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ABSTRACT

Continual learning (CL) promises to allow neural networks to learn from contin-
uous streams of inputs, instead of IID (independent and identically distributed)
sampling, which requires random access to a full dataset. This would allow for
much smaller storage requirements and self-sufficiency of deployed systems that
cope with natural distribution shifts, similarly to biological learning. We focus on
video CL employing a rehearsal-based approach, which reinforces past samples
from a memory buffer. We posit that part of the reason why practical video CL
is challenging is the high memory requirements of video, further exacerbated by
long-videos and continual streams, which are at odds with the common rehearsal-
buffer size constraints. To address this, we propose to use compressed vision, i.e.
store video codes (embeddings) instead of raw inputs, and train a video classifier
by IID sampling from this rolling buffer. Training a video compressor online (so
not depending on any pre-trained networks) means that it is also subject to catas-
trophic forgetting. We propose a scheme to deal with this forgetting by refreshing
video codes, which requires careful decompression with a previous version of the
network and recompression with a new one. We expand current video CL bench-
marks to large-scale settings, namely EpicKitchens-100 and Kinetics-700, with
thousands of relatively long videos, and demonstrate empirically that our video
CL method outperforms prior art with a significantly reduced memory footprint.

1 INTRODUCTION

Our world evolves endlessly over time. This temporal evolution creates a continuous shift in real-
world data distributions. Crucially, resource-constrained autonomous agents must cope with these
ongoing changes, akin to humans. Continual learning (CL) offers a practical solution to robustly
acquire knowledge in non-stationary environments while amortizing the learning process over the
agent’s lifespan (Thrun, 1995). In this paper, we focus on CL utilizing long-video understanding
to replicate the real-world complexities encountered in actual deployment scenarios. Existing CL
research focuses on static images or shorter video clips, thus failing to adequately address the natural
shift in data distribution over extended time scales. In this work, we highlight naturally-collected
long videos, which we believe is necessary to capture this temporal progression and long-tailedness,
properties inherent to online learning. Furthermore, naturally-collected long videos closely align
with the principles of human learning scenarios (Damen et al., 2018) that lifelong learning systems
aspire to emulate (McCloskey and Cohen, 1989).

The extra temporal axis of video, compared to a static image, can capture rich information such as
long-term activities and stories. However, it also brings a few orders of magnitude of more data
with the concomitant costs in processing and memory requirements (Han et al., 2022). We highlight
that this challenge further compounds in CL systems as they operate over large time scales on a
continuous video stream. Additionally, with long videos, CL systems have to mitigate forgetting
along a long-range temporal dimension. Consequently, the computational and memory requirements
escalate significantly to accommodate these dual constraints, thus necessitating scalable approaches.

In this paper, we propose a memory-based video CL method to learn over naturally-collected long
videos. Specifically, our method builds an online video compressor to perform continuous com-
pression and decompression over a neural-code rehearsal buffer, and an online classifier that uses
the rehearsal buffer to perform video learning in the compressed space. Different than prior works,
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Figure 1: Continual Learning on Epic-Kitchen dataset with noun classification

our rehearsal buffer is neural-code based storing compressed instead of raw RGB-based input. By
design, our neural-code rehearsal buffer efficiently handles wide temporal history for rehearsal, nec-
essary to mitigate forgetting in large-scale long video continuous streams.

We draw some inspiration from the internal workings of the mammalian brain and human dreaming,
though like most works in CL we cannot claim biological plausibility. Specifically, hippocampal
indexing theory states that the hippocampus stores compressed representations of neocortical activ-
ity patterns while awake (Teyler and Rudy, 2007; Hayes et al., 2020). Furthermore, the compressed
information, also identified as temporal compression of events in episodic memory, enables efficient
storage and recall of past experiences (D’Argembeau et al., 2021; Howard, 2018). This phenomenon
suggests the significance of temporal compression in efficiently retaining information over long in-
put streams (Jeunehomme et al., 2019), a challenge in video CL. Motivated by this observation, we
maintain a compressed temporal buffer. Furthermore, insights from theories in dreaming suggest
that human dreams may have evolved to assist generalization and reduce forgetting (Hoel, 2021).
The hallucinatory and narrative nature of dreams potentially contribute to refining generative mod-
els, enhancing the brain’s predictive processing capabilities (where predictions traverse top-down,
while sensory input, bottom-up), and improving predictions about future states(Clark, 2013; Hohwy,
2013; Keller and Mrsic-Flogel, 2018; Foulkes and Domhoff, 2014). Inspired by theories about the
role of dreaming in learning, we perform continuous compression and decompression, emulating
a bottom-up and top-down approach that reinforces the stability of representations. We note that
this inspiration does not make current neural networks biologically plausible, as they rely on back-
propagation for learning, which is not supported by biological evidence (Crick, 1989; Lillicrap et al.,
2016; Whittington JC, 2019).

In this work, we focus on two broad settings in CL, and evaluate our method under both. The first is
incremental learning – training a network from scratch by presenting it with a sequence of disjoint
data distributions. This models a shifting data distribution as a sequence of distributions (Chaudhry
et al., 2019; Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017). This closely mimics biological
learning, i.e. an agent learning solely from sequential experience. A variation of incremental learn-
ing is to allow an initial pre-training phase (Douillard et al., 2020), where the network is trained on
a large subset of the classes (e.g. half of them) non-sequentially (independently and identically dis-
tributed, IID), and then it is incrementally adapted. This setting more closely follows the common
usage of ML models, where usually there is at least some relevant dataset for pre-training before
deploying a system, and can circumvent many challenges posed by the incremental learning setting,
such as computational cost and representational drift.

Our key contributions are as follows:

1. A neural-code memory-based video continual learning framework that operates on large-
scale long videos.

2. A code refreshing scheme that minimizes representation drift in a buffer of codes that were
initially created with different versions of the same compressor.

3. An evaluation of video CL in large-scale video datasets, namely Epic-Kitchens-100 and
Kinetics-700.
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Figure 2: Overview of the differences between our proposed scheme and alternative compressed
buffer strategies. Using a compressed buffer for rehearsal (column 2) risks representation drift,
since codes were created with a different version of the trained encoder (represented as 3 different
colors). Decoding without drift requires snapshots of the decoder over time (column 3), but the
memory growth is unbounded. Our proposed scheme (column 4) refreshes codes to keep them from
drifting, while only requiring a single snapshot of the last decoder.

4. Empirical evaluations of our method in both datasets, in 2 popular CL settings: with pre-
training, and incrementally from scratch.

We evaluate our framework for noun and action classification task on Epic-Kitchens-100 and
Kinetics-700 datasets respectively. Our method significantly outperforms state-of-the-art perfor-
mance under both the settings. We believe that this is the first work to extend continual learning to
large-scale naturally-collected long videos.

2 RELATED WORK

Continual Learning with Images and Videos. Most current CL systems show promising results
in the image domain, which primarily involves artificially-constructed sequences of images and
transfer of declarative knowledge of entities and concepts (Buzzega et al., 2020; Qu et al., 2021;
Lopez-Paz and Ranzato, 2017). Different than these, our focus on naturally-collected long videos
creates a continuous data distribution shift and serves as a robust test-bed for evaluating CL systems
under real-world task settings that require the transfer of procedural knowledge over extensive time
spans. Natural videos simulate real-world conditions, such as the nuanced understanding of actions
or behaviors in long video sequences (Damen et al., 2018). Furthermore, the deployment of CL
systems in real-world settings, like surveillance cameras or autonomous vehicles, necessitates their
ability to effectively learn from continuous long video streams over significant time scales(Doshi
and Yilmaz, 2022; 2020). There have been some works in CL that operate on videos, however,
are limited to processing only few-seconds to minutes long videos or do not propose scalable
approaches to tackle the high memory and computational requirements. OAK (Wanderlust) (Wang
et al., 2021) released a benchmark with long ego-centric videos but was limited to testing current
CL algorithms with a narrow task domain focused on coarse-grained object detection with sparse
annotations. This benchmark was also used in Efficient-CLS (Wu et al., 2023) which proposed
a slow-fast CL method with an episodic memory similar to (Rebuffi et al., 2017; Lopez-Paz and
Ranzato, 2017; Chaudhry et al., 2019). With its focus on Complementary Learning Systems
(Kumaran et al., 2016), Efficient-CLS (Wu et al., 2023) is complementary to other CL methods,
augmenting them with a pair of slow and fast learners, and using the former to generate pseudo-
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labels for the later. (Wu et al., 2023) also shows performance on EgoObjects (Zhu et al., 2023), a
fine-grained ego-centric dataset with seconds-long clips. This contrasts with our experiments using
Epic-Kitchens-100 (Damen et al., 2018), with minutes to hours-long videos. CLAD (Verwimp
et al., 2022), a CL benchmark for autonomous driving, repurposed an image dataset to form
a temporal stream. It proposed a single (days-long) “video” (time lapse sequence of images),
introducing domain shifts at different frequencies (e.g. time, location, different objects, viewpoint).
While having a single very long video is a reasonable axis to expand video CL evaluation, we
extend it to (Damen et al., 2018) with thousands of videos, each minutes to hours-long. In addition
to location, time, objects, viewpoints, (Damen et al., 2018) also poses domain shifts resulting
from fine-grained human-object interactions and cinematography changes, thus distinguishing
it from (Verwimp et al., 2022). To the best of our knowledge, we are the first to build a prac-
tical CL algorithm in a large-scale long video setting, and thoroughly evaluate it in a realistic setting.

Memory-Based Continual Learning. Memory-based algorithms have demonstrated strong

performance in CL (Saha and Roy, 2021; Prabhu et al., 2020; Chaudhry et al., 2019). During
training, a memory buffer stores data instances from the past and rehearses them while training
new tasks in order to consolidate previously learned knowledge to mitigate catastrophic forgetting.
(Hayes et al., 2020) proposed a compression-based CL method over static images and natural
language, however, did not address challenges arising from CL over long videos. Furthermore, most
current research primarily shows the relevance of different memory budgets, balancing or rehearsal
techniques (Prabhu et al., 2020). While we don’t argue whether an unbounded or bounded memory
budget is beneficial, we show that under any budget, compression leads to significant gains.

Video Compression. Training robust video representations has proven to be more challenging than
learning deep image representations, due to the enormous size of raw video streams and the high
temporal redundancy. Superfluous information can be reduced by up to two orders of magnitude
by video compression (Wu et al., 2018; Wiles et al., 2022). Importantly, compressed video repre-
sentation has a higher information density, and additionally the training is made easier, as generic
features are already extracted. The signals in a compressed video provide free, albeit noisy, motion
information (Li et al., 2023; Wu et al., 2018). In video learning, it remains a challenge how to ac-
curately capture key information, and several works have tried techniques such as token dropout,
frame sampling and key information detection (Yan et al., 2020; Han et al., 2022; Zhi et al., 2021).
Compression on the other hand presents an elegant solution for these challenges (Wu et al., 2018).

Robot Lifelong Learning. A strand of robotics delves into continual learning methodologies uti-
lizing videos and feedback mechanisms. In this realm, robots are tasked with acquiring and refining
their skills and knowledge over time (Thrun, 1995; Liu et al., 2021; 2023). Robot lifelong learning
typically focuses on active learning and the effect of an agent’s actions in the environment.

3 BACKGROUND

3.1 COMPRESSED VISION

Our method builds on compressed vision, proposed by Wiles et al. (Wiles et al., 2022). The main
concept is to train any classifier on small codes (embeddings) obtained from video frames, instead
of the frames directly. By using a frozen compressor network to obtain the codes, and performing
data augmentation (to avoid overfitting) directly in the code latent space instead of the input space,
they can store extremely long videos in memory compared to traditional approaches. Their pipeline
consists of three training phases. 1) They train a neural compressor c = (ϕ, ψ), where ϕ and ψ
denotes the encoder and decoder respectively, using a VQ-VAE (Van Den Oord and Vinyals, 2017).
c takes videos X as input and produces neural codes x ∈ Rs×h×w. 2) They train an augmenter
network a, that takes as input x and predicts codes x̂i that correspond to randomly-transformed
video frames. 3) Lastly, they train a video task classifier that takes as input x̂ to solve a given
downstream task, and prevent over-fitting by using a to perform data augmentation directly in the
space of the codes. Note that in the first phase, once c is trained, x ∈ X are stored in a buffer, c is
frozen and the original videos are no longer needed. Wiles et al. (Wiles et al., 2022) show strong
performance results (under 5% drop) at high compression rates (256× and 475×).
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3.2 INCREMENTAL LEARNING

A common scenario in CL (Chaudhry et al., 2019; Rebuffi et al., 2017; Lopez-Paz and Ranzato,
2017) is incremental learning – training a network by presenting it with a sequence of n tasks
consisting of disjoint data distributions, sequentially, as T = {ti}ni . This models a shifting data
distribution as a sequence of distributions. Concretely, a learning model observes a continuum of
data, which is a concatenation of m samples from each of the tasks, for a total of nm samples, as
follows:

D = {xj,i, yj,i}m,nj,i (1)

xj,i
iid∼ Xti , yj,i

iid∼ Yti (2)

Xti is a distribution over images for task ti, and Yti is a distribution over its target vectors (for
example, action classes). For simplicity, we assume that the continuum samples are IID within a
task.

The main advantage of this setting is that it represents the most stringent test of continual learning,
by training from scratch. It also more closely mimics biological learning, i.e. an agent learning
solely from sequential experience.

3.3 PRE-TRAINING AND INCREMENTAL LEARNING

A variation of incremental learning is to allow an initial pre-training phase (Douillard et al., 2020),
where the network is trained on a large subset of the classes (e.g. half of them) IID, and then
is incrementally adapted as before. This more closely follows the common usage of ML models,
where usually there is at least some relevant dataset for pre-training before deploying a system.

4 METHOD

Similarly to Sec. 3, we aim to train a deep neural network by presenting it with a sequence of n
tasks of disjoint data distributions, i.e. eq. 1. The main difference is that each xj,i is a video clip,
and each yj,i is now a video class (e.g. a human action label).

4.1 THE IDEAL CASE: IID SAMPLING

We will first present the ideal case, where a learner has access to all available samples, sampled IID.
This avoids catastrophic forgetting and allows us to introduce the concepts in a simplified form. We
aim to train a feature extractor or compressor c = (ϕ, ψ), composed of an encoder ϕ and decoder ψ,
as well as a classifier q which takes the features from the encoder. The objective of the compressor,
trained on the full dataset from eq. 1, is defined as:

ψ∗, ϕ∗ = argmin
ψ,ϕ

(
E

ti∼T
E

xj∼Xti

(
||ψ(ϕ(xj))− xj ||2

))
. (3)

The classifier is simply trained with a cross-entropy loss L for classification (or another loss for a
different downstream task):

q∗ = argmin
q

E
ti∼T

(
E

(xj ,yj)∼(Xti
,Yti

)
L(q(ϕ(xj)), yj)

)
(4)

This is, of course, an idealized situation where it is possible to have random access to any sample.
Next we’ll turn to the CL scenario where we are given only a single task (time) ti at a time, and
cannot directly access past samples.

4.2 INCREMENTAL LEARNING

In this setting, we train the compressor continually with new classes. It suffers from forgetting if
the old classes are not represented, so we employ a rehearsal strategy while training the compressor.
Unlike (Wiles et al., 2022), in Setting 2 as time progresses, the compressor observes new data
samples unseen during past tasks. Additionally, during any task tk described in equation 1, the
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Figure 3: Overview of the proposed compressed continual learning pipeline. Our method trains a
video compressor as an autoencoder, together with a classifier, while storing short compressed codes
describing the videos in a buffer for rehearsal of past samples. Our method continually refreshes
codes from past tasks t−1 so that they work with the compressor for the current task t, ensuring the
stability of the representations over time.

learner receives video clip frames that are never revisited, creating a challenge for gradient-descent-
based learning. As the compressor c is also learning (and changing) as time progresses, how do we
adapt it to the shifting video distribution?

4.2.1 REHEARSAL BUFFER AND TEMPORAL EVOLUTION OF MODELS.

Because we will train a model sequentially over the tasks, and it will be different for each task, we
need to consider a sequence of models (c1, q1), . . . , (cn, qn), one per task ti.

In order to allow training on past samples, so that the loss value on them is maintained, some form
of memory (explicit or implicit) is also required. In this work we maintain a buffer denoted as Bi−1.
At time ti it is defined as

Bi−1 = {ej,k}m,i−1
j,k , ej,k = ϕti−1

(xj,k) (5)

where k iterates over previous tasks (1 to i − 1), j iterates over samples per task (1 to m), and
ej,i denotes the compressed video clip. The neural-codes based buffer Bi−1 contains previously
observed video codes necessary to maintain old concepts from prior tasks. During the task ti, when
training ci and qi, we only have access to the last state of the buffer Bi−1 and video examples from
the current task, Xti .

4.2.2 INCREMENTAL LEARNING FORMULATION.

Let us consider the first task. Adapting eq. 3 to focus on the first task, we have:

ψ∗
1 , ϕ

∗
1 = arg min

ψ1,ϕ1

(
E

xj∼Xt1

(
||ψ1(ϕ1(xj))− xj ||2

))
, (6)

and an identical adaptation for the classifier from eq. 4. Similarly, for the second task, we have the
loss equation:

ψ∗
2 , ϕ

∗
2 =arg min

ψ2,ϕ2

(
E

xj∼Xt2

(
||ψ2(ϕ2(xj))− xj ||2

)
+ (7)

E
ej∼B1

(
||ψ2(ϕ2(sj))− sj ||2

))
(8)

where sj = ψ1(ej) (9)
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Kinetics-700 (K-700) EpicKitchens-100 (EK-100)

Setting Method Train. ↑ Eval. ↑ AvgF ↓ Train. ↑ Eval. ↑ AvgF ↓

Pretraining

Upper Bound 57.10 48.20 – 42.10 35.90 –

BootstrapCL (Ours) 56.25 46.50 5.50 40.10 33.20 9.70

REMIND Hayes et al. (2020) 43.51 35.90 49.20 30.89 24.60 56.3

Incremental

Upper Bound 48.20 44.10 – 36.20 32.0 –

BootstrapCL (Ours) 44.60 38.80 15.20 32.60 28.10 21.60

SMILE Alssum et al. (2023) 40.56 29.20 62.50 28.71 19.20 67.8

vCLIMB Villa et al. (2022) 39.12 28.65 65.10 27.11 18.5 66.5

GDumb Prabhu et al. (2020) 37.61 18.70 52.40 25.30 15.60 60.10

Table 1: Comparison of our method and baselines (average training (Train) and evaluation accuracy
(Eval), and average forgetting (AvgF)), on K-700 and EK-100, with pre-training and incremental
settings (as described in Sec 5.2 and 5.3). We set 654 Mb (in K-700) and 714 Mb (in EK-100) as the
maximum memory budget for our method and baseline experiments above (as described in Sec 5.4).
Upper Bound refers to the upper bound baseline which has unbounded memory budget (described
in Sec 5.4).

where the first expectation is over the current batch, and the second expectation is over codes stored
in the buffer, which are decoded by ϕ1. Note that it is important to decompress the buffer using the
decoder parameters from the previous task ψ1, not the one currently being trained ψ2, in order to be
consistent with the encoder they were compressed with, ϕ1.

As for the classification objective (eq. 4), it is also adapted using a mix of codes from the buffer and
from the batch of samples in the current task:

q∗2 = argmin
q

(
E

(xj ,yj)∼(Xt2 ,Yt2 )
L(q(ϕ2(xj)), yj) + E

(ej ,yj)∼B1

L(q(ϕ2(sj)), yj)

)
, (10)

where we reuse eq. 9, and slightly abuse notation to retrieve the classification label yj associated
with the buffer’s code ej .

We can apply equations 6 and 7 recursively to any task tk by using the buffer and compressors from
the respective tasks, and thus extend it by induction. Fig. 3 gives an overview of this process.

4.3 CONTINUAL LEARNING WITH PRE-TRAINING

Another natural setting as illustrated in (Douillard et al., 2020) is to consider networks that undergo
pre-training with IID samples prior to incremental learning. In this setting, we have two phases.
there are two phases. In the first phase, the model is pre-trained with half of the dataset’s classes and
in the second phase, the model is incrementally trained with rest of the classes.
Following (Douillard et al., 2020)’s protocol, in the first phase we first pre-train the compressor and
classifier with half of the dataset’s classes, and in the second phase, incrementally train the classifier
as in sec. 4.2.2.
Note that an important distinction from the previous setting described in 4.2.2 is that after phase 1
finishes, we can freeze the compressor – assuming that the pre-training is sufficient to learn relevant
features – and as a result, during phase 2, we do not decompress our buffered codes. This avoids
representation drift of the codes and simplifies the method, which does not need to back-propagate
through the codes.

It is interesting to contrast this pre-training setting to the incremental learning only setting (sec.
4.2.2). Continuously decompressing and adapting the codes incurs a computational cost and risks
representational drift. Under a bounded memory budget, the compressor may be under-trained and
fail to produce robust codes. The pre-training setting circumvents these issues, while still enjoying
the benefits of incremental learning of downstream tasks.
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5 EXPERIMENTS

To demonstrate our method empirically, we evaluate on video-based CL baseline and propose an
extension of image-based CL evaluations to large-scale video datasets. We use Kinetics-700 (K-
700) (Kay et al., 2017) and Epic-Kitchens-100 (EK-100) (Damen et al., 2018), where we perform
action and noun classification tasks respectively.

5.1 IMPLEMENTATION DETAILS

We use the same compressor architecture as Wiles et al. (Wiles et al., 2022), which is based on a
ResNet, and refer the reader to their work for a complete review. Compressor training differs in the
two settings as described below. In both the settings, we maintain a queue for the rehearsal buffer
to store the video codes. For the downstream video task classifier, we use S3D (Xie et al., 2018)
for K-700, and short-term S3D for EK-100, which takes the compressed codes as inputs. We follow
the specifications from Wiles et al. (Wiles et al., 2022) to adapt the network’s kernel size and stride
at every layer. We experimented with different architectures for the classification task, in order to
find the optimal settings (further results in appendix A). We use compression rate 256× unless stated
otherwise. We apply random horizontal flipping and random cropping of size 224×224 from frames
resized such that the short side ∈ [256, 340] as data augmentation. Each video clip of dimensions
224× 224× 14224× 224× 3× 32 (32 RGB frames) corresponds roughly to a compressed code of
size 0.0013 Mb.

5.2 SETTING: CONTINUAL LEARNING WITH PRE-TRAINING

Dataset. Following the experimental protocol in Douillard et al. (2020), we split K-700 into 2
parts. The first split consists of Kinetics-400 (K-400), and the second split contains the remaining
300 classes of K-700. Similarly, we split EK-100 into 2 parts, the first with 17 participants and the
second with 16 participants. Classes are sampled IID in the first dataset split respectively. For K-
700, the second split has 10 tasks with 30 non-overlapping classes per task. For EK-100, the second
split has 17 tasks with 1 participant per task. Videos are sampled IID within every task.

Training. As described in Section 3, this setting has two phases. In the first phase, we follow
IID training. We train the compressor c and classifier for 300 epochs with a batch size of 32, and
use the Adam optimizer with learning rate of 0.01 and weight decay of 10−5. c is frozen at the
end of pre-training. We store the compressed codes into the queue for all the classes in this phase,
and then train the classifier with these stored codes. We start the second phase with the pre-trained
classifier from the first phase and train it incrementally over 10 tasks for K-700 and 17 tasks for
EK-100. We pass the transformed video inputs through the frozen compressor, store the resulting
codes into the queue and use them as inputs for the classifier. We receive new class samples at every
task, and assume IID sampling over those. We train the classifier for 2 epochs with the compressed
codes corresponding to new samples and those stored in the rehearsal buffer. Note that the buffer
also includes the codes from pre-training classes, plus from all tasks seen so far. We also perform
ablations varying the number of epochs per task and class splits. The incremental training over the
classifier completes once all the tasks are processed.

5.3 SETTING: INCREMENTAL LEARNING FROM SCRATCH

Dataset. For K-700, we have 35 tasks with 20 non-overlapping classes per task. For EK-100, we
have 33 tasks with video samples from 1 participant per task. Videos are sampled IID within every
task.

Training. We train the compressor and classifier incrementally, and within each task, we follow
IID training. So, we first train the compressor for 1 epoch and then the classifier for 30 epochs
unless stated otherwise. To train the compressor, we use a batch size of 16, and Adam optimizer
with learning rate of 0.01 and weight decay of 10−5. At every task, during compressor training, we
decompress compressed codes from the buffer (unless empty) using the latest compressor, and obtain
the corresponding RGB values. We then re-train the compressor jointly with the decompressed
codes and new samples. Lastly, we store the freshly compressed codes into the buffer, and freeze
the compressor for that task. We use the stored codes from the current and past tasks as inputs to the
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Figure 4: Average evaluation accu-
racy for different methods, with varying
memory budgets on Kinetics-700.

Dataset Memory (MB) BootstrapCL (Ours) RGB buffer

Buffer 654 1503 × 103

Kinetics-700 Models 750 250

Total 1404 1503.2 × 103

Buffer 714 1640 × 103

EpicKitchens-100 Models 750 250

Total 1464 1640.2 × 103

Table 2: Memory footprint of our method with a com-
pression ratio of 256× versus a traditional buffer of
RGB images.

task classifier. We store the resulting the codes for every video clip into the queue, and freeze the
compressor for that task. So, at every task, we interleave between compressor and classifier training.
This training process is repeated for the total number of tasks.

5.4 BASELINES

Our method lies at the intersection of memory-based and video CL. For memory-based CL, we
compare with GDumb (Prabhu et al., 2020) and REMIND (Hayes et al., 2020) which focused on
image-based analysis. For video CL, we compare with SMILE (Alssum et al., 2023), which is
also a memory-based CL method. We also design an upper bound baseline using an unbounded
RGB memory budget. To compare with REMIND (Hayes et al., 2020), we use our pre-training
set-up, as these baselines rely on a pre-trained architecture. For the rest of the baselines, we use our
incremental learning set-up. For further details on video samples storage, please refer to Appendix
A.

In our baseline comparisons for K-700 and EK-100, we set 654 Mb and 714 Mb respectively for the
maximum memory budget of all methods, in order to ensure a fair comparison. These values were
chosen as the maximum memory that our method requires, and they are well within the capacity of
modern hardware. For some baselines, we also show comparisons with different memory budgets in
the ablations section. During the incremental learning phase, at every task, we split the storage space
equally for each past task up to the buffer limit. Denote K as the total number of video samples that
can be stored under the assigned memory budget. Then the total number of samples from each past
task at the nth task in the incremental learning setting is given by K 1

n−1 . The total number of
samples from each past task at the nth task in the pre-training setting, where we add one task for the
pre-training phase, is K

n .

5.5 EVALUATION AND METRICS

We report the average accuracy (Lomonaco et al., 2021) after training and evaluation, and average
forgetting (Lomonaco et al., 2021) after evaluation for our method and baselines in Table 1. The
average accuracy is the average on all the tasks measured at the conclusion of the task sequence.
We show some examples of our method’s predictions, learned over time, in Fig. 1. We report the
total memory buffer size and its equivalent size when storing raw pixel frames in Table 2, and show
ablations with a different compression rate in Appendix A.

6 RESULTS AND ANALYSIS

6.1 PROPOSED METHOD

We find that our method outperforms the baselines and achieves average accuracy comparable to the
upper bound baseline in both our proposed settings, as seen in Table 1. We observe that our pre-
trained compressor captures class-agnostic semantics effectively. For samples unseen during the pre-
training phase, it outputs robust compressed codes without further training, thus enabling the online
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classifier to achieve strong performance. In incremental learning only setting, at every successive
task, since our method decompresses and rehearses past codes, it learns to jointly represent the
features for both old and new tasks. This allows it to output robust codes for downstream video
application. Due to the highly efficient memory, it enjoys full rehearsal of samples from all past
tasks, thus our classifier can efficiently represent all classes, and achieve strong performance. Our
compression strategy is well-optimized such that, even for very large number of samples (> 500K
video samples) with high memory footprint, we only need a small amount of memory (< 2 GB). One
interesting finding from our work is that we do not need to apply any frame selection or sampling
strategy, even for very large videos.

6.2 STATE-OF-THE-ART METHODS

Memory-Based CL Baselines. We see that GDumb Prabhu et al. (2020) suffers from catastrophic
forgetting, as the evaluation accuracy is significantly lower than our method. This is due to lack
of sufficient samples for rehearsal. This also shows that the strongest rehearsal-based technique
is unable to cope with the high memory requirements for videos. Similar to GDumb, which also
compares with other rehearsal-based works such as Saha and Roy (2021); Prabhu et al. (2020);
Chaudhry et al. (2019); Alssum et al. (2023), these assume RGB values stored in the buffer, however,
an unbounded budget is unfeasible in practise. Therefore they further limit the budget by employing
different sampling strategies, resulting in performance degradation.

Our method with a 20x higher compression rate outperforms REMIND Hayes et al. (2020), a
compression-based CL technique. As a result, our memory buffer maintains a wider temporal history
compared to theirs and delivers a greater performance accuracy on both the datasets. Furthermore,
they do not refresh representations instead only the final layer features, which may explain the lower
performance on downstream applications.

Video CL Baselines. We observe that SMILE Alssum et al. (2023) requires a large memory bud-
get to meet the state-of-the-art performance as seen in their work. From Table 1, we see that their
performance degrades significantly under both datasets under bounded the memory budget. Further-
more, in the case of long videos, as dense temporal sampling is necessary for maintaining temporal
association and long-term context to benefit inference Han et al. (2020), their performance further
degrades as they perform significant temporal down-sampling.

6.3 ABLATION EXPERIMENTS

We also describe and report the average evaluation accuracy under various memory budgets for our
method and baselines in Fig 3. We report results for both higher and lower memory budgets. We
can see from this performance memory plot that our method requires significantly less memory to
achieve strong performance compared to prior art. Our method’s memory budget is well within the
capacity of modern hardware. We also describe and report results for further ablations in Appendix
A.

7 CONCLUSION

In this work we presented a method to perform continual learning over long-videos, mitigating
catastrophic forgetting. Video CL poses considerable challenges, one of them being the high mem-
ory requirements. We propose to use compressed vision as a way to increase substantially the buffer
size used for rehearsal in CL, and highlight the need to devise an appropriate strategy to deal with the
representation drift of the compressor (i.e. codes become stale compared to the most recent compres-
sor state). We demonstrate encouraging results in 2 large-scale video datasets, Epic-Kitchens-100
and Kinetics-700. We also study 2 different settings of CL, with pre-training and from scratch. We
believe that compressed vision can play an important role in scaling up methodologies developed for
images and adapt them to videos. In future work we would like to explore even more long-duration
videos, and other tasks that go beyond action classification.
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A APPENDIX

A.1 VIDEO DATASET COMPARISONS

A.2 DATASET DETAILS

Epic-Kitchens-100 The average video length is 20 minutes, longest video length is 1.5 hours and
shortest video length is 5 minutes. Total video footage length is 100 hours. Each video is at 25
frames per second. We further describe the dataset annotations. Each video is associated with a
participant and video identifier. Each video is split into a block of frames (segment) with a start and
a stop timestamp, and indicated with the start and stop frame. A video segment is labeled with all
the noun categories present in it (so multiple labels per clip). The labeling is at the video segment
level. There are a total of 331 noun classes covering various nouns involved in kitchen actions
(including everyday equipment). Smooth transitions between classes are ensured by presenting the
segments to the models chronologically.

Kinetics-700 The average video length is 10 seconds, longest video length is 15 seconds
and shortest video length is 7 seconds. Each video is at 25 frames per second. There are 700 classes
in total, and each class is also associated with an integer label (which is an integer value from 0 to
699). Each video is associated with a class label.
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Dataset Longest
Video
Length
(secs)

Average
Video
Length
(secs)

# of Object /
Action Cate-
gories

Video under-
standing Set-
ting

Used In

ActivityNet 600 (10
mins)

120 203 short SMILE,
vCLIMB, DPAT

Kinetics
(400/600/700)

20 10 400 / 600 /
700

short SMILE,
vCLIMB, Ours

UCF101 8 5-7 101 short ST-Prompt,
FrameMaker,
SMILE

HMDB51 6 6 51 short ST-Prompt,
FrameMaker

Something-
Something
V2

6 4-6 174 short, fine-
grained

FrameMaker, ST-
Prompt

Epic-
Kitchens-100

5400 (1.5
hrs)

900-1200 (15-
20 mins)

331 long, fine-
grained

DPAT (concur-
rent work), Ours

Table 3: Summary of video datasets: The following table describes each video dataset with the
length of its longest video (column 2), average length (column 3), classification and temporal com-
plexity in its video understanding setting (column 4, 5), and the respective CL works these datasets
are used in (column 6).

participant id video id start time stop time nouns noun classes
P01 P01 01 00:29.22 00:31.32 [’fridge’] [12]
P01 P01 01 09:07.40 09:09.01 [’container’, ’fridge’] [21, 12]
P01 P01 105 00:27.01 00:27.83 [’container’, ’cupboard’] [21, 3]
P02 P02 108 00:43.83 00:45.92 [’biscuit’, ’cupboard’] [104, 3]

Table 4: Example annotations from EK-100 dataset

label youtube id start time stop time
’baking cookies’ JJWwLganiil 31 41
’gymnastics tumbling’ 5KbfOS44-gM 49 59
’writing’ iYcARQA6VIU 0 10
’wrapping present’ Qo5lspgmqPU 167 177

Table 5: Example annotations from K-700 dataset

A.3 AVERAGE FORGETTING METRIC (AVGF)

Let ai,t be accuracy on task i of the model that was trained on t tasks, where i < t. Average forget-
ting measures how much performance has degraded across the first t− 1 tasks. To do so, this metric
uses the difference between best-obtained performance of the desired task and the performance ob-
tained from the current incremental learner.

Ft =
1

t− 1

t−1∑
1

fi,t where fi,t = max
q<t

(ai,q − ai,t) or fi,t = ai,i − ai,t (11)

A.4 BASELINE DETAILS

GDumb (Prabhu et al., 2020) maintains a randomly-sampled RGB memory buffer. It stores all
samples until the buffer is full and then stops storing. We store approximately 226 and 490 video
samples respectively for K-700 and EK-100 in the buffer. So, for K-700, for incremental setting,
if n = 35, we have 6 samples from each past task rounding down. In the pre-training setting, if
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Figure 5: Continual Learning on Kinetics-700 dataset with action classification.

n = 10, 22 samples respectively. And, for EK-100, if n = 33, we roughly have 15 samples from
each past task, and if n = 16, 30 samples respectively.

REMIND (Hayes et al., 2020) proposes a compression technique using a two-stage process. In the
first stage, it compresses the current input. This stage is analogous to the compression phase in
our method. In the second-stage, it reconstructs a subset of previously compressed representations,
and mixes them with the current input. It then updates the plastic weights of the network with this
mixture. The second stage is analogous to decompression phase and rehearsal in our method to
maintain stability of learned and new input representation.

For REMIND (Hayes et al., 2020), we can store approximately 29K and 77K video samples respec-
tively for K-700 and EK-100 in the buffer. For K-700, as n = 35, we have 830 samples from each
task rounding down. And, for EK-100, n = 33, we roughly have 2.3K samples from each task. We
directly apply their method by operating on RGB frames from videos instead of RGB samples from
images. For base initialization phase, we use 20 classes for K-700 and 1 participant for EK-100
adapting their protocol as on ImageNet

SMILE (Alssum et al., 2023) introduces a memory-based video CL baseline that maximizes the
memory buffer usage by storing a single RGB frame per video. To combat the distribution shift
between real video clips per CL task and in-memory images (represented as boring videos(Carreira
and Zisserman., 2018)), SMILE introduces a secondary loss. The method favors diversity of videos
over temporal data per video. Their single-frame memory allows to directly apply image-based CL
methods to the video domain. Similar to observations in GDumb (Prabhu et al., 2020), SMILE
(Alssum et al., 2023) also reports strong performance with a random sampling technique.

For (Alssum et al., 2023), We store approximately 3164 and 6860 unique video samples respectively
for K-700 and EK-100 in the memory buffer. We use the SMILE+BiC baseline (Alssum et al., 2023)
(as it gives their stronger performance on Kinetics). We use our incremental setting for comparison
as it is similar to their proposed set-up. For K-700, if n = 35, we roughly have 24 samples from
each past task. And, for EK-100, if n = 33, we roughly have 210 samples from each past task.

A.5 ABLATION EXPERIMENTS

We report ablations with a different compression rate in Table 3. We report ablations with 40 epochs
per task in Table 4, (different than 30 epochs used in our main experiments) which shows a slight
performance increase. This can be attributed to longer network training in the IID phase per task
which allows for further loss reduction. We also show ablation with a new split for classes per task in
Table 5. For K-700, we try with 15 classes per task for 45 tasks in incremental setting, and 20 classes
per task for 15 tasks in pre-training setting. For incremental setting, the training accuracy slightly
increases due to fewer classes per task, however, the evaluation accuracy also reduces, indicating
possible over-fitting. We see minimal effect in the pre-training setting, possibly due to stable class-
agnostic representations learned during pre-training phase.
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Compression Kinetics-700 EpicKitchens-100

Setting Train. Eval. Train. Eval.

Pretraining 56.9 47.4 41.0 34.5

Incremental 46.0 40.1 33.6 29.0

Table 6: Our method with a different compression rate (50×). We report training (Train) and evalu-
ation (Eval) performance.

Kinetics-700 EpicKitchens-100

Train. Eval. Train. Eval.

Pretraining 56.8 47.9 41.4 35.5

Incremental 47.2 41.9 34.7 31.1

Table 7: Our method’s ablation with a different number of trainin epochs (40). Training (Train) and
evaluation (Eval) performance reported above

Kinetics-700

Setting Method Train. Eval.

Pre-training BootstrapCL (Ours) 56.8 47.0

Incremental BootstrapCL (Ours) 46.6 36.1

Table 8: Our method’s ablation with a different split as explained in equation A.5. Training (Train)
and evaluation (Eval) performance are reported above.
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