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Abstract

Attention with bias, which extends standard attention by introducing prior knowl-
edge as an additive bias matrix to the query-key scores, has been widely deployed in
vision, language, protein-folding and other advanced scientific models, underscor-
ing its status as a key evolution of this foundational module. However, introducing
bias terms creates a severe efficiency bottleneck in attention computation. It disrupts
the tightly fused memory-compute pipeline that underlies the speed of accelerators
like FlashAttention, thereby stripping away most of their performance gains and
leaving biased attention computationally expensive. Surprisingly, despite its com-
mon usage, targeted efficiency optimization for attention with bias remains absent,
which seriously hinders its application in complex tasks. Diving into the computa-
tion of FlashAttention, we prove that its optimal efficiency is determined by the rank
of the attention weight matrix. Inspired by this theoretical result, this paper presents
FlashBias based on the low-rank compressed sensing theory, which can provide
fast-exact computation for many widely used attention biases and a fast-accurate
approximation for biases in general formalizations. FlashBias can fully take advan-
tage of the extremely optimized matrix multiplication operation in modern GPUs,
achieving 1.5× speedup for Pairformer in AlphaFold 3, and over 2× speedup for
attention with bias in vision and language models without loss of accuracy. Code
is available at this repository: https://github.com/thuml/FlashBias.

1 Introduction

In recent years, Transformer [40] has enabled impressive achievements in extensive areas, including
computer vision [25, 45], natural language processing [2, 39], scientific applications [1, 18, 42], etc.
Especially, as the core design of Transformer, the attention mechanism with powerful relation model-
ing capacity has emerged as a foundation module in deep learning models, making its optimization of
vital importance. As a seminal progress, FlashAttention [10, 9] speeds up the computation of standard
attention by successfully reducing the read-write cost of GPU high bandwidth memory (HBM) with
IO-aware techniques. Afterwards, researchers further extend FlashAttention to support diverse kinds
of masks [35, 41], such as causal mask in decoder-only Transformers or sliding window mask.

While standard attention or attention with masks has enjoyed elaborative efficiency optimization, we
notice that attention with bias is a similarly important extension in dealing with complex tasks, where
useful prior knowledge is introduced as a bias term of dot-product attention weights to guide the
model learning. For example, in vision and language Transformers, the relative distance among tokens
is a well-established attention bias and has been proven essential to the final performance of various
tasks [25, 24, 30]. Also, for scientific problems with rich domain-specific prior [42], attention bias is
an indispensable component, such as the pair representation bias in AlphaFold [1, 18, 34]. However,
the targeted efficiency optimization for attention with bias is still lacking. All previous research in
extending standard attention is centered on the speedup of attention with masks [35, 41], where the
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Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [25] for computer vision, ALiBi bias is used in language modeling [30] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [27], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5× speedup for AlphaFold and over 2× speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [40] contains queries q ∈ RN×C , keys k ∈ RM×C and values v ∈ RM×C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk⊤
√
C

+ b)v. (1)
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Here o ∈ RN×C denotes results and b ∈ RN×M represents the prior weight for query-key pairs,
which is also referred to as attention bias [18, 25]. Actually, attention bias has been widely used
in diverse domains and has been proven to be indispensable for model learning, especially for
complex tasks. For example, in computer vision, Swin Transformer [25] adopts the relative distance
among different pixels as attention biases to introduce the essential locality inductive bias into vision
backbones. Similarly, relative position is also used to encode sequential information in language
models [14, 39]. In addition, attention bias widely exists in Transformer-based scientific deep models
to incorporate domain-specific priors, such as the pair representation bias in AlphaFold [1, 18, 34].

It is worth noting that attention mask is also commonly used in attention mechanisms to enable the
calculation under a specific logic, such as the upper triangle mask (aka. causal mask) in decoder-only
Transformers [2] and sliding window mask in sparse Transformers [3]. Usually, the mask is also
applied as an additive term to the query-key dot-product. However, attention biases that we focus on
in this paper are usually dense continuous values that incorporate detailed prior knowledge into each
query-key pair to reflect the degree of token relations, while masks only contain zeros and negative
infinite values and are usually sparse. This difference makes their speed-up strategies distinct.

Additionally, large language models widely adopt rotary position embedding (RoPE) [37] to introduce
relative position into attention, which can be considered as a special multiplicative bias and is already
computation efficient. Considering that RoPE is outside the additive bias scope, we defer its discussion
to Appendix J and will showcase that FlashBias can also be extended to multiplicative bias.

2.2 Fast Computation of Attention

As the core component in modern deep models [2, 18, 25, 29], the attention mechanism has been
widely explored. Although it has demonstrated impressive performance, one serious drawback is
its computational complexity, which is quadratic w.r.t. sequence length. To tackle the efficiency
bottleneck, the fast and exact computation of the attention mechanism has also been widely inves-
tigated. Based on tiling techniques, researchers formalized the softmax function in attention with
a sequential calculation process [26, 31], successfully reducing memory cost to linear complexity.
Afterwards, FlashAttention [10] and FlashAttention-2 [9] further demystify that the IO overload
of GPU HBM is the actual efficiency bottleneck and enable significant speedup by utilizing the
super-fast on-chip SRAM. The FlashAttention family has served as a default acceleration option of
modern Transformers and has been built-in and supported by PyTorch [27].

Further, to extend the model’s capability in handling diverse types of attention, researchers have
made a great effort to enable fast computation for attention with masks, such as the causal mask [2]
and sliding window mask [3], etc. Technically, the design principle in speeding up attention with
masks is to utilize the sparsity in masks to reduce the IO complexity. For instance, Binary Block
Masking [35] splits the mask matrix as blocks and adopts binary values to indicate the blocks with
non-zero masks, which enables the masking process to skip the IO read of all-zero mask blocks.
Subsequently, FlashMask [41] utilizes the spatial continuity of non-zero mask values and proposes
to only record the start and end indices of mask segments, achieving fast computation under rich
mask types. Although the above works can speed up a wide range of mask types, as attention bias is
usually continuous and dense, these sparsity-based methods cannot be applied to attention bias.

Recently, FlexAttention [11], taking advantage of deep learning compiler techniques, has been
released in PyTorch 2.5, which supports a wide range of masks (e.g. causal mask [2]) and biases
(e.g. ALiBi [30]) by pre-compiling element-wise operations. However, since many on-chip calcula-
tions are less optimized than matrix multiplications, FlexAttention cannot achieve a perfect speedup
and fails to support data-dependent dynamic biases. In contrast, FlashBias can take full advantage of
extremely optimized matrix multiplications and is also applicable to complex dynamic biases.

3 Method
As aforementioned, attention with bias is essential for model learning, while its natively dense
and quadratic tensor shape results in a serious IO bottleneck. Inspired by the compressed sensing
theory [12, 6], we verify that many well-established attention biases are inherently of low rank,
paving the way for fast computation of attention with bias. Specifically, we dive into the computation
of FlashAttention and theoretically prove that the optimal efficiency is inherently determined by
the rank of attention weights and bias terms. Further, we present FlashBias based on the low-rank
decomposition, which achieves optimal efficiency with natural adaptation for on-chip computing.
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Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk⊤ ∈ RN×M and the bias matrix b ∈ RN×M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = αN be the channel dimension with constant α and
sequence length N , S be the size of SRAM with S = βNC and 1

N ≤ β ≤ 1. Then, 1) the HBM
access of FlashAttention is Θ

(
(1 + 1

α )β
)

times smaller than the standard attention, and 2) α ≥ R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to β (SRAM size) and
inversely proportional to α (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. α = R

N . The same technique is also used in DeepSeek-v3 [23] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ×N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity Θ(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q ∈ RN×C ,k,v ∈
RM×C , bias b of rank R and SRAM of size S where (C +R) ≤ S ≤ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S ∈ [(C +R), N(C +R)]. Here o(∗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b ∈ RN×M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq ∈ RN×C′

,xk ∈ RM×C′
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [25] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϕq, ϕk satisfying:

f(xq,xk) = ϕq(xq)ϕk(xk)
⊤, ϕq, ϕk : RC′

→ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk⊤
√
C

+ b)v = softmax
([q|√Cϕq(xq)

]
[k|ϕk(xk)]

⊤

√
C

)
v, (3)
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Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ϕq, ϕk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Bias

𝜙𝐪(𝐱𝐪) 𝜙𝐪(𝐱𝐪)

Matmul

Approximated Bias

𝜙𝐪,𝜃1 𝜙𝐤,𝜃2

𝐱𝐪 𝐱𝐤

Matmul

Approximated Bias

(a) Exact Decomp

Attention with Bias

Original
Model

Attention with Bias

…

…

𝜙𝐪 𝜙𝐤

𝐱𝐪 𝐱𝐤

Matmul

Exact Bias

(b) SVD Decomp (c) Neural Decomp Domain Bias / Model Type

Language ALiBi [30] (a)

Vision Swin Trans. [25] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [∗|∗] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ϕq(xq)ϕk(xk)

⊤, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ϕq, ϕk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [30] in language models). Given xq = [1, · · · , N ],xk = [1, · · · ,M ], the
ALiBi bias is calculated as f(xq,i,xk,j) = i− j, which can be directly decomposed into a low-rank
formalization by defining ϕq(xq,i) = [1, i] and ϕk(xk,j) = [−j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [43], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ∈ RN×3

record the 3D spatial positions of N computation points, where xq,i ∈ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ∥xq,i − xk,j∥22, it can be exactly decomposed as:

ϕq(xq,i) = [x2
q,i,0, 1,−2xq,i,0,x

2
q,i,1, 1,−2xq,i,1,x

2
q,i,2, 1,−2xq,i,2],

ϕk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [25] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ×M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ϕ̂q,θ1 , ϕ̂k,θ2 : RC′ → RR to approximate factor functions ϕq and ϕk,
which is supervised by the following objective function:

min
θ1,θ2

L(xq,xk) = ∥ϕ̂q,θ1(xq)ϕ̂k,θ2(xk)
⊤ − f(xq,xk)∥22. (5)

Here θ1, θ2 are learnable parameters, which can be optimized by fine-tuning θ1, θ2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ϕ̂q,θ1 , ϕ̂k,θ2 have
been well optimized, they can be directly applied to all future inference.
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(d) Test Running Time (s/100iters)

Sequence Length

Figure 3: Efficiency comparison among FlashBias, FlashAttention w/ Bias and FlexAttention [11].
Here “Pure FlashAttention” refers to canonical FlashAttention without a bias term, which can be
viewed as an upper bound of computation efficiency. Dotted lines indicate out-of-memory situations.

Remark 3.6 (Understanding neural decomposition). In Eq. (5), we define factor networks ϕ̂q,θ1 , ϕ̂k,θ2
as token-wise functions, instead of depending on the whole sequence. This is because elements in
bias that reflect pair-wise relations are solely determined by corresponding token information, such
as token position in relative position bias. Besides, rank R essentially controls the dimension of
dot-product space, thereby should be set based on “complexity” of prior knowledge that derives bias.
Corollary 3.7 (HBM access of FlashBias). Given q ∈ RN×C ,k,v ∈ RM×C , rank-R bias b and
size-S SRAM (C ≤ S ≤ NC), the HBM access complexity of FlashBias is Θ

(NM(C2+R2)
S

)
.

Remark 3.8 (Trade-off between approximation accuracy and efficiency). Although SVD and neural
decomposition will introduce approximation error, owing to the native low-rank property of attention
bias in modern Transformers, it will not affect the final performance by setting R as a reasonable
value. For example, in some layers in Swin Transformer, R = 32 can maintain over 99% energy of
the original bias with shape 576× 576. More case studies are included in Appendix E and F.
Example 3.9 (Comparison with FlashAttention). For FlashAttention with bias, its HBM access is
Θ(NMC2

S +NM) [9]. Given a regular setting of Transformers and GPU (C = 64, S is 100KB) and
supposing R = 64, N,M ≫ C,R, then HBM IO of FlashBias is ≈ 6× smaller than FlashAttention.

Speed up training In FlashBias, the exact decomposition version can be directly applied to both
training and inference phases. As for SVD or neural decomposition, their computations are based on
a pretrained model; thereby, the inference speedup is obvious. Note that for large-scale pretrained
models, such as AlphaFold [1], the inference speedup is already sufficiently valuable. Going further,
it is also possible to speed up the training phase with these two types of biases. Specifically, for the
SVD type, we can replace the N×M model parameter bias with N×R and M×R model parameter
tensors at the initialization phase. As for the neural type, instead of using the whole bias matrix, it
can also be replaced with two lightweight neural networks when defining the model architecture.

4 Experiments

Table 2: Summary of experiments and base models.

Base Model Bias Type Phase

Plain Transformer [40] Static Train & Inference

GPT-2 [32] Static Train & Inference
Swin Trans. [24] Learnable Inference
PDE Solver [43] Learnable Train & Inference
AlphaFold 3 [1] Learnable Inference

As summarized in Table 2, we extensively test
FlashBias on Transformers for language mod-
eling, computer vision and scientific problems,
which can significantly speed up model effi-
ciency at both training and test phases. This
section will first present an overall efficiency
comparison among different techniques and
then integrate FlashBias to different domain-
specific Transformers with various bias types.
All experiments were performed in PyTorch 2.5.0 [27] and Triton 3.0.0 [38] on a single A100 GPU.

4.1 Overall Comparison

Setups To give a clear comparison among FlashBias, vanilla FlashAttention with Bias [9] and
the latest FlexAttention [11], we make a comprehensive efficiency evaluation based on a plain
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(a) Train GPU Memory Ratio

Sequence Length

(b) Test GPU Memory Ratio

Sequence Length

(c) Train Running Time Ratio

Sequence Length

(d) Test Running Time Ratio

Sequence Length

Figure 4: Efficiency ratio over “Pure FlashAttention”, which is calculated by Method Efficiency
Pure FlashAttention Efficiency .

Transformer [40], which consists of 8 layers. Each Transformer layer involves a feedforward network
with 1024 intermediate hidden channels and attention with 512 hidden channels, 8 heads, as well as a
static bias matrix of shape #heads×N ×N . All the metrics are recorded with a batch size of 1.

Results As shown in Figure 3 and 4, we can find that FlashBias (red lines) consistently outperforms
FlashAttention with Bias [9] and FlexAttention [11], demonstrating the effectiveness of our design.

According to Figure 3(a-b), when sequence length N = 16384, FlashBias can significantly reduce
GPU memory usage, which is 5× smaller than FlexAttention and FlashAttention with Bias during
training and 10× smaller during inference. This memory benefit can also be theoretically justified by
Theorem 3.2. As for training and inference running time, FlashBias presents 18.6% and 44% speedup
compared to vanilla usage of FlashAttention and is also better than FlexAttention in long sequences.

It is worth noticing that, although FlexAttention [11], which optimizes FlashAttention with deep
learning compiler techniques, can significantly boost the running time compared to vanilla FlashAt-
tention with Bias (Figure 4 (c-d) orange lines), it still cannot reduce GPU memory due to the quadratic
storage cost of the bias matrix ((a-b) orange lines). In addition, due to the HBM access overload of
the bias matrix, it falls short in running time when inputting long sequences. These observations
further demonstrate that the low-rank property utilized in FlashBias is the key to efficiency.

(a) Train Speed (TFLOPs/s)

Sequence Length

(b) Test Speed (TFLOPs/s)

Sequence Length

Figure 5: Speed of different implementations on atten-
tion with 128 hidden channels and 8 heads. R is set as
8 in FlashBias. Dotted lines indicate out-of-memory.
More attention speed comparisons are in Appendix B.

Implementation choices As formalized
in Eq. (3), for implementation, researchers
can concatenate the decomposed factor
functions with query and key tensors in
the original attention along the channel
dimension, which means FlashBias can
seamlessly adopt previous efficient imple-
mentations for canonical attention, such
as PyTorch SDPA1. In pursuit of a well-
optimized operation, we also implement
FlashBias based on the Triton backend [38].
Figure 5 demonstrates that the Triton im-
plementation is much more efficient in
the forward pass and the PyTorch SDPA-
based version is better in the training phase.
Therefore, we adopt the Triton version for
inference and PyTorch SDPA version for
training throughout this paper. Besides, although vanilla PyTorch SDPA can accelerate the computa-
tion, it still suffers from the out-of-memory issue, which can be perfectly resolved by FlashBias.

4.2 Large Language Model

Setups Here we employ FlashBias to speed up ALiBi [30], which is a well-known bias in language
modeling and has been proven better than rotary position embedding [37] in handling input length
extrapolation. We follow the configuration in GPT-2 [32] and evaluate based on a large language
model with ALiBi bias, which contains 48 decoder-only Transformer layers, 1.5B parameters in total.

1PyTorch implementation of torch.nn.functional.scaled_dot_product_attention
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R=12 R=1 R=194 R=17 R=114 R=3 R=1 R=8

R=309 R=42 R=1 R=4 R=1 R=1 R=12 R=6

Figure 6: Visualization of bias matrix in SwinV2-B. R can maintain 99.5% energy of the bias matrix.

Each layer contains attention with 1600 channels and 50 heads, as well as a feedforward network
with 6400 hidden dimensions. Beyond large model size, this task also involves the causal mask.

Implementation As stated in Example 3.4, we can adopt the exact decomposition for ALiBi bias,
where R is equal to 2 and the result of FlashBias is exactly equivalent to the original computation.
Since attention masking has been well-optimized in FlashAttention [9] and FlexAttention [11], we
directly integrate them with our method to support the decoder-only Transformer. This combination
also demonstrates that FlashBias is orthogonal to attention-masking speed-up techniques. Notably,
FlashAttention has an ALiBi_slopes feature, which does not load bias matrix from HBM but
computes the bias weights through just-in-time compilation. Since this is not a generic technique, we
do not employ this feature in the main text. More discussion can be found in Appendix D.

Table 3: Experiment of GPT-2. #Time records the running
time for 100 iterations when N = 2048. ∆ refers to the
time difference w.r.t. Pure Causal ∗Attention without bias,
reflecting the additional cost in processing the bias matrix.

Method
Training Inference

Time(s) ∆ Time(s) ∆

Pure Causal FlashAttention 119.3 - 38.77 -
FlashAttention with Bias 124.3 5.0 40.32 1.55
FlashBias (Ours) 121.6 2.3 39.26 0.49

Pure Causal FlexAttention 119.0 - 38.76 -
FlexAttention with Bias 122.4 3.4 40.03 1.27
FlashBias (Ours) 121.5 2.5 39.78 1.02

Results As mentioned above, since
this task requires causal attention, we
test FlashBias by integrating it with
the attention mask speedup techniques
in FlashAttention and FlexAttention.
Results in Table 3 demonstrate that
FlashBias still outperforms FlashAt-
tention and FlexAttention in process-
ing the ALiBi bias term. Specifi-
cally, in processing bias, FlashBias
reduces over 50% (5.0→2.3) time
cost of FlashAttention and over 25%
(3.4→2.5) time cost of FlexAttention.

Note that ALiBi bias is relatively sim-
ple, enabling the compiler-based FlexAttention with a favorable speedup. However, it may degenerate
in handling more complex bias matrices, such as the bias in Swin Transformer [24] in the next section.

4.3 Vision Transformer

Setups We test FlashBias on the image classification task based on Swin Transformer v2 [24].
Specifically, we adopt the open-source SwinV2-B model2. This model contains 24 layers with input
resolution as 384×384 and window size as 24×24, thus, the sequence length of its WindowAttention
is 576. WindowAttention in every layer contains a relative position bias with size #heads×576×
576, which is set as a learnable model parameter. We attempt to speed up the WindowAttention
computation with FlashBias. All the efficiency metrics are evaluated under a batch size of 64.

Implementation Since the biases are set as learnable parameters, we directly obtain them from a
pretrained model and adopt the SVD decomposition to generate decomposed factor tensors. However,
we observed that in one layer, not all heads present low-rank bias matrices, as shown in Figure 6.
Thus, we only adopt FlashBias to layers where most of heads’ biases are of low rank, that is, the last
8 layers of SwinV2-B, while employing vanilla FlashAttention with Bias for the other layers.

Results In Table 4, we can find a serious performance drop in “Pure FlashAttention” (without
bias, Acc@1 87%→9%), which verifies the essentiality of bias and also highlights the importance of

2Model and training configurations of SwinV2-B.
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speedup attention with bias. Further, compared to the official implementation, FlashBias can reduce
60% running time and 27% memory cost, which is valuable for real-time development.

Table 4: Experiment of SwinV2-B on ImageNet-1K. #Time
and #Mem correspond to inference efficiency on A100 per
batch. Offline calculation of SVD for all biases takes 4.79s.

Method Acc@1 Acc@5 Time(s) Mem(MB)

Official Code 87.144% 98.232% 0.473 12829
Pure FlashAttention 9.376% 19.234% 0.180 3957

FlashAttention with Bias 87.142% 98.232% 0.230 11448
FlexAttention [11] 87.142% 98.232% 2.885 25986
INT8 PTQ 86.46% Around 22% speed up

FlashBias (Ours) 87.186% 98.220% 0.190 9429

More importantly, FlashBias will not
affect the performance, where the top-
5 accuracy drops less than 0.02% and
the fluctuation of the top-1 accuracy
(+0.042%) is within the standard de-
viation. In particular, even using well-
established quantization techniques
will still cause a 0.64% top-1 accu-
racy drop for 22% speedup according
to the FasterTransformer document3.
This comparison demonstrates that the
low-rank property is a principal basis
for fast computation of attention.

Also, FlexAttention seriously degenerates in SwinV2-B. This is because, unlike experiments in
Section 4.1, Swin Transformer’s bias matrices are different in value and shape among different layers,
which requires recompilation each time. This issue has also been mentioned by FlexAttention’s author
as “If you are adding a [B, H, N, N] bias tensor, then you honestly shouldn’t be using FlexAttention”4.

4.4 Scientific Deep Models

In addition to language and vision tasks, scientific problems usually involve rich domain-specific prior
knowledge; thereby, attention bias also widely exists in scientific Transformers. Here we evaluate
FlashBias in two representative models: Transformer-based PDE solvers [43] and AlphaFold 3 [1].

Transformer-based PDE solvers Attention mechanism has been proven equivalent to a Monte-
Carlo approximation of the integral operator [21], justifying its theoretical foundation for solving
partial differential equations (PDEs). However, in processing complex geometries, the attention
mechanism may fall in perceiving the 3D space, encouraging the utilization of spatial distance prior.
Here we follow the driving car simulation task in [43], whose input is the position of computation
mesh points and output is the physics quantities on these points. We test FlashBias on an 8-layer
Transformer solver with a 3D distance bias described in Example 3.5. Each layer contains attention
with 128 hidden dimensions and 8 heads, as well as a feedforward network with 256 hidden channels.

To approximate the adaptive mesh in numerical methods [36], we include a token-wise learnable
weight αi for the 3D distance bias in each head of every layer, i.e. f(xq,i,xk,j) = αi∥xq,i − xk,j∥22.
Unlike bias discussed in ALiBi [30] or SwinV2 [25], the learnable weights require the training process
to record the gradient of the bias matrix, posing a challenging efficiency issue in backpropagation.

Table 5: Experiments of Transformer PDE solvers. The efficiency metrics are recorded under a batch
size of 1 in the format of #Mem (GB) / #Time (s/100iters). Accuracy comparisons are in Appendix G.

Method (Learnable Bias)
Training Phase Inference Phase

8192 16384 32186 8192 16384 32186

FlashAttention 12.8 / 15.4 OOM OOM 4.54 / 5.46 15.3 / 21.2 OOM
FlexAttention Not supported in current version 21.9 / 184.0 OOM OOM

FlashBias (Ours) 1.46 / 4.54 2.02 / 14.7 2.97 / 51.1 0.98 / 1.22 1.03 / 3.48 1.13 / 12.7

Results FlashBias is the only method that can support training of the Transformer solver on 32186
points (Table 5), which also presents a significant memory and running time advantage compared
with other methods. Notably, FlashAttention and FlexAttention cannot support learnable bias training
well, as they need to record dense gradient matrices, further highlighting the practicality of FlashBias.

AlphaFold 3 for protein folding As a significant progress of AI for science, AlphaFold 3 [1]
employs an elaborate architecture. Specifically, its core design, Pairformer, contains 144 attention

3FasterTransformer released by NVIDIA.
4Discussion about FlexAttention with dynamic bias matrix.
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Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss ↓ pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [27].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ϕ̂q,θ1 , ϕ̂k,θ2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix E for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

PDB ID: 7r6r PDB ID: 7pzb
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Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.
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[36] Pavel Ŝolín. Partial differential equations and the finite element method. John Wiley & Sons, 2005.

[37] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 2024.

[38] Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled neural
network computations. In ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages, MAPL 2019, 2019.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

12

https://github.com/facebookresearch/xformers


[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[41] Guoxia Wang, Jinle Zeng, Xiyuan Xiao, Siming Wu, Jiabin Yang, Lujing Zheng, Zeyu Chen, Jiang Bian,
Dianhai Yu, and Haifeng Wang. Flashmask: Efficient and rich mask extension of flashattention. ICLR,
2025.

[42] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 2023.

[43] Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. In ICML, 2024.

[44] Haixu Wu, Hang Zhou, Mingsheng Long, and Jianmin Wang. Interpretable weather forecasting for
worldwide stations with a unified deep model. Nature Machine Intelligence, 2023.

[45] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In ICCV,
2021.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper presents a practical algorithm for fast computation of attention
with bias. The theoretical results are derived based on the proofs in Appendix A and the
effectiveness of proposed algorithm is supported by results in Table 3-6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed it in Appendix K and also gave a possible solution.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the proofs can be found in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly stated the implementation details in the first paragraph of
every experiment section and further detail them in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the experiments are based on the open-sourced GitHub repository. The data
is public. Code is available at this repository: https://github.com/thuml/FlashBias.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the implementation details have been included in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Since we mainly focus on the computation efficiency in this paper, all the
efficiency metrics are quite stable. Among different rounds of experiments, the GPU memory
usage is fixed and the running times’ difference is less than 0.01s for 100 iterations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included this information in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have strictly followed the NeurIPS Code of Ethics throughout this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed broader impacts in Appendix L.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have faithfully cited the corresponding paper and open-sourced code
according to their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only try to speed up GPT-2 in one of our experiments, while LLMs are not
included in our core method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for Theorems in the Main Text

Due to the page limitation of the main text, we present the proofs for theorems in Section 3 here.

Proof of Theorem 3.1 This theorem can be proven based on the theoretical analyses in FlashAtten-
tion [41] and the basic low-rank compressed sensing knowledge.

Proof. According to FlashAttention [41], the theoretical complexity of HBM accesses in the standard
attention and FlashAttention are:

FlashAttention: IOflash = Θ

(
N2C2

S

)
, StandardAttention: IOstandard = Θ

(
NC +N2

)
, (6)

where Θ represents the asymptotic tight bound. Given C = αN and S = βNC, the ratio of HBM
access in standard attention over FlashAttention is:

IOflash

IOstandard
= Θ

(
(NC +N2)S

N2C2

)
= Θ

(
(α+ 1)αβ

α2

)
= Θ

(
β(1 +

1

α
)

)
. (7)

Also, since R is the rank of the attention weight s, which is the dot-product of queries and keys, thus
R ≤ C. Further, we can derive that α ≥ R

N .

Proof of Theorem 3.2 As cited in the main text, the least storage cost of an N ×N dense matrix
with rank R is equal to (2NR−R2), whose proof can be found in [6]. Since R ≤ N , then

NR ≤ 2NR−R2 ≤ 2NR. (8)
Thus, the optimal storage overload for an N ×N matrix is equal to Θ(NR).

Proof of Corollary 3.3 This corollary is derived from Proposition 3. in FlashAttention [10].
Specifically, consider the extreme case that S = Θ(N(C +R)), in this case, we have

o

(
NM(C2 +R2)

S

)
= o

(
NM(C2 +R2)

N(C +R)

)
= o (M(C +R)) . (9)

Since we have to read the M × C keys and M ×R decomposed bias factor tensor from HBM, there
does not exist an algorithm to finish the computation of attention with bias in o (M(C +R)) access.

Proof of Corollary 3.7 This corollary can be derived from Theorem 2 in FlashAttention [10].

Proof. As formalized in Eq. 3, FlashAttention needs to read queries, keys, values, as well as decom-
posed factor tensors of biases into the on-chip SRAM for computation.

FlashBias’s computation is based on the same tiling method as FlashAttention v2 [9]. The N ̸= M
case corresponds to the cross-attention, which is used for fusing additional information [17], thus
we suppose M ≥ N here. Suppose that the computation splits queries into T blocks. The overall
HBM access complexity is Θ(N(C +R) +M(C +R)T ) = Θ (M(C +R)T ). Let the block size
of keys and values as Bk,v × (C +R) and the block size of queries as Bq × (C +R). Considering
the size limitation of SRAM is S, following FlashAttention v2 [9], these hyperparameters are set as:

Bq = Θ

(
S

C +R

)
, Bk,v = Θ

(
min

(
S

C +R
,
S

Bq

))
= Θ

(
min

(
S

C +R
,C +R

))
. (10)

Then, the number of blocks T = N
Bq

= Θ(N(C+R)
S ). Thus, the overall HBM access complexity is

Θ

(
NM(C +R)2

S

)
= Θ

(
NM(C2 +R2)

S

)
. (11)

Recall Corollary 3.3, we can find that the above theoretical complexity is quite well-optimized as
there does not exist an algorithm with o

(
NM(C2+R2)

S

)
complexity.

Calculation in Example 3.9 Considering N,M ≫ C,R, it is easy to calculate the HBM access
ratio between FlashAttention and FlashBias as follows:

(1 + C2

S )S

C2 +R2
≈

(1 + 2×642

100×1024 )100× 1024

2(642 + 642)
≈ 6, (12)

where we consider the half-precision float, whose storage cost is equal to 2B.

21



B Attention Speed Measurement

As a practical technique, in the main text, we primarily focus on the efficiency benefits to the entire
Transformer brought by FlashBias. As a supplement, we conduct a detailed comparison solely on the
efficiency of the attention mechanism’s computation. Specifically, we compared several advanced
implementations of attention: FlashAttention [9], PyTorch SDPA5 and xFormers [22], as well as
the vanilla PyTorch implementation. Since the official implementation of FlashAttention does not
support backpropagation for bias matrix, we adopt an open-soured Triton extension for experiments6.

Non-Causal Attention In this part, we consider an full attention with 4 heads and each head
contains 32 channels. As shown in Figure 8, if we only consider the attention speed, FlashBias is
over 2× faster than previous best implementation in inference and 1.3× faster in the training phase.

(a) Train Speed (TFLOPs/s) (b) Test Speed (TFLOPs/s)

1.3x
2x

Figure 8: Non-causal attention speed, where attention is with 4 heads and 32 hidden channels per
head. R is set as 8. The speed is measured with the batch size as 2.

Causal Attention In this part, we consider the causal attention. Following the experiments in
Section 4.2, we configure this attention as a GPT-2 style, which contains 50 heads and 32 channels
per head. As presented in Figure 9, FlashBias achieves 1.75× and 1.3× speedup over previous
implementations for the inference and training phases, respectively.

It is also notable that all the previous methods suffer from the out-of-memory issue. PyTorch SDPA
and xFormer are more memory-efficient but still fail when the sequence length reaches 16,384. This
is because they have to save the entire bias matrix with shape of num_heads×seq_len×seq_len
in the GPU HBM, which is memory-prohibited in handling extremely long sequences. In contrast,
FlashBias utilizes the inherent low-rank property of the bias term, thereby only needing to save the
decomposed factors. This experiment also highlights the memory advantage of FlashBias.

(a) Train Speed (TFLOPs/s) (b) Test Speed (TFLOPs/s)

1.3x 1.75x

Figure 9: Causal attention speed, where attention is with 50 heads and 32 hidden channels per head.
R is set as 2. Dotted lines indicate out-of-memory. Speed is measured with the batch size as 1.

5PyTorch implementation of torch.nn.functional.scaled_dot_product_attention
6Triton implementation of FlashAttention with bias.
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C Speedup of Pangu-Weather [4]

Pangu-Weather [4] is a significant step in adopting Transformers for global weather forecasting.
Specifically, its backbone is a 3D Swin Transformer with a hierarchical structure, which contains two
different scales. Its speedup is similar to our experiments in Section 4.3. As listed in Table 1, we
consider to speedup this model based on the SVD decomposition version of FlashBias.

Setups Since Pangu-Weather is based on the 3D window (with shape 2 × 6 × 12), its bias for
relative position encoding is slightly different from Swin Transformer. Especially, its bias is in the
shape of #num×#heads×144× 144 for each block, where #num represents the number of 3D
windows. According to meteorological knowledge, different longitudes share the same bias.

Implementations Since Pangu-Weather does not provide accessible model weights or code, our
experiments are based on an open-sourced PyTorch reproduction7. All the other implementations are
the same as the descriptions in Section 4.3. Notably, we find that only relative position biases in the
fine scale are low-rank. Thus, we only apply FlashBias to the four 3D Swin layers in the fine scale,
where we set R = 56 to maintain 99% energy of the original bias matrix. As discussed in Section 4.3,
FlexAttention fails in processing such dynamic bias; we didn’t compare with it in this task. Since the
whole ERA5 data is over 150TB, we only test the model based on 100 samples in 2024.

Table 7: Experiments of Pangu-Weather [4] on ERA5 [15]. Output
difference measures of the L2 distance between the outputs of
FlashBias and the official code, averaged from 100 different inputs.
This difference is calculated on the z-score normalized [28] model
outputs to balance diverse meteorological factors.

Method Output Difference Time(s/100iters) Mem(MB)

Open-sourced Code - 98.022 26552
FlashAttention w/o bias 0.0128 74.089 12141
FlashAttention w/ bias - 79.649 13186

FlashBias (Ours) 0.0003 76.779 12222

Results As presented in Ta-
ble 7, FlashBias can also speedup
Pangu-Weather. Compared to the
open-sourced code, FlashBias re-
duces over 20% running time and
over 50% GPU memory usage.
However, due to the limited se-
quence length (N = 144 in this
case), the running time speedup
is not as considerable as SwinV2.
Just as plotted in Figure 3 and 4,
FlashBias will bring more signif-
icant speedup in running time and GPU memory for long sequences. As improving the spatial
resolution of forecasting is a golden problem in weather prediction [44], we believe that FlashBias
has a strong advantage in supporting future research on higher-resolution reanalysis data.

D More Results of ALiBi Bias [30]

As we stated in the main text, the released FlashAttention supports an ALiBi_slopes feature, where
only ALiBi slope values in the shape of #heads are loaded from HBM, and the specific bias in
the shape of Block_q×Block_k is created in just-in-time (JIT) compilation8. Here Block_q and
Block_q denote the tilling size in FlashAttention [10, 9].

Table 8: Experiments on GPT-2 size model with ALiBi bias. Here
we experiment with FlashAttention’s ALiBi_slopes feature and
FlashBias with JIT speedup. The running time for 100 iterations at
both training and inference phases when N = 2048 are recorded.

Method Training Phase (s) Test Phase (s)

FlashAttention w/o bias 119.3 38.77
FlashAttention with ALiBi_slopes 119.8 38.98

FlashBias with decomposition in JIT 119.8 38.98

Note that ALiBi is quite a
simple bias, and the imple-
mentation of FlashAttention’s
ALiBi_slopes feature takes
advantage of that the bias val-
ues can be created in JIT.
In the following experiments,
we also utilized this property
of ALiBi in FlashBias, where
we generate the decomposed
factor tensors of shape Block_q×2 and Block_k×2 in JIT, instead of directly creating the
Block_q×Block_k matrix. As presented in Table 8, since the difference between FlashAttention
and FlashBias is in JIT, these two implementations are almost at the same speed.

7https://github.com/zhaoshan2/pangu-pytorch
8Implementation of ALiBi_slopes feature in FlashAttention
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E More Results in AlphaFold 3 [1]

Analysis of model efficiency The theoretical complexities of triangle self-attention and triangle
multiplication in AlphaFold 3 are both cubic w.r.t. the sequence length, while other components:
data embedding, single attention with pair bias and feedforward layer, are of linear or quadratic
complexity. Thus, according to theoretical complexity, these “triangle operations” are the bottleneck.

We further record the time cost of each component in AlphaFold 3 [1] during the inference of PDB
ID 7wux. As listed in Table 9, the triangle attention accounts for 53.3% of the total inference time.

Table 9: Running time of each component in AlphaFold 3 [1] for inferring PDB ID 7wux.

Component Complexity w.r.t. Sequence Length Running Time (s) Ratio

Data Embedding Linear 1.91 7.1%
Triangle Self-attention Cubic 14.32 53.3%
Triangle Multiplication Cubic 9.97 37.1%
Single Attention with Pair Bias Quadratic 0.48 1.8%
FeedForward Linear 0.17 0.7%

Potential in speeding up training of AlphaFold 3 [1] In the main text, we only evaluate FlashBias
during the inference phase. Going further, as mentioned at the end of Section 3.2, if we directly
replace the bias matrix in AlphaFold 3 [1] with two decomposed factor functions, we can also
accelerate the training process. As shown in Table 10, FlashBias can save around 15.2% running time
and 17.7% GPU memory usage compared to the open-sourced code.

Table 10: Experiments of FlashBias in accelerating the training process of AlphaFold 3 [1], where
the default setting is to crop all the residue sequence within 384 tokens.

Method Running Time (s / 10 iters) Maximum GPU Memory (GB)

Open-sourced Code 165 23.572
FlashAttention with bias 153 23.572

FlashBias (Ours) 140 19.390

However, since the complete training of AlphaFold 3 will require around 128 GPUs for 7 days,
considering the resource limitation, we would like to leave the verification of the final performance
of FlashBias-accelerated AlphaFold 3 as our future work.

F More Results in Swin Transformer V2 [24]

1 4 8 12 16 20 24
Layer

0

100

200

400

576

Ra
nk

 V
al

ue

Maximum Rank Value
Mean Rank Value

Figure 10: Maximum and mean rank value to remain
95% energy of bias matrices across different heads of
24 layers in SwinV2-B.

Statistics of Swin Transformer V2 bias
We visualize the rank of bias matrices that
can remain 95% energy across 24 layers.
As presented in Figure 10, the bias of later
layers are of lower rank. To reduce the
accumulation error, we only apply Flash-
Bias to the last 8 layers as described in Sec-
tion 4.3. Specifically, for the last 8 layers,
we set R in FlashBias as 16. In fact, ap-
plying FlashBias to more layers will bring
more significant speedup, while to maintain
the model accuracy, we only apply Flash-
Bias to the last 8 layers in this work.

SVD decomposition visualization In Figure 6 of the main text, we visualize the original bias
matrix at the 20th layer with 16 heads. To deliver an intuitive understanding, we also take this layer’s
bias as an example and compare it with the SVD decomposed factor tensors’ multiplication. As
shown in Figure 11, SVD decomposed factor tensors can accurately reconstruct the original bias.
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Figure 11: Comparison between SVD decomposed factor tensors’ multiplication and original bias.

G More Results in Transformer PDE Solver

In Table 5, we only present the efficiency comparison. Further, to demonstrate the performance
benefits brought by spatial distance bias, we also include the performance metric in Table 11. With
spatial distance bias, the error of the estimated drag coefficient can be reduced by 65.3%, which is a
significant progress in industrial design. This further confirms the importance of attention with bias.

Table 11: Performance comparison among attention w/o bias and w/ bias in PDE solving. The relative
L2 of surface pressure and surrounding velocity is recorded. We also calculate the drag coefficient
CD based on model-predicted physics fields, whose relative L2 w.r.t. ground truth is also included.

Method (Sequence Length N = 32186) Surface Pressure Error Surrounding Velocity Error CD Error

Pure attention without spatial distance bias 0.0838 0.0278 0.0173

FlashAttention with spatial distance bias OOM OOM OOM
FlashBias with spatial distance bias 0.0706 0.0201 0.0113
Relative Promotion 15.7% 27.7% 65.3%

H Generalization for Diverse Biases

In FlashBias, we present a neural decomposition version to fit complex and dynamic biases, which
has been tested in speeding up AlphaFold 3 in Section 4.4. To further demonstrate the expressive
capability of neural decomposition, in this section, we will train neural factor functions ϕ̂q,θ1 , ϕ̂k,θ2
to approximate more diverse biases, which can be meaningful for scientific tasks.

Neural Decomp Neural DecompGravity Bias Spherical Bias

(a) Gravity Bias (b) Spherical Bias

Figure 12: Adopting neural decomposition techniques in FlashBias for more diverse biases.

Gravity bias Many phenomena are inherently governed by underlying physical forces, where
gravity is one of the basic factors. Accurately approximating the gravity force is essential for the
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modeling of planetary motion [33] or electronic simulation [13]. Thus, we consider introducing the
gravity bias into the attention mechanism. Specifically, this bias can be formalized as follows:

f(xq,i,xk,j) =
1

∥xq,i − xk,j∥22
, (13)

where xq,i,xk,j denotes the spatial positions of the i-th and j-th objects. We train ϕ̂q,θ1 , ϕ̂k,θ2
based on randomly sampled points from [0, 1] × [0, 1] in the 2D space. Since the bias is inversely
proportional to spatial distance, we further add 0.01 to the diagonal bias for numerical stability.

Spherical distance When analyzing atmospheric circulation, it is intuitive to consider it as the
dynamics on a spherical surface. Therefore, previous research has attempted to introduce spherical
Fourier analysis into the model design [5]. Another alternative approach is to add a spherical distance
bias to attention in Transformer-based models. Thus, we also consider the spherical distance bias:

f(xq,i,xk,j) = 2 · arcsin

(√
sin2(

xq,i,0 − xk,j,0

2
) + cosxq,i,0 cosxk,j,0 sin

2(
xq,i,1 − xk,j,1

2
)

)
,

(14)
where xq,i,xk,j ∈ R2 records the latitude and longitude of the i-th and j-th position respectively.
Similarly, we also train ϕ̂q,θ1 , ϕ̂k,θ2 based on randomly sampled points in [−π, π]× [0, 2π].

For the biases mentioned above, we set R = 32 and ϕ̂q,θ1 , ϕ̂k,θ2 as three linear layers with in-between
tanh activation functions. Then we optimize these model parameters with the Adam [19] optimizer for
10,000 iterations, which will take less than 30 seconds on an A100 GPU. As presented in Figure 12,
neural decomposition performs very well in these two biases, especially for the spherical bias. As for
gravity bias, since the numerical instability of the inverse proportion function, it is more difficult for
optimization, while our method still captures the locality of the bias matrix.

The above experiments further testify the capability of FlashBias in accelerating broader scenarios.

I Implementation Details

As a supplement to the main text, we include more details of implementation here. All the experiments
are conducted based on PyTorch 2.5.0 [27] and Triton 3.0.0 [38] on a single A100 GPU with 144
CPU cores. All efficiency metrics are averaged from 1,000 iterations. For example, some metrics are
recorded as s/100iters or s/10iters, where we divide the running time of 1,000 iterations by 10 or 100,
respectively. In our experiments, all the algorithms’ efficiency performance is quite stable.

ALiBi in Large Language Model Since the experiments for ALiBi speedup are based on directly
replacing the ALiBi bias with the exact decomposition, FlashBias’s output results are completely
equal to the original version. The training efficiency is tested under the Adam [19] optimizer.

Relative position encoding in Swin Transformer This part of the experiments strictly follows
the official code in Swin Transformer V2 [24]. As illustrated in Figure 10, we only apply FlashBias
to the last 8 layers. It is also possible to apply FlashBias to part of low-rank heads in each layer.
However, this will require some preprocessing steps, such as rearranging the heads and model
parameters to ensure that all low-rank heads are memory continuous. Considering the implementation
simplification, we eventually adopt the current design, which only speeds up the final layers.

Spatial distance bias in PDE solver In this experiment, we follow the code base provided here9,
which includes the application of Transformers for the car design task. Specifically, the input contains
the position of the pre-defined computation mesh and the output is the pressure and air velocity on
these computation mesh points. In this task, we also adopt the exact decomposition for computation.
The training phase is also based on the Adam [19] optimizer with a batch size of 1.

Pair representation bias in AlphaFold 3 In AlphaFold 3 [1], we adopt the neural decomposition
version. This version involves the training of newly added neural layers, whose finetuning configura-
tion is listed in Table 12. Here we find that optimizing the factor functions for 10,000 iterations can
obtain a nearly converged version. This may be because the factor functions are token-wise, which

9https://github.com/thuml/Neural-Solver-Library
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Table 12: Configuration for finetuning factor functions ϕ̂q,θ1 , ϕ̂k,θ2 .

Part Configuration

Input xq,xk
Sum of row and column in pair representation, with shape of N × 128

Single representation at model beginning with shape of N × 449

Output ϕ̂q,θ1(xq), ϕ̂q,θ1(xk) Decomposed factor tensors with shape of N ×#heads×96 (#heads = 4)

Model ϕ̂q,θ1 , ϕ̂k,θ2

Input Dim: 577; Hidden Dim: 256; Output Dim: 384 (= 4× 96)
Three linear layers with in-between tanh activation function

Initial learning rate: 0.001; Optimizer: Adam;
Training Learning rate decay: every 50 iterations, reduce to the origin’s 0.95

Overall steps: 10,000 iterations

Dataset Train set: “weightedPDB_before2109_wopb_nometalc_0925”
Test set: “recentPDB_1536_sample384_0925”

means at every iteration, the model will receive N (sequence length) samples for training. To sum up,
these layers have been optimized with around 3,840,000 “samples” after 10,000 iterations. Also, to
reduce the cumulative error, we only apply FlashBias to the first 16 Pairformer blocks.

J Extension to Multiplicative Bias

In this section, we will discuss the extension to multiplicative bias in the following formalization:

o = softmax(
qk⊤
√
C

⊙ b)v, (15)

where b ∈ RN×N represents the multiplicative bias and C denotes the number of hidden channels.
⊙ denotes the Hadamard product, namely the element-wise multiplication.

Rotary position embedding (RoPE) [37] As mentioned in Section 2.1, RoPE is a special multi-
plicative bias. Specifically, its pre-softmax attention weight is defined as follows:

amn = Re[

C/2−1∑
i=0

q̄ik̄ie
i(m−n)θi ], (16)

where amn represents the pre-softmax weight between m-th query and n-th key. q̄i ∈ R1×2

represents the 2i and 2i+ 1-th element of the m-th query representation. By comparing the above
Eq. (15) and Eq. (16), we can obtain the following observations:

(i) RoPE does not follow the common formalization of multiplicative bias. As formalized in Eq. (16),
RoPE does not directly multiply a bias weight to each attention value, which also involves a detailed
reweighing along the channel dimension. Thus, we prefer to consider RoPE as a unique technique,
not a “general formalization” for multiplicative bias.

(ii) RoPE is already FlashAttention-friendly and does not need further modifications to fit the
computation of FlashAttention. According to Eq. (34) in its official paper [37], RoPE can be
accomplished by multiplying the rotary tensors with q and k before computing qk⊤. With this
design, it does not need to load an additional N × N bias matrix; thereby, it can be seamlessly
integrated with FlashAttention. Thus, we do not think it needs further modifications to fit the
computation flow of FlashAttention. That is also why we do not experiment with RoPE in this paper.

General multiplicative bias Here, we will demonstrate that the low-rank decomposition proposed
in FlashBias can be extended to multiplicative bias defined in Eq. (15).

Specifically, suppose that b ∈ RN×N can be decomposed as the multiplication of two rank-R tensors:
ϕq and ϕk ∈ RN×R. We can rewrite the calculation of attention with multiplicative bias as follows:

o = softmax(
qk⊤
√
C

⊙ b)v = softmax(
q′k′⊤
√
C

)v,

where q′ = [q⊙ ϕq,1, · · · ,q⊙ ϕq,R] ∈ RN×CR, k′ = [k⊙ ϕk,1, · · · ,k⊙ ϕk,R] ∈ RN×CR.
(17)
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Here ϕq,i, ϕk,i ∈ RN×1 represents the i-th channel of the decomposed factor tensors ϕq and ϕk,
whose channel dimension will be broadcasted C times before multiply to q or k. Operation [· · · , · · · ]
denotes the concatenation along the channel dimension. Besides, the above computation also requires
repeating the original q and k along the channel dimension for R times and multiplying the factor
tensors for each repeat. It is easy to verify the correctness of the above reformalization.
Example J.1. Given the multiplicative bias bij = cos(i−j), which can also be viewed as a simplified
version of RoPE (Eq. (16)), b can be decomposed into two factor tensors with R = 2:

ϕq(xq,i) = [cos(i), sin(i)] ∈ R1×2, ϕk(xk,j) = [cos(j), sin(j)] ∈ R1×2. (18)

Based on this decomposition, we can use the above Eq. (17) for speedup, where the whole N ×N
bias matrix is transformed into the reweighted repeat of q and k.
Corollary J.2 (Efficiency analysis). FlashBias’s extension to attention with multiplicative bias

(Eq. (15)) can reduce the storage complexity of vanilla FlashAttention when R ≤
√

S
C2 + 1.

Proof. According to [9], the HBM access of FlashAttention with bias is Θ(NMC2

S +NM), it is easy

to drive that the HBM access of Eq. (17) is Θ(NMC2R2

S ). Thus, when R ≤
√

S
C2 + 1, we have:

Θ(
NMC2R2

S
) ≤ Θ(

NMC2( S
C2 + 1)

S
) = Θ(

NMC2

S
+NM). (19)

Example J.3 (Design practice). Given a regular setting C = 64 and S =100KB, FlashBias can
achieve acceleration for attention with multiplicative bias if there exists a decomposition with R ≤ 27.

Since the multiplicative bias is not as common as the additive bias and RoPE has already been well
implemented, we would like to leave more explorations of multiplicative bias as our future work.

K Limitations

As mentioned in the main text, FlashBias’s speedup is based on the low-rank nature of attention bias.
Although the low-rank biases are observed in many well-established backbones, if the bias matrix is
not of low rank, FlashBias will have to trade off between efficiency and final performance.

About this limitation, one possible solution is to introduce an additional sparsity matrix as a sup-
plement to low-rank decomposition, which is a well-known matrix approximation technique [7].
Specifically, given the attention bias matrix b, this method formalizes the decomposition process as a
convex relaxation problem, which can be formalized as follows:

r̂+ t̂ = argmin
r,t

∥r∥∗ + γ∥t∥1,

s.t. r+ t = b,
(20)

where ∥∥∗ represents the nuclear norm and r is expected to be low-rank and s is optimized to be
sparse. Afterwards, the low-rank matrix r can be sped up through FlashBias, and we can adopt the
same technique as attention mask speedup [35] for accelerating the sparse component t. Further, this
technique can also make up for the current shortage of FlashBias in approximating the diagonal value
(Figure 7), where we can decompose the bias into the sum of a low-rank and a diagonal matrix.

Since we mainly focus on the low-rank property of attention bias in this paper and it will not affect
the final performance in our experiments, we would like to leave this as our future work.

L Broader Impacts

This paper presents FlashBias as a practical method to enable fast computation of attention with
bias, which shows a significant efficiency advantage over FlashAttention and FlexAttention [11].
FlashBias also enables 1.5× speedup for Pairformer in AlphaFold 3 [1] and over 2× speedup in
vision and language models without performance drop. These efficiency benefits can facilitate future
fine-tuning or development of Transformers in real-world applications. Also, this paper considers a
new low-rank compressed sensing perspective in fast attention computation, which can be inspiring
for future research. Since we purely focus on the algorithm design for fast computation of attention
with bias, there are no potential negative social impacts or ethical risks.
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