen in GaussianTalk [71] and Ad-NeRF [19].

2.3. Choice of Driving Signal

Different from a 4D playback system like FVV [10], or
4DGS [64], avatar modeling methods focus on the reen-
actment from accessible driving signals. For full-body
avatars, apart from the commonly used skeleton poses as
driving signals [25, 29, 53], AnimatableGaussians [38]
also encodes the posed position maps. SurMo [27] fur-
ther considers temporal dynamics to overcome the limita-
tion of the deterministic nature of driving signals. Head
avatars [52, 56, 75, 80], on the other hand, usually take
into account the expression parameters of the underlying
3DMMs for better capturing the surface deformation of the
face mesh. Audio2Photoreal [43] models mesh-based full-
body avatars with facial control of accurate expression pa-
rameters registered from a dense camera set-up, which is
non-trivial to acquire from a more casual set-up.

Recent works in talking face video generation have ex-
plored different driving signals for both audio-driven and
video-driven tasks. Some [50, 54, 70] follow the practice
of 3D face animation [11, 16, 58, 65] to use parameters
from a pretrained 3DMM as the driving signal. However,
the expressiveness of 3DMM is limited. CodeTalker [65]
proposes to regress vertex offsets instead of FLAME pa-
rameters to improve the expressiveness of face animation.
DPE [44], instead of using 3DMMs, designs a bidirec-
tional cyclic training strategy to construct disentangled la-
tent spaces for pose and expression. VASA-1 [68] and
Hallo [67] inherit this idea and achieve outstanding quality
with the diffusion model. In this paper, we aim to discuss
that a well-trained latent space of expression solely from 2D
images, is a better choice than 3DMM as the driving signal
to reenact expressive 3D avatars.

3. Methodology

Given synchronized multiview videos and per-frame regis-
tered SMPL-X of a given subject, we train an expressive
full-body avatar modeled by a conditional variational au-
toencoder (cVAE) to generate the 3D Gaussian maps in the
layout of SMPL-X’s UV space, where each pixel param-
eterizes one 3D Gaussian primitive. We briefly introduce
3DGS in Section 3.1, and elaborate on the choice of driving
signals in Section 3.2, the design of cVAE in Section 3.3,



the LBS-based posing scheme in Section 3.4, and finally
the training process in Section 3.5.

3.1. Preliminaries: 3D Gaussian Splatting

3DGS [31] is an explicit primitive-based 3D representation
that models a scene or an object by a set of semi-transparent
ellipsoids as 3D Gaussians. Each 3D Gaussian has a param-
eter set of Gi = (µi, qi, si, oi,ηi). The probability density
of each Gaussian in space is formulated by its mean (posi-
tion) µi and covariance matrix Σi as:

f(x|µi,Σi) = e−
1
2 (x−µi)

TΣ−1
i (x−µi) (1)

Σi = RiSiS
T
i R

T
i (2)

where the rotation matrix Ri and scaling matrix Si that for-
mulate the covariance matrix Σi are constructed from the
rotation quaternion qi and the scaling vector si respectively.

Given the world-to-camera view matrix W and the Jaco-
bian J of the point projection matrix, the influence of the
3D Gaussians can be splatted onto 2D [81]:

Σ′
i = JWΣiW

TJT (3)

The final rendered color C of a pixel is given by the α-
blending of the 3D Gaussians that splatted onto it from near
to far:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) (4)

with αi evaluated from the splatted covariance Σ′
i, and the

opacity in logit oi with sigm() being the standard sigmoid
function:

αi(x) = sigm(oi) exp(−
1

2
(x− µi)(Σ

′
i)

−1(x− µi)) (5)

and ci is the view-dependent color represented by spherical
harmonics ηi. For simplicity in this paper, we disable the
view-dependent components of ηi by predicting ci directly.

3.2. Driving Signal

For full-body talking avatars, both facial expressions and
body gestures convey important messages in the process
of communication. We divide the driving signals into two
parts: body signal and face signal.
Body signal. We use the body pose parameters from
SMPL-X as the body signal, which enables body motion
control down to the finger level. We keep the motion of the
head to make the avatar more natural. The jaw pose, on the
other hand, is neutralized, leaving full facial control to the
face signal.
Face signal. Instead of using parameters from a 3DMM, we
adopt the pretrained expression encoder from DPE [44] to
extract pose-agnostic expressions from portrait images. Un-
like 3DMMs [36, 47] trained from untextured scan meshes,
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Figure 3. Tiling and masking of Pose θ Embedding. Joint angles
are filled to corresponding areas in the UV layout where the joints
can affect through skinning. Colors visualize the skinning weights,
which are converted to binary masks.
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Figure 4. Training with faces from multiviews. During training,
we extract expressions from multiple views and use a randomly
averaged latent code as the face signal.

the latent space that 2D talking faces methods like DPE [44]
constructed from a large number of images is more expres-
sive to capture the expression-related appearance variations.

3.3. Conditional Variational Autoencoder

Given synchronized multiview images and registered
SMPL-X of one frame, we neutralize the jaw pose and ex-
pression parameters and encode the body pose θ with three
encoders. Injected with a face signal from the expression
encoder, the mixed driving signal is fed to a convolutional
decoder for the generation of Gaussian parameters. Figure 2
illustrates the pipeline.
Pose θ Embedding. The first encoder takes as input the
pose vector θ ∈ R162 from SMPL-X with 54 joint angles,
excluding the root joint for global orientation. We follow
the practice of CABody [2] to expand the vector by 64×64
and then mask by downsized skinning maps from UV. This
encoding scheme sets each pose component to the UV lay-
out only where its corresponding joint affects. We visualize
where the joints’ θ are filled to in Figure 3.
Posed Vertex Map Encoders. Another two encoders pro-
cess the posed vertex map on UV. The first convolution en-
coder, referred to as the Posed Vertex Map (PVM) Encoder,
encodes the posed vertex map down to resolution 64×64,
matching that of the pose θ encoding. The second, referred
to as the Posed Vertices Embedding (PVE) Encoder, en-



codes the posed vertex map as a latent code, which we be-
lieve better captures the global information of the pose. The
encoded features from the above three branches are con-
catenated as the final pose feature.
Expression Encoder. DPE [44] proposes a bidirectional
cyclic training strategy in the training process aiming at the
disentanglement of pose and expression. We take the pre-
trained expression encoder as our facial controller. From
the input multiview images, we apply the head pose esti-
mator from SynergyNet [63] to find front-facing views. In
the training stage, we choose the four most frontal views to
extract expression codes. For every iteration, a randomly
weighted average of the four codes is used as the face sig-
nal, as illustrated in Figure 4.
Face Signal Injection. The expression code is firstly re-
formed by a fully connected layer and a small convolutional
decoder to the resolution of 32×32. Then it is used to re-
place the top-left quarter of the pose feature. In the UV lay-
out of SMPL-X, the top-left quarter corresponds to the face
region. After the injection, we feed the mixed feature to
a convolutional decoder for extracting Gaussian maps with
pose-dependent corrections for position ∆µ, rotation ∆q,
and scaling ∆s, as well as pose-independent opacity o, and
color c.

3.4. Gaussian Maps and LBS

We define the base Gaussian Maps in SMPL-X’s UV lay-
out. The SMPL-X mesh in T-Pose is rasterized to UV as the
base positions µ, i.e., every valid pixel on UV represents
one 3D Gaussian primitive in the canonical space. Simi-
lar to D3GA [79], we find every Gaussian primitive’s cor-
responding triangle on the mesh to initialize its base rota-
tion q, such that each Gaussian will have its first row axes
aligned with the mesh surface and the third with the nor-
mal. The base scaling s is initialized by treating the base
positions as a regular point cloud.

Given the barycentric-interpolated skinning weights W
from SMPL-X mesh, we apply the pose-dependent correc-
tions in the canonical space, and calculate the Gaussian
primitives’ posed position µp and rotation qp by LBS:

µp = LBSRt(µ+∆µ,θ,W) (6)

qp = LBSR(q +∆q,θ,W) (7)

s = s+∆s (8)

As in the 3DGS rendering pipeline, the Gaussian prim-
itives in the posed space G = (µp, qp, s, o, c) are splatted
onto a 2D image as the final rendering.

3.5. Loss and Training

In the training process, DEGAS is supervised with pho-
tometric loss of L1, Lssim, and Llpips [73]. The pose-
dependent position ∆µ is regularized by an offset loss. To

(a) The capture of DREAMS-Avatar dataset with 32 12MP cameras

(b) Captured expressions rendered by DEGAS (c) Rendered talking footage

Figure 5. The DREAMS-Avatar dataset. 6 subjects captured
with 32 12MP cameras performing large body poses and rich fa-
cial expressions, e.g., smiling, laughing, angry, surprised, and a
sequence of talking or singing.

help convergency, we also introduce a regularization Ls on
scaling to prevent any Gaussians from becoming too large
(10x larger than its base scaling):

L = (1− λssim)L1 + λssimLssim + λlpipsLlpips

+λµ ∥∆µ∥2 + λsLs

(9)

Ls(i) =

{
|si|, si > 10si
0, otherwise

(10)

where λssim = 0.2, λlpips = 0.1, λµ = 0.001, and
λs = 1.0 all through the experiments. We train DEGAS
with Adam [32] for 800k iterations.

4. Experiments
ActorsHQ Dataset. ActorsHQ is a high-quality dataset for
full-body avatars. We follow the experiment setup of Ani-
matableGaussians [38] to use 47 full-body views (46 views
for training and 1 for testing, at 1k resolution).
DREAMS-Avatar Dataset. Due to the lack of datasets for
evaluating full-body talking avatars with rich facial expres-
sions, we propose the DREAMS-Avatar dataset. DREAMS-
Avatar includes the performance of 6 subjects captured with
32 12MP cameras, each with 2 sequences. The first of
which is the footage of standard poses and facial expres-
sions, while the second is a freestyle talking or singing.
We show in Figures 1 and 5 the large body poses, rich fa-
cial expressions, and challenging clothes and glasses in the
dataset. We aim to cover the pose and expression variations
in a tele-presentation scenario.

4.1. Comparison on Full-body Avatars

We conducted experiments on ActorsHQ in compari-
son to state-of-the-art (SoTA) methods including 3DGS-
Avatar [53], GaussianAvatar [25], and AnimatableGaus-
sians [38]. Different from well-aligned 3DMMs available
in a multi-view head avatar dataset [33], registration in a



Figure 6. Rendering results of our method. We show rendering results of our method DEGAS on the DREAMS-Avatar dataset. DEGAS
is able to render high quality avatars with large body pose variations and rich facial expression details.

AnimatableGaussiansDEGAS (Ours) Ground Truth

Figure 7. Comparison on full-body avatars. Our method renders
high quality details on ActorsHQ.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
GaussianAvatar [25] 26.9497 0.9389 0.0407 38.5387
3DGS-Avatar [53] 28.7836 0.9511 0.0418 49.3673
AnimatableGaussians [38] 30.3607 0.9682 0.0339 33.4665

Ours 31.1262 0.9708 0.0318 24.4555

Table 1. Quantitative comparison on full-body avatars. Ex-
periments conducted on ActorsHQ Actor01/Sequence1 following
the setup of AnimatableGaussians [38]. Our method quantitatively
outperforms all three SoTA methods.

full-body setup is usually compromised by clothing (inac-
curate surface alignment), large poses (inaccurate joints),
moving head (inaccurate face alignment), etc.

Animatable

Gaussians
DEGAS (Ours) Ground TruthPoseVocabGaussianAvatar

Figure 8. Comparison on our DREAMS-Avatar dataset. Our
method renders high quality details comparing to SoTA methods.

Figure 7 shows the qualitative comparison on Actor-
sHQ. The rendering results of our method exhibit rich tex-
ture details. The quantitative comparison is reported in Ta-
ble 1. We report PSNR and SSIM calculated in the ren-
dered full images, LPIPS [73] and FID [23] in the cropped
regions. Our method quantitatively outperforms all three
SoTA methods. One key observation we make is that the
adoption of powerful 2D CNN networks in both Animat-
ableGaussians [38] and ours significantly improves pose-
dependent modeling. More discussions are in Section 4.3.



(a) All reenacted by Subject1 on the left

(b) Reenacted with open eyes and closed mouth

(c) Reenacted with closed eyes and open mouth

Figure 9. Reenactment results of our method. We show the rendering results of all subjects reenacted by Subject1’s Sequence2. Most
subjects are reenacted correctly on eyes and mouths except that Subject4’s eyes control was affected by the reflections on the glasses.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ AED↓
AnimatableGaussians [38] 32.1534 0.9814 0.0167 13.0829 0.2657
PoseVocab [37] 28.3966 0.9740 0.0503 147.1550 -
GaussianAvatar [25] 20.9320 0.9582 0.1056 81.0665 -

DEGAS (ours) 33.9613 0.9853 0.01520 13.9276 0.0598

Table 2. Quantitative comparison on DREAMS-Avatar. Our
method outperforms other SoTA methods in terms of PSNR,
SSIM, and LPIPS, and has on-par FID with AnimatableGaus-
sians [38]. Expression accuracy AED of our method is signifi-
cantly better. PoseVocab [37] and GaussianAvatar [25] failed to
reconstruct the face region in the DREAMS-Avatar dataset.

4.2. Comparison on DREAMS-Avatar

For the experiments conducted on DREAMS-Avatar, we
take Sequence1 of each subject for training with 31 cam-
eras excluding Cam02, which is used only for testing. We
evaluate view synthesis on Sequence1, novel pose and facial
expression reenactment on Sequence2.
View Synthesis. Table 2 shows the quantitative results of
view synthesis on Sequence1 Cam02’s 500–1000 frames
where both large poses and rich facial expressions are per-
formed. The facial expression accuracy is evaluated by the
Average Expression Distance (AED) proposed in PIRen-
derer [54], which estimates the cosine distance of the ex-
pression coefficients extracted by Deep3DFaceRecon [12].
We show the qualitative comparison in Figure 8. Animat-
ableGaussians [38] can render a high-quality body and a
neutral face. PoseVocab [37] and GaussianAvatar [25] fail
to model the face region due to the large expression varia-
tions in the dataset. While our method renders high-quality
body and face details. We show more rendering results of
DEGAS in Figure 6 with various poses and rich facial ex-
pressions.
Novel Poses and Expressions. We demonstrate the reen-
actment of DEGAS to novel poses. As shown in Figure 9,
all avatars trained are reenacted by Subject1’s Sequence2.
Both same-identity and cross-identity reenactments show
high-quality details. Specifically on the face regions, DE-
GAS responds correctly to eyes and mouth control.

Method FPS↑ Training Time↓ Disentangled
Encoder/Decoder

AnimatableGaussians [38] 10 160 hours ×
DEGAS (ours) 30 55 hours ✓

Table 3. Comparison with AnimatableGaussians [38]. Our
method reaches real-time framerate and favors disentangled en-
coder and decoder which contribute to potential applications.
Numbers recorded on one NVIDIA RTX3090 and training with
800k iterations according to the original paper of Animatable-
Gaussians [38].

Same-Identity Reenactment Cross-Identity
PSNR↑ SSIM↑ LPIPS↓ AED↓ AED↓

w/ DECA 26.185 0.954 0.049 0.1105 0.2638
w/ DAD-3DHeads 26.233 0.954 0.049 0.0998 0.3697
w/ DPE (ours) 26.212 0.954 0.049 0.0853 0.2413

Table 4. Choice of face signal. The 2D talking faces-based ex-
pression encoder from DPE [44] is a better choice as face signals.

4.3. Discussion w.r.t. AnimatableGaussians

Both our method and AnimatableGaussians [38] learn from
CodecAvatars [2] in adopting powerful 2D CNN networks
for the generation of Gaussian maps. The difference is that
ours does not use skip connections between encoder and
decoder, considering the potential streaming scenario [40].
Also, the bottleneck between the encoder and decoder that
follows the UV layout of SMPL-X enables the face signal
injection in our method. The runtime is compared in Table 3
where our method reaches a real-time framerate.

4.4. Ablation Study

Choice of face signal. We conducted ablation experi-
ments to validate the design choice of using a pretrained
expression encoder from DPE [44] as the face signal. We
compared to using a 3DMM as the face signal by extract-
ing FLAME parameters from the frontal camera. We re-
placed the jaw pose of SMPL-X with that from the ex-
tracted FLAME parameters and used the expression param-
eters to condition our convolutional decoder. Note that in
our method, the jaw pose is neutralized, i.e., the jaw move-



w/ DPE (ours)GT w/ DECAw/ DAD-3DHeads

Figure 10. Ablation on facial reenactment. Using expression en-
coder from DPE [44] drives more similar expressions comparing
to using DECA [17] or DAD-3DHeads [41].

PSNR↑ SSIM↑ LPIPS↓ FID↓
3 views 29.6554 0.9748 0.0262 33.4759
6 views 30.9780 0.9782 0.0188 36.6235
12 views 30.9518 0.9783 0.0189 22.7458

31 views 32.6349 0.9823 0.0166 14.2061

Table 5. Training with sparse views. Our method can be trained
with sparse views with decent quality.

PSNR↑ SSIM↑ LPIPS↓ FID↓
w/o Pose θ Embedding 30.0084 0.9695 0.0289 23.8262
w/o PVM Encoder 30.4173 0.9729 0.0284 24.2348
w/o PVE Encoder 29.4263 0.9656 0.0338 26.5531
Ours 30.6700 0.9731 0.0281 23.8110

Table 6. Ablation on encoder branches. All three encoder
branches help improve the rendering quality of our method.

ments are solely represented by the cVAE.
We tested two approaches for extracting FLAME param-

eters, i.e., DECA [17] and DAD-3DHeads [41]. For same-
identity reenactment, we trained on Subject1 Sequence1
and tested on Sequence2. For cross-identity reenactment,
we reenacted the avatar by the motion of Subject2 Se-
quence2. As shown in Figure 10, the 2D talking faces-based
expression encoder from DPE [44] enables more similar ex-
pressions. Table 4 shows the quantitative comparison.
Training with Sparse Views. Our avatar modeling method
is trained in a multi-view setup. We report in Table 5 that
DEGAS can be trained with 3 views, 6 views, and 12 views.
Pose Encoders. There are three pose encoders in our
method to generate body signals. We conducted ablation
studies on ActorsHQ Actor02 by disabling one of them each
time. The quantitative results are reported in Table 6.

4.5. 3D Full-body Talking Avatars

The use of a pretrained encoder from 2D talking faces
lets our method inherit the ability to both video-driven and
audio-driven reenactment. With the help of SadTalker [74],

... or HSC. We need to do this in detail ...
/ɔː/ /eɪ/ /l/

Figure 11. Audio-driven example of our method. Given an au-
dio sequence, we generate face signal from SadTalker [74] and
DPE [44], and body signal from TalkSHOW [69].

we show the extension of DEGAS to full-body talking
avatars. Given an audio clip, we firstly use SadTalker [74]
to generate 2D talking videos from one face image of the
subject, and then use the DPE [44] expression encoder to
extract face signal to drive our avatars. The body pose gen-
eration is a whole another research track [9, 43, 69]. Here
we only showcase the generation from TalkSHOW [69] in
Figure 11. Noted that the jaw pose generated by TalkSHOW
is not used.

4.6. Limitations

The pretrained expression encoder from DPE [44] that we
explore in this paper has the advantage of being trained with
a large collection of face images. Yet the quality of the 2D
talking faces method itself limits the reenactment quality
of our method. We do observe pose and identity-related
information being not fully disentangled from the expres-
sion. We believe that using encoders from more advanced
2D talking faces methods [68] would help. Another issue is
that the clothes are not modeled in a separate layer, causing
artifacts for the loose cloth in challenging poses.

5. Conclusion

In this paper, we proposed DEGAS, the first 3DGS-based
method for full-body avatars with subtle and accurate facial
expressions. We discussed in this paper that an expression
latent space pretrained solely on 2D talking faces, is a better
choice for the reenactment of 3D avatars, opening new pos-
sibilities for interactive life-like agents. The avatars mod-
eled with DEGAS can be animated and rendered in real-
time framerate to perform natural body motions and rich
facial expressions. We conducted qualitative and quantita-
tive experiments to validate the efficacy of our method. We
also showed the audio-driven extension of our method to
demonstrate its potential for downstream applications.
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