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Abstract

The Stackelberg prediction game (SPG) is a popular model for characterizing
strategic interactions between a learner and an adversarial data provider. Although
optimization problems in SPGs are often NP-hard, a notable special case involving
the least squares loss (SPG-LS) has gained significant research attention recently
[1, 2, 3]. The latest state-of-the-art method for solving the SPG-LS problem is the
spherically constrained least squares reformulation (SCLS) method proposed in the
work of [3]. However, the paper [3] lacks theoretical analysis on the error of the
SCLS method, which limits its large-scale applications. In this paper, we investigate
the estimation error between the learner obtained by the SCLS method and the
actual learner. Specifically, we reframe the estimation error of the SCLS method as
a Primary Optimization (PO) problem and utilize the Convex Gaussian min-max
theorem (CGMT) to transform the PO problem into an Auxiliary Optimization
(AO) problem. Subsequently, we provide a theoretical error analysis for the SCLS
method based on this simplified AO problem. This analysis not only strengthens the
theoretical framework of the SCLS method but also confirms the reliability of the
learner produced by it. We further conduct experiments to validate our theorems,
and the results are in excellent agreement with our theoretical predictions.

1 Introduction

The Stackelberg prediction games (SPGs) play prominent roles in various applications of the machine
learning field, such as intrusion detection [4], spam filtering [5], and malware detection [6, 7]. SPG
characterizes the interactions between two players, a learner and a data provider (attacker), during
the training process of various machine learning algorithms [8, 9, 10, 11]. Specifically, the learner
first selects a learning model to fit the given data. The data provider, with full knowledge of the
learner’s model, then attacks the learner by modifying the data. The learner’s goal is to minimize
its loss function under the assumption that the training data has been optimally modified from the
data provider’s perspective. Therefore, the SPG model is often formulated as a bi-level optimization
problem, which is generally NP-hard even in the simplest case with linear constraints and objectives
[1, 12].

To overcome the NP-hard nature of SPGs, [1, 2, 3] focus on a commonly used subclass of SPGs,
termed as the SPG-LS, whose loss functions for the learner and the data provider are least squares.
Specifically, SPG-LS has access to a set of n sample tuples denoted by S = {(xxxi, yi, zi)}ni=1, where
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xxxi ∈ Rd is input data with d features, yi is the true output label of xxxi, and zi is the label that the data
provider aims to achieve. The learner of SPG-LS aims to train a linear predictor www ∈ Rd to best
estimate the true output label yi of the fake data xxx∗i by minimizing the least squares loss:

www∗ = argmin
www

1

n

n∑
i=1

∥www⊤xxx∗i − yi∥2.

Meanwhile, the data provider of SPG-LS, with full knowledge of the learner’s predictive model
www, selects the following least squares attacking strategy (i.e., modifying the data x̂xxi) to make the
corresponding predictionwww⊤xxx∗i close to the desired label zi:

xxx∗i = argmin
x̂xx

∥www⊤x̂xxi − zi∥2 + γ∥xxxi − x̂xxi∥2,

where γ > 0 is a regularizer to adjust the trade-off between the deviation from the original data xxxi
and closeness to the target zi. Thus, the SPG-LS model can be expressed as the following bi-level
optimization problem, as described in [1, 2, 3]:

min
www

∥XXX∗www − yyy∥2, s.t. XXX∗ = argmin
X̂XX

∥X̂XXwww − zzz∥2 + γ∥X̂XX −XXX∥2F , (1)

where XXX = (xxx1,xxx2, · · · ,xxxn)⊤ ∈ Rn×d is the input sample matrix, yyy = (y1, y2, · · · , yn)⊤ ∈ Rn

is the vector of true output labels, and zzz = (z1, z2, · · · , zn)⊤ ∈ Rn is the vector of labels that the
attacker aims to achieve. Moreover, ∥ · ∥ denotes the Euclidean norm (l2) unless otherwise specified.

There have been several studies solving the SPG-LS (1) to determine the Stackelberg equilibrium
point between the learner and the data provider. The initial step in reformulating SPG-LS (1) is taken
by [1], who provides a single-level quadratic fractional program (QFP) that can be globally solved by
a bisection algorithm. However, this QFP method is computationally prohibitive in practice due to
the need to solve multiple semidefinite programs (SDPs). Later, [2] improves upon [1] by showing
that the SPG-LS (1) can be globally solved by reducing a single SDP to a second-order cone program
(SOCP). Despite being faster than the QFP method, the SOCP method is still not well-suited for
large-scale SPG-LS (1) due to time-consuming spectral decomposition. Recently, [3] proposes a
spherically constrained least squares reformulation (SCLS) method, addressing the above-mentioned
issues with a novel nonlinear change of variables. Furthermore, [3] demonstrates that the SCLS
method outperforms the SOCP method and is currently the state-of-the-art for solving SPG-LS (1),
having won the ICML 2022 Outstanding Paper Award.

However, the lack of theoretical analysis on the error of the SCLS method limits its large-scale
practical applications. In this paper, we investigate the estimation error between the learner (e.t.www∗)
estimated by the SCLS method and the true learner (denoted aswww0) to validate the reliability ofwww∗.
Specifically, we assume the samples S = {(xxxi, yi, zi)}ni=1 are generated by the following black box
model:

XXX∗ = argmin
X̂XX

∥X̂XXwww0 − zzz∥2 + γ∥X̂XX −XXX∥2F , yyy =XXX∗www0 + ϵϵϵ, (2)

where www0 ∈ Rd represents the “true” weight parameter of the real learner, and ϵϵϵ =
(ϵ1, ϵ2, · · · , ϵn)⊤ ∈ Rn is the noise vector. Moreover, the entries of XXX and zzz are drawn i.i.d.
from N (0, 1); the entries of ϵϵϵ are drawn i.i.d. from N (0, σ2); and we assume limn→∞

d
n ∈ (0, 1).

GivenXXX , zzz, and yyy generated by this model (2), we solve SPG-LS (1) by the SCLS method to obtain
www∗ that is used to estimate the target vectorwww0. Our task is to measure the optimal estimation error
of the SCLS method, represented by ∥www∗ −www0∥.

We start by formulating an optimization problem regarding the estimation error (e.t. βββ := www−www0) of
the SCLS method. Subsequently, we convert this optimization problem into a Primary Optimization
(PO) problem, employing the Fenchel-Moreau theorem [13]. Following this, we utilize the Convex
Gaussian min-max theorem (CGMT) to simplify the PO problem into an Auxiliary Optimization
(AO) problem. Finally, we conduct a theoretical error analysis of the SCLS method based on the AO
problem. Our main theoretical result can be summarized as follows:

lim
n→∞

∥www∗ −www0∥
P−→ 0, (3)
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which guarantees the reliability of www∗ learned by the SCLS method. Our analysis strengthens the
theoretical foundations of the SCLS method and provides theoretical support for its broad applications.

We also conduct experiments to validate our theorems. The results show that, as n goes to ∞, the
parameter vectorwww∗ learned through the SCLS method converges to actual parameter vectorwww0 in
probability, which aligns excellently with our theoretical predictions.

1.1 Outline

The structure of the remaining sections in this paper is organized as follows: Additional related
work is discussed in Appendix 2. Section 3 provides an overview of the SCLS method, CGMT
technology, and foundational concepts. Our main inference processes are detailed in Section 4.
Specifically, in Section 4.1, we present an optimization problem concerning the estimation error of the
approximated SCLS method and establish the relationship between the original and the approximated
SCLS method; In Section 4.2, the estimation error of the approximated SCLS method is transformed
into a PO problem; In Section 4.3, we simplify the PO problem to an AO problem using CGMT; In
Section 4.4, we conduct an estimation error analysis of the SCLS method based on the AO problem
and the relationship between the original and the approximated SCLS method. We then present
the experimental results in Section 5. Finally, a summary is provided in Section 6. Moreover, the
limitations of our work are detailed in Appendix A

2 Related Work

2.1 The Stackelberg prediction game

Stackelberg Prediction Games (SPGs) were initially introduced by [14], drawing inspiration from
Stackelberg competition—a model initially developed to describe market behaviors. A notable
parallel can be drawn with Stackelberg Security Games (SSGs), as detailed by [4, 6]. In SSGs, a
defender strategically allocates resources to protect targets from an attacker. The optimal defense
strategy in SSGs typically involves solving multiple linear programs [15, 16], and [17] demonstrates
that a near-optimal strategy can be efficiently approximated through a polynomial number of queries
to the attacker’s model. While both SPG and SSG frame the learning of an optimal strategy as
a bilevel optimization problem, SPGs are distinctly designed to counteract manipulation within
machine learning algorithms [1].

Recognized as NP-hard hierarchical mathematical challenges [12], SPGs have been extensively
examined. However, existing research predominantly addresses scenarios where data providers
exhibit partial adversarial behaviors or possess constrained adversarial capabilities. The study by
[1] explores SPGs within the context of linear least squares regression (e.g., SPG-LS), assuming
data providers are neither fully adversarial nor entirely honest. To address the SPG-LS problem,
[1] initially formulated a solution approach, which was later enhanced by [2]. Subsequently, [3]
introduced the Spherical Constrained Least Squares (SCLS) method, currently acknowledged as the
state-of-the-art. This paper aims to further elucidate the error dynamics of the SCLS method [18],
thereby solidifying its theoretical foundation for broader practical application.

2.2 The Gaussian Min-max Theorem

The Convex Gaussian Min-max Theorem (CGMT) framework, first introduced by [19], serves as a
potent analytical tool extensively utilized to evaluate the performance of solutions within non-smooth
regularized convex optimization problems. This framework is derived from Gordon’s Gaussian Min-
max Theorem (GMT) [20, 21], which provides foundational insights into the behavior of Gaussian
processes in optimization scenarios. Over the years, the CGMT has enabled significant advancements
across a spectrum of practical applications. Notable examples include enhancements in regularized
logistic regression [22], max-margin classifiers [23] and adversarial training [24, 25]. Motivated
by these successful applications, we are encouraged to employ the CGMT framework to conduct a
thorough analysis of the estimation error associated with the SCLS method.
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3 Preliminaries

3.1 The SCLS method

This section provides a comprehensive overview of the SCLS method as introduced by [3]. Expanding
upon previous studies by [1, 2], [3] reformulates SPG-LS (1) into the following quadratic fractional
program (QFP) utilizing the Sherman-Morrison formula [26]:

inf
www

∥∥∥ 1
γzzzwww

⊤www +XXXwww

1 + 1
γwww

⊤www
− yyy

∥∥∥2. (4)

Moreover, [3] introduces an augmented variable α = www⊤www/γ and further reformulate QFP (4) as:

inf
www,α

v(www,α) ≜ ∥αz
zz +XXXwww

1 + α
− yyy∥2, s.t. www⊤www = γα. (5)

Subsequently, [3] makes a assumption on the nonemptiness of the optimal solution set of QFP (5).

Assumption 3.1 ([3]). Assume that the optimal solution set of (5) (or equivalently, (4)) is nonempty.

Under Assumption 3.1, [3] employs a nonlinear variable transformation to recast the QFP (5) as a
spherical constrained least squares (SCLS) problem:

min
w̃ww,α̃

ṽ(w̃ww, α̃) ≜
∥∥∥ α̃
2
zzz +

√
γ

2
XXXw̃ww − (yyy − zzz

2
)
∥∥∥2, s.t. w̃ww⊤w̃ww + α̃2 = 1, (6)

where w̃ww and α̃ are defined in Lemmas 3.2 and 3.3. Upon identifying a feasible solution in QFP (5),
[3] introduces Lemma 3.2 to construct a feasible solution in SCLS (6), while Lemma 3.3 describes
the inverse transformation.

Lemma 3.2 ([3]). Suppose (www,α) is a feasible solution of QFP (5). Then (w̃ww, α̃), defined as

w̃ww :=
2

√
γ(α+ 1)

www and α̃ :=
α− 1

α+ 1
, (7)

is feasible to SCLS (6) and v(www,α) = ṽ(w̃ww, α̃).

Lemma 3.3 ([3]). Suppose (w̃ww, α̃) is feasible to SCLS (6) with α̃ ̸= 1. Then (www,α), defined as

www :=

√
γ

1− α̃
w̃ww and α :=

1 + α̃

1− α̃
, (8)

is feasible to QFP (5) and ṽ(w̃ww, α̃) = v(www,α).

Let v∗ and ṽ∗ represent the optimal values of QFP (5) and SCLS (6), respectively. Subsequently, [3]
presents Theorem 3.4 to elucidate the relationship between the solutions of QFP (5) and SCLS (6).

Theorem 3.4 ([3]). Given Assumption 3.1, then there exists an optimal solution (w̃ww, α̃) to SCLS (6)
with α̃ ̸= 1. Moreover, (www,α), defined by (8), is an optimal solution to (5) and v∗ = v(www,α) =
ṽ(w̃ww, α̃) = ṽ∗.

Theorem 3.4 indicates that an optimal solution of SCLS (6) can be utilized to recover an optimal
solution of SPG-LS (1). Additionally, the converse of this theorem also holds, as demonstrated by [3].
Specifically, if (www,α) is an optimal solution to QFP (5), (w̃ww, α̃), as defined by (7), is also an optimal
solution to SCLS (6).

It is important to note that [3] focus on a compact form of SCLS (6):

min
rrr

q(rrr), s.t. rrrTrrr = 1, (9)

where q(rrr) = ∥L̂rrr − (yyy − zzz/2)∥2, L̂ =
(√

γ

2 XXX
zzz
2

)
and rrr =

(
w̃ww
α̃

)
. Due to the equivalence of

SCLS problems (6) and (9),this paper focus on the SCLS (6).
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3.2 The Convex Gaussian Min-max Theorem

The Convex Gaussian Min-max Theorem (CGMT) originates from Gordon’s Gaussian Min-max
Theorem (GMT) [21], which provides probabilistic bounds on the optimal cost of PO problem via a
simpler AO problem. CGMT further tightens the bounds under convexity assumptions. Building on
GMT, [20] introduces the following asymptotic sequence and notation.

Definition 3.5 (GMT admissible sequence). The sequence
{
GGG(d), ggg(d),hhh(d),S(d)

βββ ,S(d)
uuu , ψ(d)

}
d∈N

indexed by d, with GGG(d) ∈ Rn×d, ggg(d) ∈ Rn, hhh(d) ∈ Rd, S(d)
βββ ⊂ Rd, S(d)

uuu ⊂ Rn, ψ(d) : S(d)
βββ ×

S(d)
uuu → R and n = n(d), is said to be admissible if, for each d ∈ N, S(d)

βββ and S(d)
uuu are compact sets

and ψ(d) is continuous on its domain. Onwards, we will drop the superscript (d) from GGG(d), ggg(d),
hhh(d).

A sequence
{
GGG(d), ggg(d),hhh(d),S(d)

βββ ,S(d)
uuu , ψ(d)

}
d∈N defines a sequence of min-max problems

Φ(d)(GGG) := min
βββ∈S(d)

βββ

max
uuu∈S(d)

uuu

uuu⊤GGGβββ + ψ(d)(βββ,uuu) (10)

ϕ(d)(ggg,hhh) := min
βββ∈S(d)

βββ

max
uuu∈S(d)

uuu

∥βββ∥ggg⊤uuu+ ∥uuu∥hhh⊤βββ + ψ(d)(βββ,uuu) (11)

Importantly, the formulation (10) is called Primary Optimization (PO) and the formulation (11) is
called Auxiliary Optimization (AO). Additionally, let βββ(d)

Φ (GGG) denote the optimal minimizer of the
PO problem (10), and βββ(d)

ϕ (ggg,hhh) denote the optimal minimizer of the AO problem (11). Define

υ(d) : S(d)
βββ → R as follows,

υ(d)(βββ;ggg,hhh) := max
uuu∈S(d)

uuu

∥βββ∥ggg⊤uuu+∥uuu∥hhh⊤βββ+ψ(d)(βββ,uuu). (12)

Clearly, ϕ(d)(ggg,hhh) := min
βββ∈S(d)

βββ

υ(d)(βββ;ggg,hhh). For a sequence of random variables {X (d)}d∈N and a

constant c ∈ R, X (d) P−→ c denotes convergence in probability, i.e., ∀ϵ > 0, limd→∞ P
(
|X (d)−c| >

ϵ
)
= 0. Based on the GMT admissible sequence and the notation introduced above, we present the

CGMT below.

Theorem 3.6 (CGMT [27]). Let
{
GGG(d), ggg(d),hhh(d),S(d)

βββ ,S(d)
uuu , ψ(d)

}
d∈N be a GMT admissible se-

quence as in Definition 3.5, for which additionally the entries ofGGG, ggg, hhh are drawn i.i.d. from N (0, 1).
Let Φ(d)(GGG), ϕ(d)(ggg,hhh) be the optimal costs, and, βββ(d)

Φ (GGG), βββ(d)
ϕ (ggg,hhh) the corresponding optimal

minimizers of the PO and AO problems in (10) and (11). The following three statements hold

(i) For any d ∈ N and c ∈ R, P
(
Φ(d)(GGG) < c

)
≤ 2P

(
ϕ(d)(ggg,hhh) ≤ c

)
.

(ii) For any d ∈ N. If S(d)
βββ , S(d)

uuu are convex, and, ψ(d)(·, ·) is convex-concave on S(d)
βββ × S(d)

uuu ,
then, for any µ ∈ R and t > 0,

P
(
|Φ(d)(GGG)− µ|) > t

)
≤ 2P

(
|ϕ(d)(ggg,hhh)− µ|) > t

)
(iii) Assume the conditions of (ii) hold for all d ∈ N. Let ∥ · ∥ denote some norm in Rd and recall

(12). If, there exist constants (independent of d) κ∗, ρ∗ and τ > 0 such that

(a) ϕ(d)(ggg,hhh) P−→ κ∗, (b) ∥βββ(d)
ϕ (ggg,hhh)∥ P−→ ρ∗, (c) with probability one in the limit d→ ∞{

υ(d)(βββ;ggg,hhh) ≥ ϕ(d)(ggg,hhh) + τ
(
∥βββ∥ − βββ

(d)
ϕ (ggg,hhh)

)2
,∀βββ ∈ S(d)

βββ

}
,

then,

∥βββ(d)
Φ (GGG)∥ P−→ ρ∗.
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Theorem 3.6 indicates that, if the optimal cost ϕ(ggg,hhh) of (11) converges to some value µ, the same
holds true for Φ(GGG) of PO (10). Furthermore, under appropriate additional assumptions, the optimal
solutions of the AO and PO problems are also closely related by

∥βββΦ(GGG)∥ = ∥βββϕ(ggg,hhh)∥.

This suggests that within the CGMT framework, a challenging PO problem can be replaced with
a simplified AO problem, from which the optimal solution of the PO problem can be accurately
inferred [27]. Subsequently, we rewrite the estimation error of the SCLS method (6) in the form of
PO problem (10) and analyze the minimizer of the simplified AO problem instead.

3.3 Basic Concept

Conjugate pairs: Consider a function f : Rd → R. The Fenchel conjugate of f , denoted by f∗, is
defined as f∗(uuu) = supvvvvvv

⊤uuu− f(vvv), which is always convex and lower semi-continuous. By the
Fenchel-Moreau theorem [13], if f is both convex and continuous, then f(vvv) = supuuuuuu

⊤vvv − f∗(uuu).
In this paper, we consider the following conjugate pairs for the l2 norm:

f(vvv) = ∥vvv∥2 ↔ f∗(uuu) =
∥uuu∥2

4
. (13)

First-order approximation: Assume f is differentiable. According to [13, Theorem 23.4]:

f(www) = f(www0) + [ḟ(www0)]
⊤βββ +O(∥βββ∥2) (14)

wherewww = www0 + βββ and ḟ(www0) =
∂f
∂www

∣∣
www=www0

. The linearization of f(·) around the interestwww0 is

f̂(www) = f(www0) + [ḟ(www0)]
⊤βββ. (15)

As ∥βββ∥ approaches 0, f̂(www) closely approximates f(www).

4 The Error Analysis for the SCLS method

4.1 From the SCLS Method to PO

Given that the sample (XXX,yyy,zzz) is generated by black box model (2), we integrate SPG-LS (1) and
QFP (4) as follows:

yyy =XXX∗www0 + ϵϵϵ =
α0zzz +XXXwww0

1 + α0
+ ϵϵϵ, (16)

where α0 = www⊤
0 www0/γ. Drawing inspiration from Lemmas 3.2 and 3.3, we define

w̃ww0 :=
2

√
γ(α0 + 1)

www0, α̃0 :=
α0 − 1

α0 + 1
, with the inverses: www0 :=

√
γ

1− α̃0
w̃ww0, α0 :=

1 + α̃0

1− α̃0
. (17)

This representation of w̃ww0 denotes the true weight parameter of SCLS (6). Notably, (w̃ww0, α̃0) is
valid as long as α0 ≥ 0 and α̃0 ̸= 1, which conforms to (w̃ww, α̃) defined by [3]. Specifically, For

α0 =
www⊤

0 www0

γ ∈ (1,+∞), α̃0 > 0; For α0 =
www⊤

0 www0

γ ∈ (0, 1), α̃0 < 0. Additionally, (w̃ww0, α̃0) satisfies
the constraint of SCLS (6), due to

w̃ww⊤
0 w̃ww0 + α̃2

0 =
4

γ(α0 + 1)2
www⊤

0 www0 +
(α0 − 1)2

(α0 + 1)2
=

4α0 + (α0 − 1)2

(α0 + 1)2
= 1. (18)

Taking (17) into (16), the expression of yyy can be rewritten as:

yyy =
α0zzz +XXXwww0

α0 + 1
+ ϵϵϵ =

α0 − 1

2(α0 + 1)
zzz +

√
γ

2
XXX

2
√
γ(α0 + 1)

www0 +
zzz

2
+ ϵϵϵ

=
α̃0

2
zzz +

√
γ

2
XXXw̃ww0 +

zzz

2
+ ϵϵϵ (19)
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Substituting yyy in SCLS (6) with (19):∥∥∥ α̃
2
zzz +

√
γ

2
XXXw̃ww − (yyy − zzz

2
)
∥∥∥2 =

∥∥∥ α̃
2
zzz +

√
γ

2
XXXw̃ww +

zzz

2
−

( α̃0

2
zzz +

√
γ

2
XXXw̃ww0 +

zzz

2
+ ϵϵϵ

)∥∥∥2
=
∥∥∥ α̃− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2. (20)

Combining formulations (6), (18), and (20), SCLS (6) is equivalent to the optimization problem:

min
w̃ww,α̃

∥∥∥ α̃− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2, s.t. w̃ww⊤w̃ww + α̃2 = 1, w̃ww⊤
0 w̃ww0 + α̃2

0 = 1. (21)

Let w̃ww∗ denote the optimal solution to original SCLS problem (6), then, the estimation error for
SCLS (21) is β̃ββ

∗
:= w̃ww∗ − w̃ww0. To explore the optimal estimation error for SCLS (21) under different

conditions of α̃0, we consider two scenarios: Case 1: If α̃0 > 0, set α̃(w̃ww) =
√
1− ∥w̃ww∥2. Case 2:

If α̃0 < 0, set α̃(w̃ww) = −
√
1− ∥w̃ww∥2.

Both cases lead to consistent error analysis outcomes for SCLS (6), but this paper primarily discusses
Case 1, with Case 2 detailed in Appendix D. According to formulation (14),

α̃(w̃ww) = α̃(w̃ww0) +
∂α̃(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0) +O(∥w̃ww − w̃ww0∥2). (22)

The first-order approximation of α̃(w̃ww) is:

ˆ̃α(w̃ww) = α̃(w̃ww0) +
∂α̃(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0). (23)

When ∥w̃ww − w̃ww0∥ → 0, ˆ̃α(w̃ww) converges to α̃(w̃ww). Using this approximation in SCLS (20) leads to a
objective:∥∥∥ ˆ̃α− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2 =
∥∥∥1
2
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2
=

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2.
Then, we obtain an approximated problem corresponding to SCLS (21):

min
w̃ww

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2 (24)

Let ˆ̃www∗ denote the optimal solution to the approximated SCLS problem (24), then, the estimation error
for approximated SCLS (24) is β̂ββ

∗
:= ˆ̃www∗ − w̃ww0. Leveraging the simplified representation of ˆ̃α(w̃ww),

we can conduct a precise error analysis for this approximated model (24). Furthermore, if f(w̃ww) and
f̂(w̃ww) denote the objective functions of SCLS (21) and the approximated version (24), respectively,

f(w̃ww) =
∥∥∥ α̃− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2,
f̂(w̃ww) =

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2,
we have

lim
∥w̃ww−w̃ww0∥→0

f̂(w̃ww) = f(w̃ww). (25)

Compared with SCLS (21), the approximation (24) is tight when ∥ tildewww − w̃ww0∥ goes to 0. We later
demonstrate that this convergence condition is satisfied as n goes to ∞, independent of the original
SCLS (21). This fact allows us to translate the findings about ˆ̃www∗ obtained for the approximated
SCLS problem (24) to corresponding outcomes of w̃ww∗ for the original SCLS problem (6). Given the
constancy of γ, the approximated SCLS problem (24) simplifies to:

min
β̃ββ

1

n

∥∥∥ccc⊤β̃ββzzz +XXXβ̃ββ − 2ϵϵϵ
√
γ

∥∥∥2. (26)
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where β̃ββ := w̃ww − w̃ww0, and ccc := ccc(w̃ww0, γ) =
1√
γ · ∂α̃(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

= 1√
γ · −w̃ww0√

1−∥w̃ww0∥2
. The normalization

of the loss function is appropriately applied, which does not alter the optimal solution. Based on
the relationship (25), when ∥β̃ββ∥ tends to 0, the approximated SCLS problem (24) effectively aligns
with SCLS (21). This equivalence allows for the substitution of the analysis of the optimal cost β̃ββ

∗
in

SCLS (21) with the analysis of the optimal solution β̂ββ
∗

in the first-order optimization (26).

4.2 From PO to AO

A key transformation in our analysis involves converting the optimization (26) into a PO problem
within the CGMT framework. We apply conjugate pairs (13) for optimization (26):

min
β̃ββ

1

n

∥∥∥ccc⊤β̃ββzzz +XXXβ̃ββ − 2ϵϵϵ
√
γ

∥∥∥2 = min
β̃ββ

max
uuu

1

n

(
uuu⊤XXXβ̃ββ + ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ

√
γ

− ∥uuu∥2

4

)
, (27)

where β̃ββ ∈ Rd,uuu ∈ Rn. Using formulations (10) and (27), the PO problem associated with (26) is:

ΦSCLS(XXX) = min
β̃ββ

max
uuu

1

n

(
uuu⊤XXXβ̃ββ + ψ(β̃ββ,uuu)

)
, (28)

where ψ(β̃ββ,uuu) := ccc⊤β̃ββ ·uuu⊤zzz− 2uuu⊤ϵϵϵ√
γ − ∥uuu∥2

4 . Given that the entries ofXXX are drawn i.i.d. from N (0, 1)

and ψ(β̃ββ,uuu) is a convex-concave function, the PO problem (28) satisfies the conditions of Theorem
3.6. Consequently, we replace the challenging PO problem (28) with a simplified AO problem using
CGMT:

ϕSCLS(ggg,hhh) =min
β̃ββ

max
uuu

1

n

(
∥β̃ββ∥ggg⊤uuu+ ∥uuu∥hhh⊤β̃ββ + ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ

√
γ

− ∥uuu∥2

4

)
=min

β̃ββ
max
uuu

1

n

[
(∥β̃ββ∥ggg + ccc⊤β̃ββzzz − 2ϵϵϵ

√
γ
)⊤uuu+ ∥uuu∥hhh⊤β̃ββ − ∥uuu∥2

4

]
, (29)

where the entries of ggg and hhh are drawn i.i.d. from N (0, 1). Suppose β̃ββΦSCLS
represents the optimal

solutions of the PO problem (28), and β̃ββϕSCLS
denotes the optimal solutions of the AO problem (29).

According to Theorem 3.6, if ∥β̃ββϕSCLS
∥ P−→ ρ∗, then ∥β̃ββΦSCLS

∥ P−→ ρ∗. The reasons why PO (28) is
more complex than AO (29) and the difficulties of (28) are summarized as: (i) The PO (28) contains
the matrix XXX ∈ Rn×d and the challenge lies in processing matrices. the AO (29) only contains
vectors with dimensions d or n, which are easier to handle than matrices; (ii) The AO (29) reduces
the dimension of the PO (28) from n × d to max{d, n}, thereby simplifying the PO (28); (iii) It
is difficult to obtain the value that the PO (28) concentrates on; (iv) The AO problem (29) can be
further simplified by AO optimization (33) that only includes estimation error variable β̃ββ, which is
easier to analyze than PO (28). These explanations enable us to effectively analyze the minimizer of
the AO problem (29) instead of the more complex PO problem (28).

4.3 Simplification for AO

Considering that the elements of ggg and zzz are drawn i.i.d. from N (0, 1), and ϵϵϵ ∼ N (0, σ2IIId), the
vector expression ∥β̃ββ∥ggg+ccc⊤β̃ββzzz− 2ϵϵϵ√

γ in AO (29) behaves statistically as a random vector with entries

drawn i.i.d. from N (0, ∥β̃ββ∥2+(ccc⊤β̃ββ)2+ 4σ2

γ ), where IIId represents a d×d identity matrix. Adopting

the approach outlined by [28], we simplify the first term in AO (29) to
√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 + 4σ2

γ ·ggg⊤uuu:

min
β̃ββ

max
uuu

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ggg⊤uuu+ ∥uuu∥hhh⊤β̃ββ − ∥uuu∥2

4

)
. (30)

Defining η = ∥uuu∥ and recognizing that maxuuu ggg
⊤uuu = ∥ggg∥ · ∥uuu∥ = η∥ggg∥, and considering hhh ∼

N (0, IIId), we reformulate the optimization (30) as:

min
β̃ββ

max
η≥0

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ∥ggg∥η + ηhhh⊤β̃ββ − η2

4

)
. (31)
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The formulation (31) is a quadratic function of η with the symmetric axis:

ηs = 2
(√

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +
4σ2

γ
· ∥ggg∥+ hhh⊤β̃ββ

)
> ∥β̃ββ∥(∥ggg∥ − ∥hhh∥).

Additionally, ηs(∥ggg∥ + ∥hhh∥) > ∥β̃ββ∥(∥ggg∥2 − ∥hhh∥2). Referring to [29, Lem. B.2], ∥ggg∥2 and ∥hhh∥2
concentrate around their means n and d, respectively. Consequently, the value around which ηs
concentrates is nonnegative, due to d/n < 1. Moreover, taking ηs into (31), the optimization objective
(31) concentrates around

min
β̃ββ

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ∥ggg∥+ hhh⊤β̃ββ

)2

=min
β̃ββ

1

n

[
(∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
)∥ggg∥2 + (hhh⊤β̃ββ)2 + 2hhh⊤β̃ββ∥ggg∥

√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ

]
. (32)

Drawing on [29, Lem. B.2], ∥ggg∥2, (hhh⊤β̃ββ)2 and hhh⊤β̃ββ∥ggg∥ concentrate around their expected values:

E[∥ggg∥2] = n, E(hhh⊤β̃ββ)2 = ∥β̃ββ∥2 and E(hhh⊤β̃ββ∥ggg∥) = 0. Besides, define Ω(β̃ββ) := limn→∞
∥β̃ββ∥2

n .
Using analytical methods established by [27, 29, 30], as n goes to +∞, the optimal minimizer of
(32) converges to the optimal minimizer of the following deterministic optimization in probability:

min
β̃ββ

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +Ω(β̃ββ) +
4σ2

γ
. (33)

Here, we successfully reduced the complex AO problem (29) to a more manageable deterministic
optimization problem (33), effectively focusing only on the estimation error variable β̃ββ for further
analysis.

4.4 Error Analysis

Building on the previous analysis, if the optimal solution of optimization (33) is ∥β̃ββ∥ = ρ∗, we have
∥β̃ββϕSCLS

∥ P−→ ρ∗ for AO problem (29). Then, by virtue of CGMT, ∥β̃ββΦSCLS
∥ P−→ ρ∗ also holds for

PO problem (28). If ρ∗ further satisfies ρ∗ = 0, based on the relationship between the original and
approximated SCLS in Section 4.1, we have ∥w̃ww − w̃ww0∥

P−→ 0 for SCLS problems (21) and (6).
Therefore, it only remains to obtain the optimal value of ρ in optimization (33) that plays the role of
∥β̃ββ∥. We conclude the estimation error analysis of the SCLS problem (6) with the following theorem.
Theorem 4.1. Suppose w̃ww0 is the true weight parameter of the original SCLS problem (6), and w̃ww∗

is the optimal solution to the objective function of SCLS (6). If limn→∞
d
n ∈ (0, 1), the estimation

error of SCLS (6) is given by the following probability limit:

lim
n→∞

∥w̃ww∗ − w̃ww0∥
P−→ 0.

The proof is based on the simplified AO problem (33) and is detailed in in Appendix B
Remark 4.2. Theorem 4.1 indicates that, as n goes to ∞, the parameter vector w̃ww∗ learned through
the SCLS method (6) reliably converges to the actual parameter vector w̃ww0 in probability. We then
can utilize Theorem 3.4 to establish the estimation error of SPG-LS (1) solved by the SCLS (6).

When applying the SCLS method (6) to solve SPG-LS (1), the validity of the solutionwww∗ learned by
the SCLS method is supported by the following theorem.
Theorem 4.3. Suppose www0 is the true weight parameter of the SPG-LS (1), w̃ww∗ is the optimal
solution learned by SCLS (6), and www∗ is the optimal solution recovered from w̃ww∗ by Theorem 3.4.
If limn→∞

d
n ∈ (0, 1), the estimation error of SPG-LS (1) solved by the SCLS (6) is given by the

following probability limit:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

The proof relies on Theorem 4.1 and can be seen in Appendix C
Remark 4.4. Theorem 4.3 demonstrates that, as n goes to ∞, the parameter vector www∗ learned
through the SCLS method (6) reliably converges to actual parameter vectorwww0 in probability. This
substantiates the efficacy of the SCLS method (6) in solving SPG-LS (1).
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5 Experiment Results

This section outlines numerical experiments conducted on synthetic datasets with high feature
dimensions [31] and various levels of sparsity to validate our theoretical claims. In alignment with
the methodologies described by [1, 2, 3], the true parameterwww0 is generated randomly with sparsity
levels set at k

d = 1, 0.1, 0.01, 0.001, where k is the number of nonzero elements in www0. And, the
regularization parameter γ is set to be 0.1, 0.01.

For each dataset S = {(xxxi, yi, zi)}ni=1, the input vector xxxi is drawn i.i.d. from N (000, IIId), the fake
output label zi is drawn i.i.d. from N (0, 1). Consistent with the noise model used by [2], the noise ϵi
in our experiments is drawn i.i.d. from N (0, 0.12). According to our data generation model (2), the
output labels yi are derived via:

xxx∗i = argmin
x̂xx

∥www⊤
0 x̂xxi − zi∥2 + γ∥xxxi − x̂xxi∥2, yi = www⊤

0 xxxi + ϵi.

Using the samples S = {(xxxi, yi, zi)}ni=1, we employ the SCLS method as described by [3] to address
the SPG-LS problem (1) and assess the estimation error ∥www∗ −www0∥. The estimation error is averaged
over 10 trials to gauge the effectiveness of the SCLS method. Results for d

n = 0.5 are shown in
Figure 1. The computational resources are detailed in Appendix E.1. Additional experimental results
with other parameter settings can be seen in Appendix E.2.
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Figure 1: The change of ∥www∗ −www0∥ with n for SCLS method under different Sparsity k/d.

The outcomes depicted in Figure 1 illustrate that the estimation error ∥www∗ −www0∥ generated by the
SCLS method decreases to 0 as n goes to ∞. This trend corroborates the theoretical predictions
established in our Theorem 4.3, thereby affirming the efficacy and reliability of the SCLS method.

6 Conclusion

In this paper, we apply the CGMT framework to conduct a rigorous theoretical error analysis of the
SCLS method proposed by [3]. Specifically, when SCLS (6) is applied to tackle a SPG-LS model (1)
with xxx ∼ N (0, IIId), zzz ∼ N (0, IIIn) and ϵ ∼ N (0, σ2),if limn→∞

d
n ∈ (0, 1), we establish that:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

This result confirms that the learner www∗ obtained through SCLS (6) accurately estimates the true
learner www0 of SPG-LS model. Our empirical findings are consistent with these theoretical results.
This theoretical error analysis not only validate the reliability of the SCLS method but also provides a
framework for error analysis applicable to other statistical learning algorithms.
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Error Analysis of the SCLS method in solving
SPG (Appendix)

A Limitaion

The SCLS method is currently state-of-the-art for solving SPG-LS, having won the ICML 2022
Outstanding Paper Award [3]. However, [3] lacks theoretical analysis on the error of the SCLS
method. To the best of our knowledge, we are the first to investigate the error of the SCLS method.
The primary contribution of our paper is to provide a theoretical perspective on the error of the
SCLS method under Gaussian assumption. It is worth emphasizing that the Gaussian hypothesis is a
commonly used approach for theoretical analysis of algorithms in machine learning [7, 32]. Thus, we
investigate the error of the SCLS algorithm limited to Gaussian settings. For future work, we plan to
explore extensions of our findings to non-Gaussian input settings, aiming to provide insights into the
universality of our results.

B Proof of Theorem 4.1

Theorem 4.1. Suppose w̃ww0 is the true weight parameter of the original SCLS problem (6), and w̃ww∗

is the optimal solution to the objective function of SCLS (6). If limn→∞
d
n ∈ (0, 1), the estimation

error of SCLS (6) is given by the following probability limit:

lim
n→∞

∥w̃ww∗ − w̃ww0∥
P−→ 0.

Proof. Given the simplified AO problem (33), define

Γ(β̃ββ) := ∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +
4σ2

γ
+Ω(β̃ββ). (34)

Let β̂ββ
∗

be the optimal solution to Γ(β̃ββ), then

∂Γ(β̃ββ)

∂β̃ββ
= 2β̃ββ + 2(ccc⊤β̃ββ)ccc+ lim

n→∞

2β̃ββ

n
= 000 ⇒ β̂ββ

∗
= 000. (35)

If λ represents the eigenvalue of cccccc⊤,

|λIIId − cccccc⊤| = λd−1|λ− ccc⊤ccc| = 0 ⇒ λ = 0 or ∥ccc∥2.

Then, the Hessian matrix ∇2Γ(β̃ββ) = ∂2Γ

∂β̃ββ
2 satisfies:

1

2
∇2Γ(β̃ββ) = IIId +


c21 c1c2 · · · c1cd
c2c1 c22 · · · c2cd

...
...

. . .
...

cdc1 cdc2 · · · c2d

+ lim
n→∞

1

n
IIId = (1 + lim

n→∞

1

n
)IIId + cccccc⊤ ≻ 000. (36)

This indicates that ∇2Γ(β̃ββ) is positive definite matrix. Consequently, according to [33], Γ(β̃ββ) is a
strongly convex function of β̃ββ, and β̂ββ

∗
= 000 is the unique global minimum. Moreover, we note:

∥β̂ββ
∗
∥ = 0 and Γ(β̂ββ

∗
) =

4σ2

γ
. (37)

Combining (36) and (37), the AO problem (33) satisfies the conditions of CGMT. Since ∥β̂ββ
∗
∥ → 0

occurs when n→ ∞, the analysis of (25) holds:

lim
n→∞

f̂(w̃ww) = f(w̃ww). (38)

Formulation (38) allows us translate the analysis on the optimal solution ˆ̃www∗ of the approximated
SCLS problem (24) to the analysis on corresponding optimal solution w̃ww∗ of the original SCLS
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problem (21). Therefore, based on the relationship of SCLS problems (21) and (6), by applying the
principles of CGMT, we conclude:

lim
n→∞

∥β̃ββ
∗
∥ P−→ 0 ⇔ lim

n→∞
∥w̃ww∗ − w̃ww0∥

P−→ 0.

C Proof of Theorem 4.3

Theorem 4.3. Suppose www0 is the true weight parameter of the SPG-LS (1), w̃ww∗ is the optimal
solution learned by SCLS (6), and www∗ is the optimal solution recovered from w̃ww∗ by Theorem 3.4.
If limn→∞

d
n ∈ (0, 1), the estimation error of SPG-LS (1) solved by the SCLS (6) is given by the

following probability limit:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

Proof. According to Theorem 3.4 and formulation (17),

www =

√
γ

1− α̃
w̃ww, www0 =

√
γ

1− α̃0
w̃ww0.

Then, the difference between the estimated and true parameter vectors can be expressed as:

∥www∗ −www0∥ =
∥∥∥ √

γ

1− α̃∗ w̃ww
∗ −

√
γ

1− α̃0
w̃ww0

∥∥∥. (39)

Define

τ(w̃ww) :=

√
γ

1− α̃
w̃ww =

√
γ

1−
√
1− ∥w̃ww∥2

w̃ww. (40)

Based on (14),

τ(w̃ww) = τ(w̃ww0) +
∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0) +O(∥w̃ww − w̃ww0∥2). (41)

Combining (39) ∼ (41), we get:

∥www∗ −www0∥ =
∥∥∥∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww∗ − w̃ww0) +O(∥w̃ww∗ − w̃ww0∥2)
∥∥∥

≤
∥∥∥∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

∥∥∥ · ∥w̃ww∗ − w̃ww0∥+O(∥w̃ww − w̃ww0∥2).

Invoking Theorem 4.1, we know:

lim
n→∞

∥w̃ww∗ − w̃ww0∥
P−→ 0,

which implies:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

D The Error Analysis in Case 2

Case 2: If α̃0 < 0, we set α̃(w̃ww) = −
√
1− ∥w̃ww∥2. Consequently, α̃0(w̃ww) = −

√
1− ∥w̃ww0∥2. It is

important to note that although the expressions for α̃(w̃ww) and α̃0(w̃ww) differ from those in Case 1, the
approach and methodology for the error analysis of the SCLS (6) in Case 2 remain analogous to
those outlined in Case 1.
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D.1 From the SCLS Method to PO

According to formulation (14),

α̃(w̃ww) = α̃(w̃ww0) +
∂α̃(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0) +O(∥w̃ww − w̃ww0∥2). (42)

The first-order approximation of α̃(w̃ww) is

ˆ̃α(w̃ww) = α̃(w̃ww0) +
∂α̃(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0). (43)

If ∥w̃ww− w̃ww0∥ → 0, we have ˆ̃α(w̃ww) = α̃(w̃ww). Substituting α̃(w̃ww) in (20) by its first-order approximation
(23), ∥∥∥ ˆ̃α− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2
=
∥∥∥1
2
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2
=

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2.
Then, we obtain an approximated SCLS problem corresponding to SCLS (21):

min
w̃ww

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2 (44)

Denote ˆ̃www∗ as the optimal solution to the approximated SCLS problem (44). Then, the estimation
error for approximated SCLS (44) is β̂ββ

∗
:= ˆ̃www∗−w̃ww0. Taking advantage of the simple characterization

of ˆ̃α(w̃ww), we can accurately analyze the error in the resulting approximated SCLS problem (44). In
other words, if f(w̃ww) and f̂(w̃ww) denote the objective functions of SCLS (21) and the approximated
SCLS (44), respectively,

f(w̃ww) =
∥∥∥ α̃− α̃0

2
zzz +

√
γ

2
XXX(w̃ww − w̃ww0)− ϵϵϵ

∥∥∥2,
f̂(w̃ww) =

√
γ

2

∥∥∥ 1
√
γ
· ∂α̃(w̃

ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

· (w̃ww − w̃ww0)zzz +XXX(w̃ww − w̃ww0)−
2ϵϵϵ
√
γ

∥∥∥2,
we have

lim
∥w̃ww−w̃ww0∥→0

f̂(w̃ww) = f(w̃ww). (45)

Compared with SCLS (21), the approximation (44) is tight when ∥w̃ww − w̃ww0∥ → 0, and we later
demonstrate that this case occurs independent on the original SCLS (21) as n → +∞. This fact
allows us to translate the findings about ˆ̃www∗ obtained for the approximated SCLS problem (44) to
corresponding precise outcomes of w̃ww∗ for the original SCLS problem (6).

Because γ is a constant, the approximated SCLS problem (44) is equivalent to the following opti-
mization problem:

min
β̃ββ

1

n

∥∥∥ccc⊤β̃ββzzz +XXXβ̃ββ − 2ϵϵϵ
√
γ

∥∥∥2. (46)

where the optimization variable is changed from w̃ww to β̃ββ := w̃ww − w̃ww0, and ccc := ccc(w̃ww0, γ) = 1√
γ ·

∂α̃(w̃ww)
∂w̃ww

∣∣∣
w̃ww=w̃ww0

= 1√
γ · w̃ww0√

1−∥w̃ww0∥2
. The normalization of the loss function is appropriately applied,

which does not alter the optimal solution. Based on the analysis on formulation (45), when ∥β̃ββ∥ → 0,
the approximated SCLS problem (44) becomes equivalent to SCLS (21). Consequently, the analysis
of the optimal cost β̃ββ

∗
in SCLS (21) can be replaced by the analysis of the optimal solution β̂ββ

∗
in

optimization (46).
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D.2 From PO to AO

The crucial step involves transforming optimization (46) into a PO problem within the CGMT
framework. We utilize conjugate pairs (13) for optimization (46):

min
β̃ββ

1

n

∥∥∥ccc⊤β̃ββzzz +XXXβ̃ββ − 2ϵϵϵ
√
γ

∥∥∥2 = min
β̃ββ

max
uuu

1

n

(
uuu⊤XXXβ̃ββ + ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ

√
γ

− ∥uuu∥2

4

)
, (47)

where β̃ββ ∈ Rd,uuu ∈ Rn. Using formulations (10) and (47), the PO problem associated with the
estimation error of the approximate SCLS (46) is

ΦSCLS(XXX) = min
β̃ββ

max
uuu

1

n

(
uuu⊤XXXβ̃ββ + ψ(β̃ββ,uuu)

)
, (48)

where

ψ(β̃ββ,uuu) := ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ
√
γ

− ∥uuu∥2

4
.

Given that the entries ofXXX are drawn i.i.d. from N (0, 1) and ψ(β̃ββ,uuu) is a convex-concave function,
the PO problem (48) meets the assumptions of Theorem 3.6. Consequently, we replace the challenging
PO problem (48) with a simplified AO problem using CGMT:

ϕSCLS(ggg,hhh) =min
β̃ββ

max
uuu

1

n

(
∥β̃ββ∥ggg⊤uuu+ ∥uuu∥hhh⊤β̃ββ + ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ

√
γ

− ∥uuu∥2

4

)
=min

β̃ββ
max
uuu

1

n

[
(∥β̃ββ∥ggg + ccc⊤β̃ββzzz − 2ϵϵϵ

√
γ
)⊤uuu+ ∥uuu∥hhh⊤β̃ββ − ∥uuu∥2

4

]
, (49)

where the entries of ggg, hhh are drawn i.i.d. from N (0, 1). Suppose β̃ββΦSCLS
represents the optimal

solutions of the PO problem (48), and β̃ββϕSCLS
denotes the optimal solutions of the AO problem (49).

According to Theorem 3.6, if ∥β̃ββϕSCLS
∥ P−→ ρ∗, we have ∥β̃ββΦSCLS

∥ P−→ ρ∗. Thus, we can analyze the
minimizer of the AO problem (49) instead of the PO problem (48).

D.3 Simplification for AO

Given that the entries of ggg and zzz are drawn i.i.d. from N (0, 1), and ϵϵϵ ∼ N (0, σ2IIId), the expression
∥β̃ββ∥ggg+ccc⊤β̃ββzzz− 2ϵϵϵ√

γ in AO (49) is statistically identical to a random vector with entries drawn i.i.d. from

N (0, ∥β̃ββ∥2+(ccc⊤β̃ββ)2+ 4σ2

γ ), where IIId represents a d×d identity matrix. Following the methodology

outlined by [28], we substitute the first term in AO (49) with
√

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 + 4σ2

γ · ggg⊤uuu. This
yields:

min
β̃ββ

max
uuu

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ggg⊤uuu+ ∥uuu∥hhh⊤β̃ββ − ∥uuu∥2

4

)
. (50)

Let η = ∥uuu∥. Since maxuuu ggg
⊤uuu = ∥ggg∥ · ∥uuu∥ = η∥ggg∥, and hhh ∼ N (0, IIId), optimization (50) can be

equivalently expressed as:

min
β̃ββ

max
η≥0

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ∥ggg∥η + ηhhh⊤β̃ββ − η2

4

)
. (51)

The formulation (51) is a quadratic function of η with the symmetric axis:

ηs = 2
(√

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +
4σ2

γ
· ∥ggg∥+ hhh⊤β̃ββ

)
> ∥β̃ββ∥(∥ggg∥ − ∥hhh∥).

Furthermore, ηs(∥ggg∥+ ∥hhh∥) > ∥β̃ββ∥(∥ggg∥2 − ∥hhh∥2). According to [29, Lem. B.2], ∥ggg∥2 and ∥hhh∥2
concentrate around their means n and d, respectively. Thus, the value that ηs concentrates around is
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nonnegative. Additionally, taking ηs into (31), the objective (51) concentrates around

min
β̃ββ

1

n

(√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
· ∥ggg∥+ hhh⊤β̃ββ

)2
=min

β̃ββ

1

n

[
(∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ
)∥ggg∥2 + (hhh⊤β̃ββ)2 + 2hhh⊤β̃ββ∥ggg∥

√
∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +

4σ2

γ

]
, (52)

According to [29, Lem. B.2], ∥ggg∥2, (hhh⊤β̃ββ)2 andhhh⊤β̃ββ∥ggg∥ concentrate around their means: E[∥ggg∥2] =
n, E(hhh⊤β̃ββ)2 = ∥β̃ββ∥2 and E(hhh⊤β̃ββ∥ggg∥) = 0. Besides, define Ω(β̃ββ) := limn→∞

∥β̃ββ∥2

n . Following the
methodology used by [27, 29, 30], as n → +∞, the optimal minimizer of (52) converges to the
optimal minimizer of the following deterministic optimization in probability:

min
β̃ββ

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +Ω(β̃ββ) +
4σ2

γ
. (53)

Here, we complete the simplifications by reducing the AO problem (49) to an equivalent optimization
(53) that now only involves the estimation error variable β̃ββ.

D.4 Error Analysis

Building on the previous analysis, if the optimal solution of optimization (53) is ∥β̃ββ∥ = ρ∗, we have
∥β̃ββϕSCLS

∥ P−→ ρ∗ for AO problem (49). Then, by virtue of CGMT, ∥β̃ββΦSCLS
∥ P−→ ρ∗ also holds for

PO problem (48). If ρ∗ further satisfies ρ∗ = 0, based on the relationship between the original and
approximated SCLS in Section 4.1, we have ∥w̃ww − w̃ww0∥

P−→ 0 for SCLS problems (21) and (6).
Therefore, it only remains to obtain the optimal value of ρ in optimization (53) that plays the role of
∥β̃ββ∥. We conclude the estimation error analysis of the SCLS problem (6) with the following theorem.
Theorem D.1. Suppose w̃ww0 is the true weight parameter of the original SCLS problem (6), and w̃ww∗

is the optimal solution to the objective function of SCLS (6). If limn→∞
d
n ∈ (0, 1), the estimation

error of SCLS (6) is given by the following probability limit:

lim
n→∞

∥w̃ww∗ − w̃ww0∥
P−→ 0.

Proof. Given the simplified AO problem (53), define

Γ(β̃ββ) := ∥β̃ββ∥2 + (ccc⊤β̃ββ)2 +
4σ2

γ
+Ω(β̃ββ). (54)

Let β̂ββ
∗

be the optimal solution to Γ(β̃ββ), then

∂Γ(β̃ββ)

∂β̃ββ
= 2β̃ββ + 2(ccc⊤β̃ββ)ccc+ lim

n→∞

2β̃ββ

n
= 000 ⇒ β̂ββ

∗
= 000. (55)

If λ represents the eigenvalue of cccccc⊤,

|λIIId − cccccc⊤| = λd−1|λ− ccc⊤ccc| = 0 ⇒ λ = 0 or ∥ccc∥2.

Then, the Hessian matrix ∇2Γ(β̃ββ) = ∂2Γ

∂β̃ββ
2 satisfies:

1

2
∇2Γ(β̃ββ) = (1 + lim

n→∞

1

n
)IIId + cccccc⊤ ≻ 000. (56)

This indicates that ∇2Γ(β̃ββ) is positive definite matrix. Consequently, according to [33], Γ(β̃ββ) is a
strongly convex function of β̃ββ, and β̂ββ

∗
= 000 is the unique global minimum. Moreover, we note:

∥β̂ββ
∗
∥ = 0 and Γ(β̂ββ

∗
) =

4σ2

γ
. (57)
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Combining (56) and (57), the AO problem (53) satisfies the conditions of CGMT. Since ∥β̂ββ
∗
∥ → 0

occurs when n goes to ∞, the analysis of (25) holds:

lim
n→∞

f̂(w̃ww) = f(w̃ww). (58)

Formulation (58) allows us translate the analysis on the optimal solution ˆ̃www∗ of the approximated
SCLS problem (44) to the analysis on corresponding optimal solution w̃ww∗ of the original SCLS
problem (21). Therefore, by applying the principles of CGMT, we conclude:

lim
n→∞

∥β̃ββ
∗
∥ P−→ 0 ⇔ lim

n→∞
∥w̃ww∗ − w̃ww0∥

P−→ 0.

When applying the SCLS method (6) to solve SPG-LS (1), the reliability of the SCLS method (6) in
solving SPG-LS (1) is supported by the following theorem..
Theorem D.2. Suppose www0 is the true weight parameter of the SPG-LS (1), w̃ww∗ is the optimal
solution learned by SCLS (6), and www∗ is the optimal solution recovered from w̃ww∗ by Theorem 3.4.
If limn→∞

d
n ∈ (0, 1), the estimation error of SPG-LS (1) solved by the SCLS (6) is given by the

following probability limit:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

Proof. According to Theorem 3.4 and formulation (17),

www =

√
γ

1− α̃
w̃ww, www0 =

√
γ

1− α̃0
w̃ww0.

Then, the difference between the estimated and true parameter vectors can be expressed as:

∥www∗ −www0∥ =
∥∥∥ √

γ

1− α̃∗ w̃ww
∗ −

√
γ

1− α̃0
w̃ww0

∥∥∥. (59)

Define

τ(w̃ww) :=

√
γ

1− α̃
w̃ww =

√
γ

1 +
√

1− ∥w̃ww∥2
w̃ww. (60)

Based on (14),

τ(w̃ww) = τ(w̃ww0) +
∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww − w̃ww0) +O(∥w̃ww − w̃ww0∥2). (61)

Combining (59) ∼ (61), we get:

∥www∗ −www0∥ =
∥∥∥∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

(w̃ww∗ − w̃ww0) +O(∥w̃ww∗ − w̃ww0∥2)
∥∥∥

≤
∥∥∥∂τ(w̃ww)

∂w̃ww

∣∣∣
w̃ww=w̃ww0

∥∥∥ · ∥w̃ww∗ − w̃ww0∥+O(∥w̃ww − w̃ww0∥2).

Invoking Theorem D.1, we know:

lim
n→∞

∥w̃ww∗ − w̃ww0∥
P−→ 0,

which implies:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

E Experiments Appendix

E.1 Computing Platform

All simulations are implemented using MATLAB R2021b on a PC running Windows 10 Intel(R)
Xeon(R) E5-2650 v4 CPU (2.2GHz) and 64GB RAM. We report the results of synthetic datasets in
the main paper and defer other results to the supplementary material.
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E.2 More experiments

Experimental results for d
n = 1

3 are displayed in Figure F1. As shown in Figure F1, the estimation
error ∥www∗ − www0∥ generated by the SCLS method decreases to 0 as n goes to ∞. This trend is
consistent with the conclusion from Figure 1, Theorems 4.3 and D.2, thereby affirming the efficacy
and reliability of the SCLS method.
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Figure F1: The change of ∥www∗ −www0∥ with n for SCLS method under different Sparsity k/d.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We highly summarize what we do in the abstract. The introduction clearly
introduces the concepts and issues that are related to our main results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper explicitly acknowledges the dependency on Gaussian inputs as a
limitation, prompting further investigation into its applicability to non-Gaussian contexts.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the assumptions of the theorems and all our theorems are followed
by their proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper meticulously details all methodologies, parameters, and experimen-
tal conditions necessary for replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We focus on the SCLS method in our paper. The codes of the SCLS method
are from [3], which is open.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper comprehensively details all training and testing protocols, including
data management, hyperparameter selection, and optimization techniques.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our results are based on averaging the results from 10 trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our paper specifies the computing platform, processor details, and memory
constraints, ensuring accurate replication of the experimental setup and results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research strictly adheres to the NeurIPS Code of Ethics, focusing on
theoretical advancements without ethical concerns in implementation or application.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is theoretical and includes numerical verification experiments. There
is no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper focuses on theoretical aspects of the SCLS algorithm and uses
synthetic data, mitigating risks associated with real-world data misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly credits the original creators [3] of the SCLS algorithm and
adheres to the licensing terms of the cited open resources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t introduce new assets in our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] ,

Justification: Our paper is theoretical and includes numerical verification experiments. It
does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is theoretical and includes numerical verification experiments. It
does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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