
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LARGE-SCALE VIDEO CONTINUAL LEARNING
WITH BOOTSTRAPPED COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) promises to allow neural networks to learn from contin-
uous streams of inputs, instead of IID (independent and identically distributed)
sampling, which requires random access to a full dataset. This would allow for
much smaller storage requirements and self-sufficiency of deployed systems that
cope with natural distribution shifts, similarly to biological learning. We focus on
video CL employing a rehearsal-based approach, which reinforces past samples
from a memory buffer. We posit that part of the reason why practical video CL
is challenging is the high memory requirements of video, further exacerbated by
long-videos and continual streams, which are at odds with the common rehearsal-
buffer size constraints. To address this, we propose to use compressed vision, i.e.
store video codes (embeddings) instead of raw inputs, and train a video classifier
by IID sampling from this rolling buffer. Training a video compressor online (so
not depending on any pre-trained networks) means that it is also subject to catas-
trophic forgetting. We propose a scheme to deal with this forgetting by refreshing
video codes, which requires careful decompression with a previous version of the
network and recompression with a new one. We expand current video CL bench-
marks to large-scale settings, namely EpicKitchens-100 and Kinetics-700, with
thousands of relatively long videos, and demonstrate empirically that our video
CL method outperforms prior art with a significantly reduced memory footprint.

1 INTRODUCTION

Our world evolves endlessly over time. This temporal evolution creates a continuous shift in real-
world data distributions. Crucially, resource-constrained autonomous agents must cope with these
ongoing changes, akin to humans. Continual learning (CL) offers a practical solution to robustly
acquire knowledge in non-stationary environments while amortizing the learning process over the
agent’s lifespan (Thrun, 1995). In this paper, we focus on CL utilizing long-video understanding
to replicate the real-world complexities encountered in actual deployment scenarios. Existing CL
research focuses on static images or shorter video clips, thus failing to adequately address the natural
shift in data distribution over extended time scales. In this work, we highlight naturally-collected
long videos, which we believe is necessary to capture this temporal progression and long-tailedness,
properties inherent to online learning. Furthermore, naturally-collected long videos closely align
with the principles of human learning scenarios (Damen et al., 2018) that lifelong learning systems
aspire to emulate (McCloskey and Cohen, 1989).

The extra temporal axis of video, compared to a static image, can capture rich information such as
long-term activities and stories. However, it also brings a few orders of magnitude of more data
with the concomitant costs in processing and memory requirements (Han et al., 2022). We highlight
that this challenge further compounds in CL systems as they operate over large time scales on a
continuous video stream. Additionally, with long videos, CL systems have to mitigate forgetting
along a long-range temporal dimension. Consequently, the computational and memory requirements
escalate significantly to accommodate these dual constraints, thus necessitating scalable approaches.

In this paper, we propose a memory-based video CL method to learn over naturally-collected long
videos. Specifically, our method builds an online video compressor to perform continuous com-
pression and decompression over a neural-code rehearsal buffer, and an online classifier that uses
the rehearsal buffer to perform video learning in the compressed space. Different than prior works,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Continual Learning on Epic-Kitchen dataset with noun classification

our rehearsal buffer is neural-code based storing compressed instead of raw RGB-based input. By
design, our neural-code rehearsal buffer efficiently handles wide temporal history for rehearsal, nec-
essary to mitigate forgetting in large-scale long video continuous streams.

We draw some inspiration from the internal workings of the mammalian brain and human dreaming,
though like most works in CL we cannot claim biological plausibility. Specifically, hippocampal
indexing theory states that the hippocampus stores compressed representations of neocortical activ-
ity patterns while awake (Teyler and Rudy, 2007; Hayes et al., 2020). Furthermore, the compressed
information, also identified as temporal compression of events in episodic memory, enables efficient
storage and recall of past experiences (D’Argembeau et al., 2021; Howard, 2018). This phenomenon
suggests the significance of temporal compression in efficiently retaining information over long in-
put streams (Jeunehomme et al., 2019), a challenge in video CL. Motivated by this observation, we
maintain a compressed temporal buffer. Furthermore, insights from theories in dreaming suggest
that human dreams may have evolved to assist generalization and reduce forgetting (Hoel, 2021).
The hallucinatory and narrative nature of dreams potentially contribute to refining generative mod-
els, enhancing the brain’s predictive processing capabilities (where predictions traverse top-down,
while sensory input, bottom-up), and improving predictions about future states(Clark, 2013; Hohwy,
2013; Keller and Mrsic-Flogel, 2018; Foulkes and Domhoff, 2014). Inspired by theories about the
role of dreaming in learning, we perform continuous compression and decompression, emulating
a bottom-up and top-down approach that reinforces the stability of representations. We note that
this inspiration does not make current neural networks biologically plausible, as they rely on back-
propagation for learning, which is not supported by biological evidence (Crick, 1989; Lillicrap et al.,
2016; Whittington JC, 2019).

In this work, we focus on two broad settings in CL, and evaluate our method under both. The first is
incremental learning – training a network from scratch by presenting it with a sequence of disjoint
data distributions. This models a shifting data distribution as a sequence of distributions (Chaudhry
et al., 2019; Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017). This closely mimics biological
learning, i.e. an agent learning solely from sequential experience. A variation of incremental learn-
ing is to allow an initial pre-training phase (Douillard et al., 2020), where the network is trained on
a large subset of the classes (e.g. half of them) non-sequentially (independently and identically dis-
tributed, IID), and then it is incrementally adapted. This setting more closely follows the common
usage of ML models, where usually there is at least some relevant dataset for pre-training before
deploying a system, and can circumvent many challenges posed by the incremental learning setting,
such as computational cost and representational drift.

Our key contributions are as follows:

1. A neural-code memory-based video continual learning framework that operates on large-
scale long videos.

2. A code refreshing scheme that minimizes representation drift in a buffer of codes that were
initially created with different versions of the same compressor.

3. An evaluation of video CL in large-scale video datasets, namely Epic-Kitchens-100 and
Kinetics-700.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑡 = 1

1

𝐿C

𝐿R

2

𝐿C

𝐿R

1

3

𝐿C

𝐿R

2

1

Codes 1

In memory at 𝑡 = 3

𝑡 = 2

𝑡 = 3

Proposed

Yes
No
3

1 𝐿C

2 𝐿C

3 𝐿C

In memory at 𝑡 = 3

Videos 1

Videos 2

Videos 3

Naïve SGD

No
Yes

1

Rehearsal:
Represent. drift:
#Compressors/dec.:

Compressor
Classif.

loss

1

𝐿C

𝐿R

2

𝐿C

𝐿R

1

3

𝐿C

𝐿R

2

In memory at 𝑡 = 3

Compressed vision

Yes
Yes

2

1

𝐿C

𝐿R

2

𝐿C

𝐿R

1

3

𝐿C

𝐿R

2

1

In memory at 𝑡 = 3

Drift-free compressed vision

Yes
No

N+1 (N = #tasks)

Recon.
loss

Past
decompressor

Past
decompressor Refreshed codes

Drifted codes
(used comp. 1/2)

Keep in buffer

1

Decompressor

Figure 2: Overview of the differences between our proposed scheme and alternative compressed
buffer strategies. Using a compressed buffer for rehearsal (column 2) risks representation drift,
since codes were created with a different version of the trained encoder (represented as 3 different
colors). Decoding without drift requires snapshots of the decoder over time (column 3), but the
memory growth is unbounded. Our proposed scheme (column 4) refreshes codes to keep them from
drifting, while only requiring a single snapshot of the last decoder.

4. Empirical evaluations of our method in both datasets, in 2 popular CL settings: with pre-
training, and incrementally from scratch.

We evaluate our framework for noun and action classification task on Epic-Kitchens-100 and
Kinetics-700 datasets respectively. Our method significantly outperforms state-of-the-art perfor-
mance under both the settings. We believe that this is the first work to extend continual learning to
large-scale naturally-collected long videos.

2 RELATED WORK

Continual Learning with Images and Videos. Most current CL systems show promising results
in the image domain, which primarily involves artificially-constructed sequences of images and
transfer of declarative knowledge of entities and concepts (Buzzega et al., 2020; Qu et al., 2021;
Lopez-Paz and Ranzato, 2017). Different than these, our focus on naturally-collected long videos
creates a continuous data distribution shift and serves as a robust test-bed for evaluating CL systems
under real-world task settings that require the transfer of procedural knowledge over extensive time
spans. Natural videos simulate real-world conditions, such as the nuanced understanding of actions
or behaviors in long video sequences (Damen et al., 2018). Furthermore, the deployment of CL
systems in real-world settings, like surveillance cameras or autonomous vehicles, necessitates their
ability to effectively learn from continuous long video streams over significant time scales(Doshi
and Yilmaz, 2022; 2020). There have been some works in CL that operate on videos, however,
are limited to processing only few-seconds to minutes long videos or do not propose scalable
approaches to tackle the high memory and computational requirements. OAK (Wanderlust) (Wang
et al., 2021) released a benchmark with long ego-centric videos but was limited to testing current
CL algorithms with a narrow task domain focused on coarse-grained object detection with sparse
annotations. This benchmark was also used in Efficient-CLS (Wu et al., 2023) which proposed
a slow-fast CL method with an episodic memory similar to (Rebuffi et al., 2017; Lopez-Paz and
Ranzato, 2017; Chaudhry et al., 2019). With its focus on Complementary Learning Systems
(Kumaran et al., 2016), Efficient-CLS (Wu et al., 2023) is complementary to other CL methods,
augmenting them with a pair of slow and fast learners, and using the former to generate pseudo-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

labels for the later. (Wu et al., 2023) also shows performance on EgoObjects (Zhu et al., 2023), a
fine-grained ego-centric dataset with seconds-long clips. This contrasts with our experiments using
Epic-Kitchens-100 (Damen et al., 2018), with minutes to hours-long videos. CLAD (Verwimp
et al., 2022), a CL benchmark for autonomous driving, repurposed an image dataset to form
a temporal stream. It proposed a single (days-long) “video” (time lapse sequence of images),
introducing domain shifts at different frequencies (e.g. time, location, different objects, viewpoint).
While having a single very long video is a reasonable axis to expand video CL evaluation, we
extend it to (Damen et al., 2018) with thousands of videos, each minutes to hours-long. In addition
to location, time, objects, viewpoints, (Damen et al., 2018) also poses domain shifts resulting
from fine-grained human-object interactions and cinematography changes, thus distinguishing
it from (Verwimp et al., 2022). To the best of our knowledge, we are the first to build a prac-
tical CL algorithm in a large-scale long video setting, and thoroughly evaluate it in a realistic setting.

Memory-Based Continual Learning. Memory-based algorithms have demonstrated strong

performance in CL (Saha and Roy, 2021; Prabhu et al., 2020; Chaudhry et al., 2019). During
training, a memory buffer stores data instances from the past and rehearses them while training
new tasks in order to consolidate previously learned knowledge to mitigate catastrophic forgetting.
(Hayes et al., 2020) proposed a compression-based CL method over static images and natural
language, however, did not address challenges arising from CL over long videos. Furthermore, most
current research primarily shows the relevance of different memory budgets, balancing or rehearsal
techniques (Prabhu et al., 2020). While we don’t argue whether an unbounded or bounded memory
budget is beneficial, we show that under any budget, compression leads to significant gains.

Video Compression. Training robust video representations has proven to be more challenging than
learning deep image representations, due to the enormous size of raw video streams and the high
temporal redundancy. Superfluous information can be reduced by up to two orders of magnitude
by video compression (Wu et al., 2018; Wiles et al., 2022). Importantly, compressed video repre-
sentation has a higher information density, and additionally the training is made easier, as generic
features are already extracted. The signals in a compressed video provide free, albeit noisy, motion
information (Li et al., 2023; Wu et al., 2018). In video learning, it remains a challenge how to ac-
curately capture key information, and several works have tried techniques such as token dropout,
frame sampling and key information detection (Yan et al., 2020; Han et al., 2022; Zhi et al., 2021).
Compression on the other hand presents an elegant solution for these challenges (Wu et al., 2018).

Robot Lifelong Learning. A strand of robotics delves into continual learning methodologies uti-
lizing videos and feedback mechanisms. In this realm, robots are tasked with acquiring and refining
their skills and knowledge over time (Thrun, 1995; Liu et al., 2021; 2023). Robot lifelong learning
typically focuses on active learning and the effect of an agent’s actions in the environment.

3 BACKGROUND

3.1 COMPRESSED VISION

Our method builds on compressed vision, proposed by Wiles et al. (Wiles et al., 2022). The main
concept is to train any classifier on small codes (embeddings) obtained from video frames, instead
of the frames directly. By using a frozen compressor network to obtain the codes, and performing
data augmentation (to avoid overfitting) directly in the code latent space instead of the input space,
they can store extremely long videos in memory compared to traditional approaches. Their pipeline
consists of three training phases. 1) They train a neural compressor c = (ϕ, ψ), where ϕ and ψ
denotes the encoder and decoder respectively, using a VQ-VAE (Van Den Oord and Vinyals, 2017).
c takes videos X as input and produces neural codes x ∈ Rs×h×w. 2) They train an augmenter
network a, that takes as input x and predicts codes x̂i that correspond to randomly-transformed
video frames. 3) Lastly, they train a video task classifier that takes as input x̂ to solve a given
downstream task, and prevent over-fitting by using a to perform data augmentation directly in the
space of the codes. Note that in the first phase, once c is trained, x ∈ X are stored in a buffer, c is
frozen and the original videos are no longer needed. Wiles et al. (Wiles et al., 2022) show strong
performance results (under 5% drop) at high compression rates (256× and 475×).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 INCREMENTAL LEARNING

A common scenario in CL (Chaudhry et al., 2019; Rebuffi et al., 2017; Lopez-Paz and Ranzato,
2017) is incremental learning – training a network by presenting it with a sequence of n tasks
consisting of disjoint data distributions, sequentially, as T = {ti}ni . This models a shifting data
distribution as a sequence of distributions. Concretely, a learning model observes a continuum of
data, which is a concatenation of m samples from each of the tasks, for a total of nm samples, as
follows:

D = {xj,i, yj,i}m,nj,i (1)

xj,i
iid∼ Xti , yj,i

iid∼ Yti (2)

Xti is a distribution over images for task ti, and Yti is a distribution over its target vectors (for
example, action classes). For simplicity, we assume that the continuum samples are IID within a
task.

The main advantage of this setting is that it represents the most stringent test of continual learning,
by training from scratch. It also more closely mimics biological learning, i.e. an agent learning
solely from sequential experience.

3.3 PRE-TRAINING AND INCREMENTAL LEARNING

A variation of incremental learning is to allow an initial pre-training phase (Douillard et al., 2020),
where the network is trained on a large subset of the classes (e.g. half of them) IID, and then
is incrementally adapted as before. This more closely follows the common usage of ML models,
where usually there is at least some relevant dataset for pre-training before deploying a system.

4 METHOD

Similarly to Sec. 3, we aim to train a deep neural network by presenting it with a sequence of n
tasks of disjoint data distributions, i.e. eq. 1. The main difference is that each xj,i is a video clip,
and each yj,i is now a video class (e.g. a human action label).

4.1 THE IDEAL CASE: IID SAMPLING

We will first present the ideal case, where a learner has access to all available samples, sampled IID.
This avoids catastrophic forgetting and allows us to introduce the concepts in a simplified form. We
aim to train a feature extractor or compressor c = (ϕ, ψ), composed of an encoder ϕ and decoder ψ,
as well as a classifier q which takes the features from the encoder. The objective of the compressor,
trained on the full dataset from eq. 1, is defined as:

ψ∗, ϕ∗ = argmin
ψ,ϕ

(
E

ti∼T
E

xj∼Xti

(
||ψ(ϕ(xj))− xj ||2

))
. (3)

The classifier is simply trained with a cross-entropy loss L for classification (or another loss for a
different downstream task):

q∗ = argmin
q

E
ti∼T

(
E

(xj ,yj)∼(Xti
,Yti

)
L(q(ϕ(xj)), yj)

)
(4)

This is, of course, an idealized situation where it is possible to have random access to any sample.
Next we’ll turn to the CL scenario where we are given only a single task (time) ti at a time, and
cannot directly access past samples.

4.2 INCREMENTAL LEARNING

In this setting, we train the compressor continually with new classes. It suffers from forgetting if
the old classes are not represented, so we employ a rehearsal strategy while training the compressor.
Unlike (Wiles et al., 2022), in Setting 2 as time progresses, the compressor observes new data
samples unseen during past tasks. Additionally, during any task tk described in equation 1, the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑡 − 1

𝑡

Codes
𝑡 − 1

𝑡

Video 𝑡

Refreshed codes
𝑡 − 1

Codes
𝑡

Reconstructed
video 𝑡 − 1

Reconstructed
video 𝑡 − 1

Reconstructed
video 𝑡

Classification
loss

Classification
loss

Reconstruction loss

Reconstruction loss

Figure 3: Overview of the proposed compressed continual learning pipeline. Our method trains a
video compressor as an autoencoder, together with a classifier, while storing short compressed codes
describing the videos in a buffer for rehearsal of past samples. Our method continually refreshes
codes from past tasks t−1 so that they work with the compressor for the current task t, ensuring the
stability of the representations over time.

learner receives video clip frames that are never revisited, creating a challenge for gradient-descent-
based learning. As the compressor c is also learning (and changing) as time progresses, how do we
adapt it to the shifting video distribution?

4.2.1 REHEARSAL BUFFER AND TEMPORAL EVOLUTION OF MODELS.

Because we will train a model sequentially over the tasks, and it will be different for each task, we
need to consider a sequence of models (c1, q1), . . . , (cn, qn), one per task ti.

In order to allow training on past samples, so that the loss value on them is maintained, some form
of memory (explicit or implicit) is also required. In this work we maintain a buffer denoted as Bi−1.
At time ti it is defined as

Bi−1 = {ej,k}m,i−1
j,k , ej,k = ϕti−1

(xj,k) (5)

where k iterates over previous tasks (1 to i − 1), j iterates over samples per task (1 to m), and
ej,i denotes the compressed video clip. The neural-codes based buffer Bi−1 contains previously
observed video codes necessary to maintain old concepts from prior tasks. During the task ti, when
training ci and qi, we only have access to the last state of the buffer Bi−1 and video examples from
the current task, Xti .

4.2.2 INCREMENTAL LEARNING FORMULATION.

Let us consider the first task. Adapting eq. 3 to focus on the first task, we have:

ψ∗
1 , ϕ

∗
1 = arg min

ψ1,ϕ1

(
E

xj∼Xt1

(
||ψ1(ϕ1(xj))− xj ||2

))
, (6)

and an identical adaptation for the classifier from eq. 4. Similarly, for the second task, we have the
loss equation:

ψ∗
2 , ϕ

∗
2 =arg min

ψ2,ϕ2

(
E

xj∼Xt2

(
||ψ2(ϕ2(xj))− xj ||2

)
+ (7)

E
ej∼B1

(
||ψ2(ϕ2(sj))− sj ||2

))
(8)

where sj = ψ1(ej) (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Kinetics-700 (K-700) EpicKitchens-100 (EK-100)

Setting Method Train. ↑ Eval. ↑ AvgF ↓ Train. ↑ Eval. ↑ AvgF ↓

Pretraining

Upper Bound 57.10 48.20 – 42.10 35.90 –

BootstrapCL (Ours) 56.25 46.50 5.50 40.10 33.20 9.70

REMIND Hayes et al. (2020) 43.51 35.90 49.20 30.89 24.60 56.3

Incremental

Upper Bound 48.20 44.10 – 36.20 32.0 –

BootstrapCL (Ours) 44.60 38.80 15.20 32.60 28.10 21.60

SMILE Alssum et al. (2023) 40.56 29.20 62.50 28.71 19.20 67.8

vCLIMB Villa et al. (2022) 39.12 28.65 65.10 27.11 18.5 66.5

GDumb Prabhu et al. (2020) 37.61 18.70 52.40 25.30 15.60 60.10

Table 1: Comparison of our method and baselines (average training (Train) and evaluation accuracy
(Eval), and average forgetting (AvgF)), on K-700 and EK-100, with pre-training and incremental
settings (as described in Sec 5.2 and 5.3). We set 654 Mb (in K-700) and 714 Mb (in EK-100) as the
maximum memory budget for our method and baseline experiments above (as described in Sec 5.4).
Upper Bound refers to the upper bound baseline which has unbounded memory budget (described
in Sec 5.4).

where the first expectation is over the current batch, and the second expectation is over codes stored
in the buffer, which are decoded by ϕ1. Note that it is important to decompress the buffer using the
decoder parameters from the previous task ψ1, not the one currently being trained ψ2, in order to be
consistent with the encoder they were compressed with, ϕ1.

As for the classification objective (eq. 4), it is also adapted using a mix of codes from the buffer and
from the batch of samples in the current task:

q∗2 = argmin
q

(
E

(xj ,yj)∼(Xt2 ,Yt2)
L(q(ϕ2(xj)), yj) + E

(ej ,yj)∼B1

L(q(ϕ2(sj)), yj)

)
, (10)

where we reuse eq. 9, and slightly abuse notation to retrieve the classification label yj associated
with the buffer’s code ej .

We can apply equations 6 and 7 recursively to any task tk by using the buffer and compressors from
the respective tasks, and thus extend it by induction. Fig. 3 gives an overview of this process.

4.3 CONTINUAL LEARNING WITH PRE-TRAINING

Another natural setting as illustrated in (Douillard et al., 2020) is to consider networks that undergo
pre-training with IID samples prior to incremental learning. In this setting, we have two phases.
there are two phases. In the first phase, the model is pre-trained with half of the dataset’s classes and
in the second phase, the model is incrementally trained with rest of the classes.
Following (Douillard et al., 2020)’s protocol, in the first phase we first pre-train the compressor and
classifier with half of the dataset’s classes, and in the second phase, incrementally train the classifier
as in sec. 4.2.2.
Note that an important distinction from the previous setting described in 4.2.2 is that after phase 1
finishes, we can freeze the compressor – assuming that the pre-training is sufficient to learn relevant
features – and as a result, during phase 2, we do not decompress our buffered codes. This avoids
representation drift of the codes and simplifies the method, which does not need to back-propagate
through the codes.

It is interesting to contrast this pre-training setting to the incremental learning only setting (sec.
4.2.2). Continuously decompressing and adapting the codes incurs a computational cost and risks
representational drift. Under a bounded memory budget, the compressor may be under-trained and
fail to produce robust codes. The pre-training setting circumvents these issues, while still enjoying
the benefits of incremental learning of downstream tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

To demonstrate our method empirically, we evaluate on video-based CL baseline and propose an
extension of image-based CL evaluations to large-scale video datasets. We use Kinetics-700 (K-
700) (Kay et al., 2017) and Epic-Kitchens-100 (EK-100) (Damen et al., 2018), where we perform
action and noun classification tasks respectively.

5.1 IMPLEMENTATION DETAILS

We use the same compressor architecture as Wiles et al. (Wiles et al., 2022), which is based on a
ResNet, and refer the reader to their work for a complete review. Compressor training differs in the
two settings as described below. In both the settings, we maintain a queue for the rehearsal buffer
to store the video codes. For the downstream video task classifier, we use S3D (Xie et al., 2018)
for K-700, and short-term S3D for EK-100, which takes the compressed codes as inputs. We follow
the specifications from Wiles et al. (Wiles et al., 2022) to adapt the network’s kernel size and stride
at every layer. We experimented with different architectures for the classification task, in order to
find the optimal settings (further results in appendix A). We use compression rate 256× unless stated
otherwise. We apply random horizontal flipping and random cropping of size 224×224 from frames
resized such that the short side ∈ [256, 340] as data augmentation. Each video clip of dimensions
224× 224× 14224× 224× 3× 32 (32 RGB frames) corresponds roughly to a compressed code of
size 0.0013 Mb.

5.2 SETTING: CONTINUAL LEARNING WITH PRE-TRAINING

Dataset. Following the experimental protocol in Douillard et al. (2020), we split K-700 into 2
parts. The first split consists of Kinetics-400 (K-400), and the second split contains the remaining
300 classes of K-700. Similarly, we split EK-100 into 2 parts, the first with 17 participants and the
second with 16 participants. Classes are sampled IID in the first dataset split respectively. For K-
700, the second split has 10 tasks with 30 non-overlapping classes per task. For EK-100, the second
split has 17 tasks with 1 participant per task. Videos are sampled IID within every task.

Training. As described in Section 3, this setting has two phases. In the first phase, we follow
IID training. We train the compressor c and classifier for 300 epochs with a batch size of 32, and
use the Adam optimizer with learning rate of 0.01 and weight decay of 10−5. c is frozen at the
end of pre-training. We store the compressed codes into the queue for all the classes in this phase,
and then train the classifier with these stored codes. We start the second phase with the pre-trained
classifier from the first phase and train it incrementally over 10 tasks for K-700 and 17 tasks for
EK-100. We pass the transformed video inputs through the frozen compressor, store the resulting
codes into the queue and use them as inputs for the classifier. We receive new class samples at every
task, and assume IID sampling over those. We train the classifier for 2 epochs with the compressed
codes corresponding to new samples and those stored in the rehearsal buffer. Note that the buffer
also includes the codes from pre-training classes, plus from all tasks seen so far. We also perform
ablations varying the number of epochs per task and class splits. The incremental training over the
classifier completes once all the tasks are processed.

5.3 SETTING: INCREMENTAL LEARNING FROM SCRATCH

Dataset. For K-700, we have 35 tasks with 20 non-overlapping classes per task. For EK-100, we
have 33 tasks with video samples from 1 participant per task. Videos are sampled IID within every
task.

Training. We train the compressor and classifier incrementally, and within each task, we follow
IID training. So, we first train the compressor for 1 epoch and then the classifier for 30 epochs
unless stated otherwise. To train the compressor, we use a batch size of 16, and Adam optimizer
with learning rate of 0.01 and weight decay of 10−5. At every task, during compressor training, we
decompress compressed codes from the buffer (unless empty) using the latest compressor, and obtain
the corresponding RGB values. We then re-train the compressor jointly with the decompressed
codes and new samples. Lastly, we store the freshly compressed codes into the buffer, and freeze
the compressor for that task. We use the stored codes from the current and past tasks as inputs to the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Average evaluation accu-
racy for different methods, with varying
memory budgets on Kinetics-700.

Dataset Memory (MB) BootstrapCL (Ours) RGB buffer

Buffer 654 1503 × 103

Kinetics-700 Models 750 250

Total 1404 1503.2 × 103

Buffer 714 1640 × 103

EpicKitchens-100 Models 750 250

Total 1464 1640.2 × 103

Table 2: Memory footprint of our method with a com-
pression ratio of 256× versus a traditional buffer of
RGB images.

task classifier. We store the resulting the codes for every video clip into the queue, and freeze the
compressor for that task. So, at every task, we interleave between compressor and classifier training.
This training process is repeated for the total number of tasks.

5.4 BASELINES

Our method lies at the intersection of memory-based and video CL. For memory-based CL, we
compare with GDumb (Prabhu et al., 2020) and REMIND (Hayes et al., 2020) which focused on
image-based analysis. For video CL, we compare with SMILE (Alssum et al., 2023), which is
also a memory-based CL method. We also design an upper bound baseline using an unbounded
RGB memory budget. To compare with REMIND (Hayes et al., 2020), we use our pre-training
set-up, as these baselines rely on a pre-trained architecture. For the rest of the baselines, we use our
incremental learning set-up. For further details on video samples storage, please refer to Appendix
A.

In our baseline comparisons for K-700 and EK-100, we set 654 Mb and 714 Mb respectively for the
maximum memory budget of all methods, in order to ensure a fair comparison. These values were
chosen as the maximum memory that our method requires, and they are well within the capacity of
modern hardware. For some baselines, we also show comparisons with different memory budgets in
the ablations section. During the incremental learning phase, at every task, we split the storage space
equally for each past task up to the buffer limit. Denote K as the total number of video samples that
can be stored under the assigned memory budget. Then the total number of samples from each past
task at the nth task in the incremental learning setting is given by K 1

n−1 . The total number of
samples from each past task at the nth task in the pre-training setting, where we add one task for the
pre-training phase, is K

n .

5.5 EVALUATION AND METRICS

We report the average accuracy (Lomonaco et al., 2021) after training and evaluation, and average
forgetting (Lomonaco et al., 2021) after evaluation for our method and baselines in Table 1. The
average accuracy is the average on all the tasks measured at the conclusion of the task sequence.
We show some examples of our method’s predictions, learned over time, in Fig. 1. We report the
total memory buffer size and its equivalent size when storing raw pixel frames in Table 2, and show
ablations with a different compression rate in Appendix A.

6 RESULTS AND ANALYSIS

6.1 PROPOSED METHOD

We find that our method outperforms the baselines and achieves average accuracy comparable to the
upper bound baseline in both our proposed settings, as seen in Table 1. We observe that our pre-
trained compressor captures class-agnostic semantics effectively. For samples unseen during the pre-
training phase, it outputs robust compressed codes without further training, thus enabling the online

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

classifier to achieve strong performance. In incremental learning only setting, at every successive
task, since our method decompresses and rehearses past codes, it learns to jointly represent the
features for both old and new tasks. This allows it to output robust codes for downstream video
application. Due to the highly efficient memory, it enjoys full rehearsal of samples from all past
tasks, thus our classifier can efficiently represent all classes, and achieve strong performance. Our
compression strategy is well-optimized such that, even for very large number of samples (> 500K
video samples) with high memory footprint, we only need a small amount of memory (< 2 GB). One
interesting finding from our work is that we do not need to apply any frame selection or sampling
strategy, even for very large videos.

6.2 STATE-OF-THE-ART METHODS

Memory-Based CL Baselines. We see that GDumb Prabhu et al. (2020) suffers from catastrophic
forgetting, as the evaluation accuracy is significantly lower than our method. This is due to lack
of sufficient samples for rehearsal. This also shows that the strongest rehearsal-based technique
is unable to cope with the high memory requirements for videos. Similar to GDumb, which also
compares with other rehearsal-based works such as Saha and Roy (2021); Prabhu et al. (2020);
Chaudhry et al. (2019); Alssum et al. (2023), these assume RGB values stored in the buffer, however,
an unbounded budget is unfeasible in practise. Therefore they further limit the budget by employing
different sampling strategies, resulting in performance degradation.

Our method with a 20x higher compression rate outperforms REMIND Hayes et al. (2020), a
compression-based CL technique. As a result, our memory buffer maintains a wider temporal history
compared to theirs and delivers a greater performance accuracy on both the datasets. Furthermore,
they do not refresh representations instead only the final layer features, which may explain the lower
performance on downstream applications.

Video CL Baselines. We observe that SMILE Alssum et al. (2023) requires a large memory bud-
get to meet the state-of-the-art performance as seen in their work. From Table 1, we see that their
performance degrades significantly under both datasets under bounded the memory budget. Further-
more, in the case of long videos, as dense temporal sampling is necessary for maintaining temporal
association and long-term context to benefit inference Han et al. (2020), their performance further
degrades as they perform significant temporal down-sampling.

6.3 ABLATION EXPERIMENTS

We also describe and report the average evaluation accuracy under various memory budgets for our
method and baselines in Fig 3. We report results for both higher and lower memory budgets. We
can see from this performance memory plot that our method requires significantly less memory to
achieve strong performance compared to prior art. Our method’s memory budget is well within the
capacity of modern hardware. We also describe and report results for further ablations in Appendix
A.

7 CONCLUSION

In this work we presented a method to perform continual learning over long-videos, mitigating
catastrophic forgetting. Video CL poses considerable challenges, one of them being the high mem-
ory requirements. We propose to use compressed vision as a way to increase substantially the buffer
size used for rehearsal in CL, and highlight the need to devise an appropriate strategy to deal with the
representation drift of the compressor (i.e. codes become stale compared to the most recent compres-
sor state). We demonstrate encouraging results in 2 large-scale video datasets, Epic-Kitchens-100
and Kinetics-700. We also study 2 different settings of CL, with pre-training and from scratch. We
believe that compressed vision can play an important role in scaling up methodologies developed for
images and adapt them to videos. In future work we would like to explore even more long-duration
videos, and other tasks that go beyond action classification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alssum, L., Alcazar, J., Ramazanova, M., Zhao, C., and Ghanem, B. (2023). Just a glimpse: Re-
thinking temporal information for video continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops).

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. (2020). Dark experience for
general continual learning: a strong, simple baseline. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing Systems 33,
pages 15920–15930. Curran Associates, Inc.

Carreira, J. and Zisserman., A. (2018). Quo vadis, action recognition? a new model and the kinetics
dataset.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2019). Efficient lifelong learning
with a-gem. In ICLR.

Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of cognitive
science. Behavioral and Brain Sciences, 36(3):181–204.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337:128.

Damen, D., Doughty, H., Farinella, G. M., Fidler, S., Furnari, A., Kazakos, E., Moltisanti, D.,
Munro, J., Perrett, T., Price, W., et al. (2018). Scaling egocentric vision: The epic-kitchens
dataset. In Proceedings of the European conference on computer vision (ECCV), pages 720–736.

D’Argembeau, A., Jeunehomme, O., and Stawarczyk, D. (2021). Slices of the past: How events are
temporally compressed in episodic memory. Memory, 29(7):912–922.

Doshi, K. and Yilmaz, Y. (2020). Continual learning for anomaly detection in surveillance videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 254–255.

Doshi, K. and Yilmaz, Y. (2022). Rethinking video anomaly detection - a continual learning ap-
proach. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pages 3961–3970.

Douillard, A., Cord, M., Ollion, C., Robert, T., and Valle, E. (2020). Podnet: Pooled outputs
distillation for small-tasks incremental learning. In Proceedings of the IEEE European Conference
on Computer Vision (ECCV).

Foulkes, D. and Domhoff, G. W. (2014). Bottom-up or top-down in dream neuroscience? a top-down
critique of two bottom-up studies. Consciousness and Cognition, 27:168–171.

Han, T., Xie, W., and Zisserman, A. (2020). Coclr: Self-supervised co-training for video represen-
tation learning. In Advances in Neural Information Processing Systems (NeurIPS).

Han, T., Xie, W., and Zisserman, A. (2022). Turbo training with token dropout. In
arXiv:2210.04889.

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., and Kanan, C. (2020). REMIND Your Neural
Network to Prevent Catastrophic Forgetting.

Hoel, E. (2021). The overfitted brain: Dreams evolved to assist generalization. Patterns, 2(5):1–12.

Hohwy, J. (2013). The Predictive Mind. Oxford University Press.

Howard, M. W. (2018). Memory as perception of the past: Compressed time in mind and brain.
Trends in Cognitive Sciences, 22(1):47–56.

Jeunehomme, O., Cleeremans, A., and D’Argembeau, A. (2019). The time to remember: Tempo-
ral compression and duration judgements in memory for real-life events. Quarterly Journal of
Experimental Psychology, 72(4):768–780.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green,
T., Back, T., Natsev, P., Suleyman, M., and Zisserman, A. (2017). The kinetics human action
video dataset. CoRR, abs/1705.06950.

Keller, G. B. and Mrsic-Flogel, T. D. (2018). Predictive processing: A canonical cortical computa-
tion. Neuron, 100(2):424–435.

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in Cognitive Sciences,
20(7):512–534.

Li, J., Li, B., and Lu, Y. (2023). Neural video compression with diverse contexts. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22616–
22626.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic feedback
weights support error backpropagation for deep learning. Nature Communications, 7:13276.

Liu, B., Xiao, X., and Stone, P. (2021). A lifelong learning approach to mobile robot navigation. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China.

Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., and Stone, P. (2023). Libero: Benchmarking
knowledge transfer for lifelong robot learning. In Proceedings of the NeurIPS Conference.

Lomonaco, V., Pellegrini, L., Cossu, A., Graffieti, G., and Carta, A. (2021). Avalanche: an end-to-
end library for continual learning. Github repository.

Lopez-Paz, D. and Ranzato, M.-A. (2017). Gradient episodic memory for continual learning. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems 30, pages 6467–6476. Curran
Associates, Inc.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages 109–
165. Elsevier.

Prabhu, A., Torr, P. H., and Dokania, P. K. (2020). Gdumb: A simple approach that questions our
progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 524–540. Springer.

Qu, H., Rahmani, H., Xu, L., Williams, B., and Liu., J. (2021). Recent advances of continual
learning in computer vision: An overview.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2001–2010.

Saha, G. and Roy, K. (2021). Gradient projection memory for continual learning. In International
Conference on Learning Representations.

Teyler, T. and Rudy, J. (2007). The hippocampal indexing theory and episodic memory: updating
the index. Hippocampus, 17(12):1158–1169.

Thrun, S. (1995). Lifelong learning algorithms. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS).

Van Den Oord, A. and Vinyals, O. (2017). Neural discrete representation learning.

Verwimp, E., Yang, K., Parisot, S., Lanqing, H., McDonagh, S., Pérez-Pellitero, E., Lange, M. D.,
and Tuytelaars, T. (2022). Clad: A realistic continual learning benchmark for autonomous driv-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1231–1241. Available at: https://arxiv.org/abs/2210.03482.

12

https://arxiv.org/abs/2210.03482

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Villa, A., Alhamoud, K., Escorcia, V., Caba, F., Alcázar, J. L., and Ghanem, B. (2022). vclimb: A
novel video class incremental learning benchmark. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 19035–19044.

Wang, J., Wang, X., Shang-Guan, Y., and Gupta, A. (2021). Wanderlust: Online continual object
detection in the real world. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 10829–10838.

Whittington JC, B. R. (2019). Theories of error back-propagation in the brain. Trends in Cognitive
Sciences.

Wiles, O., Carreira, J., Barr, I., Zisserman, A., and Malinowski., M. (2022). Compressed vision
for efficient video understanding. In Proceedings of the Asian Conference on Computer Vision
(ACCV).

Wu, C.-Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A. J., and Krähenbühl, P. (2018). Compressed
video action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Wu, J. Z., Zhang, D. J., Hsu, W., Zhang, M., and Shou, M. Z. (2023). Label-efficient online continual
object detection in streaming video. In In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 19246–19255.

Xie, S., Sun, C., Huang, J., Tu, Z., and Murphy, K. (2018). Rethinking spatiotemporal feature learn-
ing: Speed-accuracy trade-offs in video classification. In Proceedings of the European Conference
on Computer Vision (ECCV).

Yan, X., Gilani, S. Z., Feng, M., Zhang, L., Qin, H., and Mian, A. (2020). Self-supervised learning
to detect key frames in videos. In Sensors, volume 20, page 6941.

Zhi, Y., Tong, Z., Wang, L., and Wu, G. (2021). Mgsampler: An explainable sampling strategy for
video action recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1513–1522.

Zhu, C., Xiao, F., Alvarado, A., Babaei, Y., Hu, J., El-Mohri, H., Culatana, S. C., Sumbaly, R.,
and Yan, Z. (2023). Egoobjects: A large-scale egocentric dataset for fine-grained object under-
standing. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
Dataset available at: https://github.com/facebookresearch/EgoObjects.

A APPENDIX

A.1 VIDEO DATASET COMPARISONS

A.2 DATASET DETAILS

Epic-Kitchens-100 The average video length is 20 minutes, longest video length is 1.5 hours and
shortest video length is 5 minutes. Total video footage length is 100 hours. Each video is at 25
frames per second. We further describe the dataset annotations. Each video is associated with a
participant and video identifier. Each video is split into a block of frames (segment) with a start and
a stop timestamp, and indicated with the start and stop frame. A video segment is labeled with all
the noun categories present in it (so multiple labels per clip). The labeling is at the video segment
level. There are a total of 331 noun classes covering various nouns involved in kitchen actions
(including everyday equipment). Smooth transitions between classes are ensured by presenting the
segments to the models chronologically.

Kinetics-700 The average video length is 10 seconds, longest video length is 15 seconds
and shortest video length is 7 seconds. Each video is at 25 frames per second. There are 700 classes
in total, and each class is also associated with an integer label (which is an integer value from 0 to
699). Each video is associated with a class label.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dataset Longest
Video
Length
(secs)

Average
Video
Length
(secs)

of Object /
Action Cate-
gories

Video under-
standing Set-
ting

Used In

ActivityNet 600 (10
mins)

120 203 short SMILE,
vCLIMB, DPAT

Kinetics
(400/600/700)

20 10 400 / 600 /
700

short SMILE,
vCLIMB, Ours

UCF101 8 5-7 101 short ST-Prompt,
FrameMaker,
SMILE

HMDB51 6 6 51 short ST-Prompt,
FrameMaker

Something-
Something
V2

6 4-6 174 short, fine-
grained

FrameMaker, ST-
Prompt

Epic-
Kitchens-100

5400 (1.5
hrs)

900-1200 (15-
20 mins)

331 long, fine-
grained

DPAT (concur-
rent work), Ours

Table 3: Summary of video datasets: The following table describes each video dataset with the
length of its longest video (column 2), average length (column 3), classification and temporal com-
plexity in its video understanding setting (column 4, 5), and the respective CL works these datasets
are used in (column 6).

participant id video id start time stop time nouns noun classes
P01 P01 01 00:29.22 00:31.32 [’fridge’] [12]
P01 P01 01 09:07.40 09:09.01 [’container’, ’fridge’] [21, 12]
P01 P01 105 00:27.01 00:27.83 [’container’, ’cupboard’] [21, 3]
P02 P02 108 00:43.83 00:45.92 [’biscuit’, ’cupboard’] [104, 3]

Table 4: Example annotations from EK-100 dataset

label youtube id start time stop time
’baking cookies’ JJWwLganiil 31 41
’gymnastics tumbling’ 5KbfOS44-gM 49 59
’writing’ iYcARQA6VIU 0 10
’wrapping present’ Qo5lspgmqPU 167 177

Table 5: Example annotations from K-700 dataset

A.3 AVERAGE FORGETTING METRIC (AVGF)

Let ai,t be accuracy on task i of the model that was trained on t tasks, where i < t. Average forget-
ting measures how much performance has degraded across the first t− 1 tasks. To do so, this metric
uses the difference between best-obtained performance of the desired task and the performance ob-
tained from the current incremental learner.

Ft =
1

t− 1

t−1∑
1

fi,t where fi,t = max
q<t

(ai,q − ai,t) or fi,t = ai,i − ai,t (11)

A.4 BASELINE DETAILS

GDumb (Prabhu et al., 2020) maintains a randomly-sampled RGB memory buffer. It stores all
samples until the buffer is full and then stops storing. We store approximately 226 and 490 video
samples respectively for K-700 and EK-100 in the buffer. So, for K-700, for incremental setting,
if n = 35, we have 6 samples from each past task rounding down. In the pre-training setting, if

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Continual Learning on Kinetics-700 dataset with action classification.

n = 10, 22 samples respectively. And, for EK-100, if n = 33, we roughly have 15 samples from
each past task, and if n = 16, 30 samples respectively.

REMIND (Hayes et al., 2020) proposes a compression technique using a two-stage process. In the
first stage, it compresses the current input. This stage is analogous to the compression phase in
our method. In the second-stage, it reconstructs a subset of previously compressed representations,
and mixes them with the current input. It then updates the plastic weights of the network with this
mixture. The second stage is analogous to decompression phase and rehearsal in our method to
maintain stability of learned and new input representation.

For REMIND (Hayes et al., 2020), we can store approximately 29K and 77K video samples respec-
tively for K-700 and EK-100 in the buffer. For K-700, as n = 35, we have 830 samples from each
task rounding down. And, for EK-100, n = 33, we roughly have 2.3K samples from each task. We
directly apply their method by operating on RGB frames from videos instead of RGB samples from
images. For base initialization phase, we use 20 classes for K-700 and 1 participant for EK-100
adapting their protocol as on ImageNet

SMILE (Alssum et al., 2023) introduces a memory-based video CL baseline that maximizes the
memory buffer usage by storing a single RGB frame per video. To combat the distribution shift
between real video clips per CL task and in-memory images (represented as boring videos(Carreira
and Zisserman., 2018)), SMILE introduces a secondary loss. The method favors diversity of videos
over temporal data per video. Their single-frame memory allows to directly apply image-based CL
methods to the video domain. Similar to observations in GDumb (Prabhu et al., 2020), SMILE
(Alssum et al., 2023) also reports strong performance with a random sampling technique.

For (Alssum et al., 2023), We store approximately 3164 and 6860 unique video samples respectively
for K-700 and EK-100 in the memory buffer. We use the SMILE+BiC baseline (Alssum et al., 2023)
(as it gives their stronger performance on Kinetics). We use our incremental setting for comparison
as it is similar to their proposed set-up. For K-700, if n = 35, we roughly have 24 samples from
each past task. And, for EK-100, if n = 33, we roughly have 210 samples from each past task.

A.5 ABLATION EXPERIMENTS

We report ablations with a different compression rate in Table 3. We report ablations with 40 epochs
per task in Table 4, (different than 30 epochs used in our main experiments) which shows a slight
performance increase. This can be attributed to longer network training in the IID phase per task
which allows for further loss reduction. We also show ablation with a new split for classes per task in
Table 5. For K-700, we try with 15 classes per task for 45 tasks in incremental setting, and 20 classes
per task for 15 tasks in pre-training setting. For incremental setting, the training accuracy slightly
increases due to fewer classes per task, however, the evaluation accuracy also reduces, indicating
possible over-fitting. We see minimal effect in the pre-training setting, possibly due to stable class-
agnostic representations learned during pre-training phase.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Compression Kinetics-700 EpicKitchens-100

Setting Train. Eval. Train. Eval.

Pretraining 56.9 47.4 41.0 34.5

Incremental 46.0 40.1 33.6 29.0

Table 6: Our method with a different compression rate (50×). We report training (Train) and evalu-
ation (Eval) performance.

Kinetics-700 EpicKitchens-100

Train. Eval. Train. Eval.

Pretraining 56.8 47.9 41.4 35.5

Incremental 47.2 41.9 34.7 31.1

Table 7: Our method’s ablation with a different number of trainin epochs (40). Training (Train) and
evaluation (Eval) performance reported above

Kinetics-700

Setting Method Train. Eval.

Pre-training BootstrapCL (Ours) 56.8 47.0

Incremental BootstrapCL (Ours) 46.6 36.1

Table 8: Our method’s ablation with a different split as explained in equation A.5. Training (Train)
and evaluation (Eval) performance are reported above.

16

	Introduction
	Related Work
	Background
	Compressed Vision
	Incremental Learning
	Pre-training and Incremental Learning

	Method
	The Ideal Case: IID Sampling
	Incremental Learning
	Rehearsal Buffer and Temporal Evolution of Models.
	Incremental Learning Formulation.

	Continual Learning with Pre-training

	Experiments
	Implementation details
	Setting: Continual Learning with Pre-training
	Setting: Incremental Learning from Scratch
	Baselines
	Evaluation and Metrics

	Results and Analysis
	Proposed Method
	State-of-the-Art Methods
	Ablation Experiments

	Conclusion
	Appendix
	Video Dataset Comparisons
	Dataset Details
	Average forgetting metric (AvgF)
	Baseline Details
	Ablation Experiments

