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Abstract

Knowledge editing techniques, aiming to effi-001
ciently modify a minor proportion of knowl-002
edge in large language models (LLMs) with-003
out negatively impacting performance across004
other inputs, have garnered widespread atten-005
tion. However, existing methods predominantly006
rely on memorizing the updated knowledge,007
impeding LLMs from effectively combining008
the new knowledge with their inherent knowl-009
edge when answering questions. To this end,010
we propose a Learning to Edit (LTE) frame-011
work, focusing on teaching LLMs to apply012
updated knowledge into input questions, in-013
spired by the philosophy of “Teach a man to014
fish.” LTE features a two-phase process: (i) the015
Alignment Phase, which fine-tunes LLMs on a016
meticulously curated parallel dataset to make017
reliable, in-scope edits while preserving out-of-018
scope information and linguistic proficiency;019
and (ii) the Inference Phase, which employs020
a retrieval-based mechanism for real-time and021
mass knowledge editing. By comparing our022
approach with seven advanced baselines across023
four popular knowledge editing benchmarks024
and two LLM architectures, we demonstrate025
LTE’s superiority in knowledge editing perfor-026
mance, robustness in both batch and sequential027
editing, minimal interference on general tasks,028
and rapid editing speeds. The data and code029
will be publicly available.030

1 Introduction031

The transformative potential of large language mod-032

els (LLMs) (Brown et al., 2020; OpenAI, 2023;033

Touvron et al., 2023) has been unequivocally un-034

derscored by their unparalleled efficacy across a035

myriad of applications (Chen et al., 2021; Ope-036

nAI, 2022, 2023). Nonetheless, the dynamic na-037

ture of the world necessitates frequent updates to038

LLMs to rectify outdated information or integrate039

new knowledge, thereby safeguarding their sus-040

tained pertinence. Naively training a new LLM041

from scratch to incorporate updated knowledge042

The current British Prime Minister is 

Rishi Sunak

Who is married to the PM of the UK? 

The current British Prime Minister is 

Rishi Sunak

Who is married to the PM of the UK? 

Previous Knowledge Editing Methods

Our Proposed LTE Framework

Figure 1: Previous knowledge editing methods primarily
rely on first memorizing updated knowledge and then
answering queries, while our proposed LTE framework
teaches LLMs to dynamically apply updated knowledge
to answer queries.

could result in substantial computational overhead 043

and is frequently deemed impractical. To this end, 044

the concept of knowledge editing has been intro- 045

duced (Sinitsin et al., 2020; De Cao et al., 2021), 046

aiming to efficiently modify LLMs’ outputs to- 047

wards targeted queries while preserving overall 048

performance across other unrelated ones. For ex- 049

ample, updating the knowledge of “The current 050

British Prime Minister is Rishi Sunak” not 051

only modifies the response to “Who is married 052

to the PM of the UK?” but leaves unaffected the 053

answer to “When was Rishi Sunak born?” 054

Some knowledge editing approaches rely on 055

auxiliary modules or models to either predict the 056

LLM’s weight adjustments (De Cao et al., 2021; 057

Mitchell et al., 2022a) or function as scope clas- 058

sifiers for query response applicability (Mitchell 059

et al., 2022b). While these innovations demon- 060

strate potential, they fail to inherit the advanced 061

capabilities of LLMs, thus rendering output quality 062

degeneration. Others attempt to identify and mod- 063

ify parameters related to specific knowledge within 064

LLMs to update their embedded knowledge (Dai 065
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et al., 2022; Meng et al., 2022, 2023). Nonetheless,066

the correlation between localization and editing067

efficacy has been questioned (Hase et al., 2023),068

and the potential negative impacts increase with the069

scale of LLMs. In essence, these methods predom-070

inantly rely on memorizing the updated knowledge071

(See Figure 1), hindering LLMs from effectively072

combining the new knowledge with their inherent073

knowledge when answering the input queries.074

To address these issues, motivated by the proverb075

“Teach a man to fish, and you feed him for a lifetime,”076

we propose to elicit LLMs’ capabilities of follow-077

ing knowledge editing instructions, thereby em-078

powering them to effectively leverage the updated079

knowledge to answer the queries. Specifically, we080

propose a Learning to Edit (LTE) framework to081

align LLMs with knowledge editing by leveraging082

supervised fine-tuning (SFT), which has become083

foundational in tailoring LLMs for desired behav-084

iors (Wei et al., 2022; Mishra et al., 2022). The LTE085

framework is structured around two pivotal stages:086

the Alignment Phase and the Inference Phase. Dur-087

ing the Alignment Phase, we pair edit descriptors088

with in-scope and out-of-scope queries to create089

parallel datasets, processed with and without a tai-090

lored prompt that explicitly informs LLMs of the091

knowledge editing process. By fine-tuning LLMs092

on this meticulously constructed dataset, we aim093

to cultivate a trio of essential capabilities within094

LLMs—In-Scope Capability (generating reliable,095

logically consistent edits), Out-of-Scope Capability096

(preserving the integrity of unrelated content), and097

Linguistic Capability (maintaining linguistic profi-098

ciency)—to ensure nuanced application of updated099

knowledge. Note that this process is once and100

for all, laying the groundwork for the inference101

phase to apply these capabilities dynamically. In102

the Inference Phase, to extend to mass editing, we103

implement a retrieval-based mechanism to obtain104

the most pertinent updated knowledge from a mem-105

ory bank. Such an approach enables LLMs to adapt106

their responses with the most current information107

in real time, thereby streamlining both batch and108

sequential knowledge editing processes.109

In this paper, we assess our proposed LTE110

method against seven advanced baselines across111

four benchmarks in single, batch, and sequential112

editing scenarios. Our findings reveal four major113

strengths of the LTE method: (i) it establishes a114

new state-of-the-art (SOTA) in overall knowledge115

editing performance, surpassing existing methods116

by a substantial margin of over 20 absolute points 117

in terms of portability; (ii) the robustness of LTE is 118

evident in its ability to handle batch and sequential 119

knowledge editing requests, showing a markedly re- 120

duced rate of performance deterioration compared 121

to its counterparts; (iii) it is proficient in facilitat- 122

ing knowledge edits with minimal interference to 123

the model’s cognitive functions across varied un- 124

related domains. (iv) LTE distinguishes itself by 125

combining the fastest editing speeds with excep- 126

tional performance. 127

2 Task Formulation 128

The objective of knowledge editing is to effi- 129

ciently adjust the behavior of an initial base 130

LLM fθ, where θ represents the model’s pa- 131

rameters, in response to specific edit descriptors 132

{(x∗i , y∗i )}i∈[1,N ]. In this context, x∗i refers to the 133

edit input that triggers the knowledge in LLMs 134

(e.g., The current British Prime Minister 135

is), y∗i is the corresponding edit target (e.g., Rishi 136

Sunak), and N signifies the total number of edit 137

descriptors. The efficacy of knowledge editing is 138

evaluated among four dimensions: 139

Edit success measures the average accuracy of 140

the post-edit model f∗
θ on these edit cases: 141

E
(x∗

i ,y
∗
i )
1{argmax

y
f∗
θ (y|x∗i ) = y∗i } (1) 142

Portability evaluates how well updated knowl- 143

edge transfers to related queries, enhancing the 144

model’s utility in varied contexts. For example, 145

correctly answering Who is married to the 146

British Prime Minister? with Akshata Murty 147

post-edit indicates successful knowledge transfer. 148

Locality assesses the precision of edits, ensuring 149

modifications are confined to targeted areas without 150

affecting unrelated knowledge. For example, ensur- 151

ing The current British Chancellor remains 152

Jeremy Hunt exemplifies effective locality. 153

Fluency quantifies the linguistic quality of the 154

model’s output post-edit, focusing on coherence 155

and diversity to avoid repetitive patterns. 156

3 Methodology 157

As illustrated in Figure 2, we propose a Learn- 158

ing to Edit (LTE) framework to align LLMs with 159

ever-changing, complicated, and diverse knowl- 160

edge editing requests in real-time. This framework 161
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[Updated Information]: Association football was created in France

[Query]: Which country is the origin of the sport associated with AC Milan?

France. Because AC Milan is associated with football; association 

football was created in the country of France.

Which country is the origin of the sport associated with AC Milan?

England. Because AC Milan is associated with football; 

association football was created in the country of England.

[Updated Information]: Association football was created in France

[Query]: What is the governing body of association football?

The governing body of association football is FIFA.

What is the governing body of association football?

The governing body of association football is FIFA.

Edit Descriptor Query AnswerAlignment Phase: Learning to Edit

Inference Phase: On-the-fly Edit

1. Association football was 

created in France

2. Buffalo Courier-Express 

was created in the United 

Kingdom
⋯

[Updated Information]: 

Association football was 

created in France

[Query]: What are the 

attractions in the country 

where football was invented?

What are the 

attractions in 

the country 

where football 

was invented?

The Eiffel 

Tower, Louvre 

Museum, Mont 

Saint-Michel, 

etc.

Figure 2: The proposed Learning to Edit (LTE) framework. In the Alignment Phase, we train LLMs how to
apply updated knowledge—beyond mere memorization—by fine-tuning them on our meticulously curated parallel
(indicated by gray arrows) data. In the Inference Phase, we propose a retrieval-based mechanism that retrieves
relevant edit descriptors from a stored memory for real-time, mass editing requests.

consists of two phases: (i) in the Alignment Phase,162

we enlighten LLMs’ capabilities of applying up-163

dated knowledge through the utilization of a knowl-164

edge editing prompt “[Updated Information]165

{edit descriptor}\n[Query] {query}”; (ii) in166

the Inference Phase, LLMs are enabled to conduct167

on-the-fly and streaming knowledge editing by re-168

trieving relevant updated knowledge to the query169

from the stored memory.170

3.1 Alignment Phase: Learning to Edit171

In light of the task formulation in §2, the model172

editing process profoundly influences predictions173

across a wide array of inputs directly related to174

the provided edited knowledge. An optimal knowl-175

edge editing method must seamlessly integrate new176

knowledge into the relevant content within its edit177

scope, while ensuring the accuracy and integrity of178

information outside this domain. To navigate the179

complexities of knowledge editing effectively, we180

delineate three critical capabilities that LLMs must181

acquire during the Alignment Phase:182

In-Scope Capability requires the model to cor-183

rectly generate the edit target given the edit input184

or its paraphrases. It also covers subject aliasing,185

ensuring the editing of one subject should not vary186

from its expression. For example, after modify-187

ing the origin city of Association football,188

the origin city of Soccer should also be modi-189

fied. Furthermore, it necessitates LLMs to con-190

duct compositional reasoning with the changed191

facts (e.g., when we change the origin city of 192

Association football, the origin city of the 193

sport associated with AC Milan should also 194

be changed, see Figure 2). To empower LLMs 195

with these advanced capabilities during alignment, 196

we meticulously curate training data by adapt- 197

ing or synthesizing content from existing knowl- 198

edge editing datasets. Our selection includes 199

ZsRE (Levy et al., 2017), RIPPLEEDITS (Cohen 200

et al., 2023), WikiBio (Hartvigsen et al., 2023), 201

and MQUAKE (Zhong et al., 2023b), with each 202

dataset providing edit descriptors linked to multi- 203

ple queries. These queries are specifically designed 204

to evaluate the nuanced facets of in-scope or out- 205

of-scope knowledge editing capabilities. To avoid 206

data leakage, our methodology only incorporates 207

samples from the datasets’ training sets. 208

Out-of-Scope Capability directs the model to 209

maintain the integrity of unrelated attributes of the 210

subject, ensuring no unintended alterations. For 211

example, as shown in Figure 2, changing the origin 212

city of Association football should not mod- 213

ify its governing body. Additionally, it requires 214

LLMs to adeptly handle one-to-many relationships, 215

ensuring that original connections are retained un- 216

less specifically altered. We utilize the same data 217

sources as that of In-Scope Capability. However, 218

due to the absence of out-of-scope instances in 219

datasets like ZsRE and MQUAKE, we employ 220

GPT-4 to generate corresponding queries and an- 221

swers based on the edit descriptors, further details 222
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of which are provided in Appendix A.1.223

Linguistic Capability requires that incorporat-224

ing edits related to specific factual knowledge225

should not hinder the model’s proficiency in un-226

related areas, such as generative fluency, common-227

sense reasoning, general intelligence, and world228

knowledge. Thus, we identify a limitation within229

existing datasets: the predominance of fill-in-the-230

blank cloze queries may not adequately challenge231

the LLMs’ linguistic capabilities across diverse ar-232

eas, such as conversational contexts, where answers233

may inherently be more elaborate. To address234

this, we integrate edit descriptors from COUNTER-235

FACT (Meng et al., 2022) and utilize GPT-4 to gen-236

erate free-text, in-scope query-answer pairs (See237

Appendix A.2). This approach not only diversi-238

fies the training data but also enhances the mod-239

els’ ability to generate more contextually rich an-240

swers. GPT-4 is further employed to verify the rel-241

evance of generated answers to the edit descriptors,242

with a mechanism to filter out unsatisfactory cases.243

Additionally, we incorporate natural language in-244

structions from Evol-Instruct (Xu et al., 2023) as245

out-of-scope queries to maintain the LLMs’ broad246

linguistic capabilities.247

Parallel Data Construction Our approach in-248

volves the creation of parallel datasets by pairing249

each edit descriptor with corresponding in-scope250

and out-of-scope queries. These are then processed251

with and without the incorporation of our tailored252

knowledge editing prompt (See Figure 2). This par-253

allel construction serves multiple purposes. First,254

it reinforces LLM’s capacity to discern when to255

utilize updated knowledge by comparing in-scope256

and out-of-scope queries with editing. Second, it257

accentuates the subtle distinctions between with258

and without editing for in-scope queries, enabling259

LLM to apply knowledge edits more effectively.260

Lastly, it educates LLM on maintaining the in-261

tegrity of out-of-scope information by presenting262

it with comparisons that demonstrate when not to263

alter this knowledge. In total, we construct 60k264

parallel data for training, the detailed data statistics265

are listed in Appendix A.3. During training, we266

compute the loss only on the answer tokens, i.e.,267

it learns to generate answers conditioned on the268

Updated Information and Query.269

3.2 Inference Phase: On-the-fly Edit270

Here we propose an efficient mechanism that271

extends LTE to batch and streaming knowl-272

edge editing scenarios. Inspired by retrieval- 273

augmented generation (RAG) (Lewis et al., 2020; 274

Xu et al., 2022), we utilize an off-the-shelf retrieval 275

model multi-qa-mpnet-base-dot-v1 (Reimers 276

and Gurevych, 2019) to embed all the edit descrip- 277

tors and create a vector memory to store the rep- 278

resentations. When given a query, we also get the 279

representation of the query by the retriever and 280

search the top-k (k = 3 in our experiments) similar 281

edit descriptors from the vector memory. Then, the 282

query and the retrieved edit descriptors are fed into 283

the LLM to obtain the answer. To enhance the fault 284

tolerance of the retrieval model while maintaining 285

the single editing performance, in the Alignment 286

Phase, we adopt a threefold strategy for incorpo- 287

rating different numbers of edit descriptors as Up- 288

dated Information, as detailed in Appendix A.4. 289

4 Experiments 290

4.1 Experimental Setup 291

We select LLaMA2-Chat-7B (Touvron et al., 2023) 292

and Qwen-Chat-7B (Bai et al., 2023) as base mod- 293

els for knowledge editing, as these models are 294

widely used for English and Chinese chatbot ap- 295

plications, respectively. We implement our LTE 296

method by standard fine-tuning on the 60k con- 297

structed data in §3.1. Additionally, we explore 298

an alternative implementation of LTE, employing 299

Low-Rank Adaptation (LoRA) (Hu et al., 2022), 300

noted for its efficiency and reduced memory re- 301

quirements. This variant is referred to as LTE- 302

LoRA. For details of the implementation specifics, 303

we refer to Appendix B. 304

We choose seven powerful knowledge edit- 305

ing methods, including SERAC (Mitchell et al., 306

2022b), ICE (Cohen et al., 2023), MEND (Mitchell 307

et al., 2022a), ROME (Meng et al., 2022), 308

MEMIT (Meng et al., 2023), FT-L (Meng et al., 309

2022), and FT (See details in Appendix C), as our 310

baselines. For the evaluation datasets and met- 311

rics, we follow KnowEdit (Zhang et al., 2024) 312

and use the test sets of four popular benchmarks, 313

including WikiDatarecent (Cohen et al., 2023), 314

ZsRE (Levy et al., 2017), WikiBio (Hartvigsen 315

et al., 2023), and WikiDatacounterfact (Cohen et al., 316

2023). All the experiments are conducted by using 317

EasyEdit (Wang et al., 2023b) toolkit. 318

4.2 Results of Single Editing 319

Table 1 presents the performance comparison un- 320

der the single editing setting, where LTE elimi- 321
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Base Model Metric SERAC ICE MEND ROME MEMIT FT-L FT LTE LTE-LoRA

LLaMA2-Chat-7B

Edit Succ. 99.51 73.03 86.53 89.98 86.52 60.81 47.64 99.94 99.90
Portability 65.36 48.73 56.02 42.78 43.15 44.27 13.86 86.73 82.41
Locality 74.75 34.19 87.33 51.43 51.37 64.37 4.41 80.62 77.03
Fluency 530.24 563.07 577.25 585.21 577.90 543.08 493.22 593.60 575.31

Qwen-Chat-7B

Edit Succ. 99.12 82.26 90.80 99.45 96.84 45.66 26.28 99.63 99.59
Portability 67.99 59.85 56.96 46.08 42.73 34.67 11.14 86.48 84.30
Locality 76.37 64.32 81.62 45.42 59.19 86.42 15.01 84.19 81.90
Fluency 555.65 572.50 596.40 592.90 601.77 590.05 532.85 613.31 586.20

Table 1: Averaged Single Editing performance on four knowledge editing benchmarks including WikiDatarecent,
ZsRE, WikiBio, and WikiDatacounterfact. In each row, the highest score is bolded and the second-highest is
underlined. For detailed results of each benchmark, we refer to Appendix D.

nates the need for retrieval. It can be observed322

that LTE remarkably surpasses conventional meth-323

ods in terms of edit success, portability, and flu-324

ency. Besides, LTE-LoRA—an efficient variant325

of LTE—closely mirrors its performance except326

for fluency, which can be attributed to the inherent327

limitations of the LoRA technique. Notably, LTE328

exhibits a 21.37% and 18.49% improvement over329

the current SOTA method SERAC on LLaMA2-330

Chat-7B and Qwen-Chat-7B, respectively. This331

substantial enhancement can be attributed to the332

comprehensive utilization of LLMs’ understanding333

and reasoning capabilities, which effectively lever-334

age context to integrate new knowledge seamlessly.335

The ICE method, while leveraging the innate in-336

context comprehension capacity of LLMs for gen-337

erating conditioned output on new knowledge, sig-338

nificantly trails our proposed LTE method. This339

could be because ICE lacks instructing LLMs in ef-340

fectively applying knowledge through fine-tuning341

(See more ablation analysis in Table 3). Never-342

theless, LTE shows a marginal deficit in locality343

compared to the best results (e.g., 6.71% lower than344

MEND on LLaMA2 and 2.23% lower than FT-L345

on Qwen). A potential explanation may lie in the346

introduction of a knowledge editing prompt in the347

input, causing a slight disruption during the genera-348

tion process. Yet, these divergences are often minor349

linguistic variants. In a nutshell, LTE establishes a350

new state-of-the-art in knowledge editing tasks.351

4.3 Results of Mass Editing352

Prior research predominantly confines the scope353

of knowledge editing to a mere handful of facts354

or focuses only on single editing cases. This ap-355

proach starkly contrasts with the dynamic and356

multifaceted nature of real-world applications,357

where there is a pressing need to enrich models358

with multiple pieces of knowledge, either concur- 359

rently (simultaneously) or in a phased manner 360

(sequentially). In this section, our study embarks 361

on a comprehensive investigation, undertaking both 362

batch and sequential editing experiments. 363

Batch Editing We compare LTE and LTE- 364

LoRA with several batch-editing-supportive meth- 365

ods (SERAC, MEMIT, and FT-L) on LLaMA2- 366

Chat-7B and display the results in Figure 3. It is 367

particularly noteworthy that the performance met- 368

rics of edit success and fluency for our proposed 369

LTE and LTE-LoRA methodologies exhibit excep- 370

tional stability, maintaining robustness for up to 371

1,000 batch edits. A decline in performance metrics 372

such as portability and locality is observed across 373

all methods as the batch size increases. However, 374

LTE and LTE-LoRA demonstrate the best per- 375

formance with the slowest degradation rate in 376

portability and locality. These results underscore 377

the enhanced robustness of our methods, even when 378

subjected to extensive editing operations. 379

Sequential Editing Sequential editing is a crit- 380

ical process where models must retain previous 381

modifications while integrating new edits effec- 382

tively. Figure 4 illustrates the comparative perfor- 383

mance of various models in the context of sequen- 384

tial editing tasks across different data stream sizes. 385

ROME and MEMIT demonstrate noteworthy effi- 386

cacy for a sequential number n ≤ 100, yet their 387

performance exhibits a marked decline as n ex- 388

pands to 500. This decline can be attributed to the 389

cumulative deviations from the model’s original 390

state, which ultimately lead to a degradation in per- 391

formance. In contrast, LTE and LTE-LoRA lever- 392

age retrieval mechanisms from the stored memory, 393

circumventing the need for sequential parameter 394

modifications, which endows them with more con- 395
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Figure 3: Averaged Batch Editing performance on four benchmarks against batch numbers in [1, 10, 100, 1000].
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Figure 4: Averaged Sequential Editing performance on
four knowledge editing benchmarks against data stream
size (log-scale) in [1, 10, 100, 500, 1000].

sistent performance with varying data stream sizes.396

Notably, LTE and LTE-LoRA showcase signifi-397

cant improvements over the current SOTA method398

SERAC. This shows their enhanced resilience and399

adaptability, making them more suited for exten-400

sive data streams.401

4.4 Results of General Tasks402

In this section, we investigate the impact of ap-403

plying LTE on the performance of a language404

model across various domains. Our main goal405

is to determine whether the Alignment Phase of406

LTE, which alters the parameters of the initial407

model, inadvertently compromises the model’s408

competence in unrelated domains. To this end, we409

have selected an array of benchmarks encompass-410

ing commonsense reasoning, general intelligence,411

and extensive world knowledge. These bench-412

marks comprise CommonSenseQA (Talmor et al.,413

2019), PIQA (Bisk et al., 2020), XSum (Narayan 414

et al., 2018), MMLU (Hendrycks et al., 2021), 415

AGIEval (Zhong et al., 2023a), and AlpacaEval (Li 416

et al., 2023). All evaluations are conducted using 417

the OpenCompass tool (Contributors, 2023). Table 418

2 indicates that, from a comprehensive standpoint, 419

models subjected to LTE exhibit performance lev- 420

els comparable to their unmodified counterparts. 421

Moreover, the general linguistic abilities remain 422

unaffected by the inclusion of the knowledge edit- 423

ing prompt. Nonetheless, a performance decrement 424

is noted in CommonsenseQA and PIQA after the 425

LTE application. Despite these findings, an overar- 426

ching analysis reveals notable consistency in per- 427

formance. This suggests that LTE is proficient in 428

facilitating knowledge edits with minimal inter- 429

ference to the model’s cognitive functions and its 430

versatility across varied domains. 431

5 Analysis 432

5.1 Ablation Study 433

Here we assess the indispensability of components 434

within the Alignment and Inference phases. Our 435

experiments span four benchmarks, utilizing the 436

LLaMA2-Chat-7B as the base model. As depicted 437

in Table 3, the exclusion of certain training data seg- 438

ments leads to a significant decline in single editing 439

effectiveness. Notably, distinct types of training 440

data bolster specific capabilities. In-scope data 441

predominantly enhances edit success and portabil- 442

ity, while out-of-scope data chiefly fosters local- 443

ity. Free-text QA data appears to bolster overall 444

linguistic proficiency. Eliminating the threefold 445

strategy incurs a modest reduction in performance. 446

Furthermore, employing the knowledge editing 447

prompt without training results in substantially 448

poorer performance compared to scenarios that in- 449
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CommonSenseQA PIQA XSum MMLU AGIEval AlpacaEval Average

LLaMA2-Chat-7B 69.9 65.0 22.3 40.4 26.1 71.4 49.2
LTE w/o editing 67.2 61.3 22.4 46.4 26.5 73.3 49.5
LTE w/ editing 67.1 62.6 22.4 47.8 23.8 71.6 49.2

Qwen-Chat-7B 77.6 72.1 28.8 56.6 41.3 77.8 59.0
LTE w/o editing 74.7 69.3 29.9 59.3 41.9 79.2 59.1
LTE w/ editing 75.3 70.0 30.1 58.2 40.7 78.4 58.8

Table 2: Zero-shot performance on six general LLM benchmarks with LLaMA2-Chat-7B and Qwen-Chat-7B as
the base models. “w/ editing” involves using a randomly sampled edit descriptor from ZsRE as a prefix in the
knowledge editing prompt template; “w/o editing” evaluates the LTE post-edit model without any prefix.

S P L F G

LTE 99.94 86.73 80.62 593.60 49.5
-w/o in-scope training 77.53 56.26 80.72 589.04 49.0
-w/o out-of-scope training 99.92 86.89 65.50 592.66 49.2
-w/o free-text QA training 99.93 86.30 80.91 587.75 43.9
-w/o threefold strategy 99.78 86.51 80.22 593.40 49.5
-w/o training 75.04 54.23 48.19 592.73 49.2

Table 3: Ablation study for the training data examines
“edit success” (S), “portability” (P), “locality” (L), “flu-
ency” (F), and “general capability” (G).

Seq_Num Edit Succ. Portability Locality

LTE w/ 420M R
top k = 3

10 100.00 86.16 82.64
100 99.90 80.66 80.38
1000 99.64 76.59 78.67

LTE w/ 80M R
top k = 3

10 100.00 83.38 78.65
100 99.81 79.92 80.40
1000 99.61 75.67 79.43

LTE w/ 420M R
top k = 2

10 100.00 85.69 81.59
100 99.85 80.05 80.67
1000 99.63 76.27 78.05

LTE w/ 420M R
top k = 1

10 100.00 84.01 81.96
100 99.83 79.48 80.11
1000 99.56 75.93 78.89

Table 4: Ablation study for the retrieval number k and
retrieval model R in the Inference Phase.

clude training. During the Inference Phase, we ex-450

plore the effects of substituting the retrieval model451

multi-qa-mpnet-base-dot-v1 (420M) with a452

less potent variant, all-MiniLM-L6-v2 (80M), on453

sequential editing efficacy. As indicated in Table454

4, the choice of retrieval model exerts minimal im-455

pact on performance. Additionally, we assess how456

the number of retrieved edit descriptors influences457

results. A reduction in the value of k from 3 to 1 is458

associated with a minor performance decrement.459

5.2 Time Analysis460

Table 5 illustrates the time required for various461

knowledge editing methods from providing the462

edited case to obtaining the final answer. Models463

such as MEND and SERAC demonstrate rapid edit-464

ing capabilities once their auxiliary models are ad-465

Method Edit Time Inference Time Total Time

SERAC 26.57 1.45 28.02
ICE 0.00 1.60 1.60
MEND 9.09 1.49 10.58
ROME 197.11 1.58 198.69
MEMIT 150.16 1.38 151.54
FT-L 15.73 1.41 17.14
FT 59.39 1.36 60.75
LTE 0.00 1.63 1.63

Table 5: Averaged Wall Clock Time per edit method
for 10 edits on ZsRE using LLaMA2-Chat-7B.

equately trained. In contrast, ROME and MEMIT 466

exhibit slower processing speeds due to the inten- 467

sive computation involved in calculating key vec- 468

tors and optimizing value vectors. Additionally, 469

these methods necessitate a pre-computation of the 470

covariance statistics for the Wikitext, which is also 471

time-consuming and can potentially take hours to 472

days to complete. Furthermore, while FT-L and 473

FT are relatively quick, their memorization-based 474

fine-tuning strategies yield suboptimal knowledge 475

editing outcomes. Our proposed LTE method, how- 476

ever, stands out by achieving the swiftest edit- 477

ing speeds coupled with superior performance. 478

After the Alignment Phase (which takes about 9 479

hours in our experiments), LTE enables instanta- 480

neous editing similar to ICE by appending a knowl- 481

edge editing prompt to the input prefix. Despite 482

a marginally increased inference time, the overall 483

time expenditure is significantly reduced, under- 484

scoring the efficiency and effectiveness of LTE. 485

5.3 Case Study 486

Table 6 shows the performance of different knowl- 487

edge editing methods in a single case. This compar- 488

ison reveals that LTE stands out for applying edited 489

knowledge to answer the query “The name of 490

the award the spouse of Melissa Mathison 491

won is” that necessitates compositional reasoning 492

while maintaining the fluency of the generated text. 493

In contrast, other approaches, including SERAC, 494

7



Original Knowledge: The name of the award Harrison Ford won is AFI Life Achievement Award
Edited Knowledge: The name of the award Harrison Ford won is I. I. Rabi Prize

SERAC: The name of the award the spouse of Melissa Mathison won is not specified in the passage. However, it is men-
tioned that the award was presented at the Directors Guild of America Awards.

ICE: The name of the award the spouse of Melissa Mathison won is ?0.0. Please provide your answer as a complete sen-
tence.0.0..

ROME: The name of the award the spouse of Melissa Mathison won is the Humanitas Award. She won the award in 1999
for her work on the film "American Beauty."

MEMIT: The name of the award the spouse of Melissa Mathison won is not specified in the text. However, based on the
information provided in the passage, we can infer that the award was for her work as a screenwriter.

FT-L: The name of the award the spouse of Melissa Mathison won is I. A. Prize. nobody likes a snitch\nI’m not sure what
you are asking. Can you provide more context or clarify your question?

LTE: The name of the award the spouse of Melissa Mathison won is I. I. Rabi Prize. Melissa Mathison is married to Harrison
Ford. The name of the award Harrison Ford won is I. I. Rabi Prize.

Table 6: Results for one case of different editing methods based on LLaMA2-Chat-7B. Queries are underlined and
italicized. Words highlighted in green signify keywords that reflect correct behavior, while those in red denote
keywords associated with incorrect behavior. Texts in cyan are repeated or meaningless sentences.

ICE, ROME, MEMIT, and FT-L, not only fail to495

answer the query correctly but generate repeated496

or inconsistent text sometimes. This case study497

further validates LTE’s advances in utilizing new498

knowledge to answer input queries.499

6 Related Work500

Knowledge Editing Prior knowledge editing501

studies resort to auxiliary models for efficient502

updating and refining of LLMs. For example,503

SERAC (Mitchell et al., 2022b) builds a distinct504

counterfact model without changing the original505

LLM and employs a scope classifier to deter-506

mine whether to use the counterfact model to an-507

swer the question. KE (De Cao et al., 2021) and508

MEND (Mitchell et al., 2022a) leverage a hyper-509

network to predict the weight update of the LLM.510

While these methods have shown some promising511

results, they fail to utilize the inherent formidable512

capabilities of LLMs. More recent works such as513

KN (Dai et al., 2022), ROME (Meng et al., 2022),514

and MEMIT (Meng et al., 2023) adopt interpretabil-515

ity techniques to identify parameters correspond-516

ing to specific knowledge and update them to alter517

LLM’s knowledge. Nevertheless, the correlation518

between localization and editing efficacy has been519

questioned (Hase et al., 2023). Diverging from520

these methodologies, we explicitly teach LLMs521

how to apply updated knowledge rather than mere522

memorization, which taps into the full potential523

of LLMs, fostering a more dynamic and effective524

knowledge editing process.525

LLM Alignment LLM alignment (Gabriel, 526

2020), which aims to calibrate LLMs’ behaviors 527

with human values and preferences, is essential 528

for their application in real-world scenarios. A 529

prominent technique in this area is supervised fine- 530

tuning (SFT) (Wei et al., 2022; Mishra et al., 2022), 531

which involves fine-tuning powerful LLMs using 532

datasets composed of natural language instructions. 533

Notably, SFT is instrumental in improving LLMs’ 534

understanding and adherence to human instruc- 535

tions, laying the groundwork for many subsequent 536

alignment strategies such as reinforcement learn- 537

ing from human feedback (RLHF) (Ouyang et al., 538

2022; Rafailov et al., 2023). Thus, plenty of efforts 539

have focused on applying SFT for alignment us- 540

ing either human-annotated or synthetic data (Wei 541

et al., 2022; Wang et al., 2023c; Jiang et al., 2023; 542

Xu et al., 2023). For more details on LLM align- 543

ment, we refer readers to the recent LLMs align- 544

ment survey (Wang et al., 2023d). 545

7 Conclusion 546

We present the Learning to Edit (LTE) framework, 547

a novel approach for effective, efficient knowledge 548

editing of LLMs. LTE equips LLMs with the ability 549

to apply updated knowledge through a two-phase 550

process: an Alignment Phase that teaches essential 551

knowledge editing capabilities, and an Inference 552

Phase that implements retrieval-based, on-the-fly 553

knowledge editing. Our framework demonstrates 554

superior performance in knowledge editing tasks, 555

outperforming existing methods in robustness and 556

speed across various benchmarks. 557
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Limitations558

This section outlines the limitations of our pro-559

posed LTE approach, despite its validated effi-560

cacy across diverse model architectures, evaluation561

datasets, and knowledge editing settings.562

Firstly, the LTE framework necessitates a one-563

time fine-tuning process during the Alignment564

Phase. Although this process is a prerequisite, it565

facilitates real-time knowledge editing during the566

Inference Phase. We further elucidate that employ-567

ing LoRA as an alternative to standard fine-tuning568

presents a viable, resource-efficient approach with-569

out compromising performance (See §4). This in-570

novation highlights the LTE’s flexibility in adapting571

to various computational constraints.572

Furthermore, our investigation primarily focuses573

on factual knowledge editing, yet the purview of574

model editing extends to encompassing personal-575

ity traits, emotional responses, opinions, and be-576

liefs (Zhang et al., 2024). These dimensions, while577

partially explored, represent areas ripe for future578

research. Additionally, the prospect of multilin-579

gual (Wang et al., 2023a) and multimodal (Cheng580

et al., 2023) editing underscores the necessity for581

broader exploration, pointing towards an expansive582

horizon for model editing applications.583

Finally, the proprietary nature of leading LLMs,584

such as ChatGPT and GPT-4, poses a significant585

challenge for applying knowledge editing tech-586

niques due to restricted access to their underly-587

ing parameters. Nonetheless, OpenAI’s API pro-588

vision for models including gpt-3.5-turbo-1106589

and gpt-4-0613 facilitates fine-tuning within the590

LTE’s Alignment Phase. Although our current591

work does not extend to these black-box models, ad-592

dressing this limitation represents a critical avenue593

for future research, potentially unlocking new meth-594

ods for model customization and improvement.595

Ethics Statement596

Knowledge editing encompasses the methodolo-597

gies employed to efficiently modify LLMs’ behav-598

iors within specific domains while preserving over-599

all performance across various inputs. It is critical600

to acknowledge that, if executed with malevolent601

intent, knowledge editing possesses the potential to602

compel models to produce outputs that are harmful603

or inappropriate. Consequently, it is imperative604

to enforce safe and responsible knowledge editing605

practices. The implementation of these techniques606

must be underpinned by stringent ethical standards,607

accompanied by robust safeguards designed to de- 608

ter misuse and the generation of detrimental out- 609

comes. To this end, all data constructed for this 610

study have undergone meticulous scrutiny by hu- 611

man evaluators to eliminate any instances of mali- 612

cious editing or offensive content, thereby ensuring 613

the integrity and safety of the model’s outputs. 614
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A Details of Training Data Construction926

A.1 Synthetics of Out-of-scope Examples927

As shown in Figure 5, we employ a few-shot man-928

ual demonstration as a prompt to guide GPT-4 in929

producing the desired query and answer.930

A.2 Synthetics of Free-text In-scope931

Question-answering Pairs932

In our methodology, we initially engage GPT-4933

with five meticulously crafted demonstrations, as934

depicted in Figure 6. This step is designed to elicit935

a query that pertains directly to the edit descriptor.936

Following this, we direct GPT-4 to formulate an937

answer to the query, drawing upon the edit descrip-938

tor for content, as illustrated in Figure 7. The final939

step in Figure 8 involves a verification process by940

GPT-4 to ascertain the congruence of the answer941

with the edit descriptor, leading to the exclusion of942

instances where the criteria are not met (approxi-943

mately 15%).944

A.3 Training Data Statistics 945

Table 7 lists the statistics of our curated training 946

data, which encompasses 60k samples from five 947

data sources. In the construction of our dataset, 948

we employ a rigorous sampling methodology, ex- 949

clusively selecting instances from the training sets 950

provided by the data sources. 951

A.4 Threefold Strategy in the Alignment 952

Phrase 953

To enhance the fault tolerance of the retrieval model 954

while maintaining the single editing performance, 955

we adopt a threefold strategy for incorporating dif- 956

ferent numbers of edit descriptors as Updated In- 957

formation in the Alignment Phase. Firstly, in 50% 958

of cases, we directly use the exact edit descrip- 959

tor. Secondly, for 25% of cases, we employ the 960

multi-qa-mpnet-base-dot-v1 model to identify 961

the top-1 semantically similar edit descriptor (ex- 962

cluding the exact one) from the whole dataset, and 963

use both as the Updated Information. Lastly, for 964

the remaining 25%, we retrieve the top 2 semanti- 965

cally similar descriptors, excluding the exact one, 966

using all three as the Updated Information. This 967

approach introduces variability during training, sig- 968

nificantly enhancing the model’s robustness and 969

improving mass edit capabilities in inference. 970

B Implementation Details 971

The training procedure was executed on 4 NVIDIA 972

A100 GPUs, each equipped with 80GB of memory. 973

The duration required to train a single instance of 974

the model, specifically the LLaMA2-Chat-7B, was 975

approximately 9 hours. Detailed specifications of 976

the hyperparameters employed for both standard 977

fine-tuning and LoRA are provided in Table 8. 978

C Baselines 979

• SERAC (Mitchell et al., 2022b) builds a new 980

counterfact model by retaining the new model 981

and adopting a classifier to determine whether 982

to use the counterfact model to answer the 983

question. 984

• ICE (Cohen et al., 2023) prepends a prompt 985

“Imagine that {edit descriptor}” before 986

the query. It does not introduce changes to 987

the model parameters, but rather generation is 988

conditioned on the new fact. 989

• MEND (Mitchell et al., 2022a) transforms 990

the fine-tuning gradient of an updated fact by 991
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Data Source # of in-scope;
w/ prompt

# of in-scope;
w/o prompt

# of out-of-scope;
w/ prompt

# of out-of-scope;
w/o prompt # of Total Avg Len

ZsRE 1,000 1,000 1,000 1,000 4,000 27
RIPPLEEDITS 2,250 2,250 2,250 2,250 9,000 34
WikiBio 250 250 250 250 1,000 102
MQUAKE 4,000 4,000 4,000 4,000 16,000 160
COUNTERFACT 7,500 7,500 7,500 7,500 30,000 320

Total 15,000 15,000 15,000 15,000 60,000 208

Table 7: Training data statistics. “Avg Len” is the average word number of samples, and “prompt” denotes our
designed knowledge editing prompt template in Figure 2.

Hyperparameter Standard FT LoRA

Batch size 128 128
Learning rate 2e-5 3e-4
Epoches 3 3
Max length 2048 2048
Optimizer AdamW AdamW
Scheduler cosine cosine
Weight decay 0 0
Warmup ratio 0.03 0.03

Table 8: Training hyperparameters for both LLaMA2-
Chat-7B and Qwen-Chat-7B.

decomposing the weight matrix into rank-1992

form with the pre-trained hyper-network.993

• ROME (Meng et al., 2022) learns to locate994

factual retrievals of a specific set of MLP mod-995

ules and update knowledge by directly writing996

in new key-value pairs in the MLP module.997

• MEMIT (Meng et al., 2023) builds upon998

ROME to insert many memories by modifying999

the MLP weights of a range of critical layers.1000

• FT-L (Meng et al., 2022) directly fine-tunes a1001

single layer’s FFN, and the layer is the casual1002

tracing results in ROME.1003

• FT fine-tunes all the parameters of the base1004

model on the edit descriptor by applying1005

Adam (Kingma and Ba, 2015) with early stop-1006

ping.1007

D Detailed Experimental Results1008

Table 9 lists the detailed performance com-1009

parison of various knowledge editing methods1010

across four benchmarks, including ZsRE, WikiBio,1011

WikiDatarecent, and WikiDatacounterfact. The ex-1012

perimental results demonstrate LTE’s superiority1013

in knowledge editing performance.1014
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In the following statement, “Altered Answer” represents the changed factual knowledge. When the answer is changed, other attributes of the subject 
updated should remain unchanged. For example, if we edit basketball player Grant Hill as a soccer player, it does not affect his nationality. Therefore, for 
unrelated attributes like country, the output should remain consistent with the pre-editing version. You should recall an unrelated attribute, then 
generate questions and answers based on the unrelated attribute and “Subject”.

Question: The father of Juan María Bordaberry is whom?
Subject: Juan María Bordaberry
Altered Answer: Gabrielle Bordaberry
Recalled Unrelated Attribute: place of death
New Question: The place of death of Juan María Bordaberry is
New Answer: Montevideo

Question: What business published Street Rod 2?
Subject: Street Rod 2
Altered Answer: Sierra Entertainment
Recalled Unrelated Attribute: distribution format
New Question: The distribution format of Street Rod 2 is
New Answer: floppy disk

Question: What is the status of Cross River gorilla?
Subject: Cross River gorilla
Altered Answer: near threatened
Recalled Unrelated Attribute: taxon rank
New Question: The taxon rank of Cross River gorilla is
New Answer: subspecies

Question: {question}
Subject: {subject}
Altered Answer: {altered_answer}

Prompt Template (Generating an out-of-scope example)

Figure 5: Prompt template for generating an out-of-scope example.

[Edit Descriptor]: Carl Sagan is employed by British Broadcasting Corporation
[Prompt]: Please generate a query related to Carl Sagan. The answer of the query must use the edit descriptor.
[Generated Query]: Is Carl Sagan currently working for the British Broadcasting Corporation (BBC)?

[Edit Descriptor]: What is the twin city of Wellington? It is Sheffield
[Prompt]: Please generate a query related to Wellington. The answer of the query must use the edit descriptor.
[Generated Query]: What are some landmarks in the twin city of Wellington?

[Edit Descriptor]: The native language of Symeon of Polotsk is French
[Prompt]: Please generate a query related to Symeon of Polotsk. The answer of the query must use the edit descriptor.
[Generated Query]: What was the native language of Symeon of Polotsk, and how did it influence his life and work?

[Edit Descriptor]: Triumph TR8, produced by Boeing
[Prompt]: Please generate a query related to Triumph TR8. The answer of the query must use the edit descriptor.
[Generated Query]: What is the connection between the Triumph TR8 and Boeing?

[Edit Descriptor]: Mehmed VI was born in Philadelphia
[Prompt]: Please generate a query related to Mehmed VI. The answer of the query must use the edit descriptor.
[Generated Query]: What city, known for its historical significance in the United States, was the birthplace of Mehmed VI, the last Sultan of the Ottoman 
Empire?

[Edit Descriptor]: {edit_descriptor}
[Prompt]: Please generate a query related to {subject}. The answer of the query must use the edit descriptor.
[Generated Query]: 

Prompt Template (Generating a query related to the edit descriptor)

Figure 6: Prompt template for generating a query related to the edit descriptor.
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Imagine that the [Edit Descriptor] is True. Please answer the [Query] based on the [Edit Descriptor].

[Edit Descriptor]: Carl Sagan is employed by British Broadcasting Corporation
[Query]: Is Carl Sagan currently working for the British Broadcasting Corporation (BBC)?
[Answer]: Yes, Carl Sagan is currently working for the BBC.

[Edit Descriptor]: What is the twin city of Wellington? It is Sheffield
[Query]: What are some landmarks in the twin city of Wellington?
[Answer]: Sheffield is the twin city of Wellington.\n\nSome notable landmarks in Sheffield, a city in the United Kingdom, include:\n\nThe Sheffield 
Winter Garden: One of the largest urban glasshouses in Europe, housing a splendid collection of plants from around the world.\n\nThe Peace Gardens: 
An award-winning public space in the heart of the city, known for its beautiful fountains and green spaces.\n\nSheffield Cathedral: A stunning example 
of Gothic and modern architecture, this cathedral is a significant religious and historical site in the city.\n\nKelham Island Museum: Located on a man-
made island over 900 years old, this museum showcases Sheffield's industrial heritage, particularly in steelmaking.\n\nThe Millennium Gallery: A 
modern art and design gallery, featuring permanent collections and temporary exhibitions.\n\nSheffield Botanical Gardens: Spread over 19 acres, 
these gardens contain a wide variety of plants and several listed buildings, including glass pavilions.\n\nThe Crucible Theatre: Famous for hosting the 
World Snooker Championships, it is also a venue for a wide range of other performances.\n\nThese landmarks highlight Sheffield's rich cultural, 
historical, and industrial heritage.

[Edit Descriptor]: The native language of Symeon of Polotsk is French
[Query]: What was the native language of Symeon of Polotsk, and how did it influence his life and work?
[Answer]: Symeon of Polotsk was a prominent figure in the cultural and ecclesiastical life of Eastern Europe during the 17th century, known for his role 
as a poet, preacher, and educator. Being a native French speaker in Eastern Europe during that time would have been quite unusual, as French was not 
commonly spoken there. This linguistic background could have provided Symeon with unique opportunities and challenges:\n\n1. Cultural and 
Linguistic Bridge: Symeon could have acted as a cultural and linguistic bridge between Western Europe and Eastern Europe, particularly between 
France and the regions of the Polish-Lithuanian Commonwealth and Russia where he was active. This might have influenced his work by incorporating 
Western European, particularly French, literary and philosophical ideas into his writings and teachings.\n\n2. Educational Impact: His knowledge of 
French, a major language of European diplomacy and culture, would have been valuable in the courts of Eastern Europe. It might have influenced his 
educational methods, possibly introducing French literature and thought into the curriculum of the schools he was involved with.\n\n3. Diplomatic 
Role: Symeon's fluency in French could have facilitated diplomatic relationships between Eastern European states and French-speaking countries. This 
might have led to his involvement in diplomatic missions or in advising rulers on matters related to French-speaking regions.\n\n4. Literary Style: His 
native language would have influenced his literary style. Symeon might have incorporated French literary forms, themes, and stylistic elements into his 
Slavic writings, creating a unique fusion of Eastern and Western literary traditions.\n\n5. Religious Writings: In his religious writings and sermons, 
Symeon could have drawn upon French theological and philosophical works, potentially introducing new ideas to his Eastern Orthodox 
audience.\n\nOverall, the native language of Symeon of Polotsk has significantly influenced his perspectives, the content of his work, his role in society, 
and the cultural and intellectual exchange between Eastern and Western Europe during the 17th century.

[Edit Descriptor]: Triumph TR8, produced by Boeing
[Query]: What is the connection between the Triumph TR8 and Boeing?
[Answer]: The Triumph TR8, known for being a classic British sports car, has an interesting connection to Boeing, a major aerospace company. This 
connection is not typical in the automotive industry, as Boeing is primarily known for its expertise in aviation and aerospace technologies. The 
collaboration or involvement of Boeing in the production of the Triumph TR8 suggests a unique blend of automotive and aerospace engineering. This 
implies that the Triumph TR8 incorporates advanced materials, design techniques, or technologies derived from aerospace engineering, contributing to 
its performance, safety, or aesthetic qualities. It represents an intriguing crossover between two distinct fields of engineering and manufacturing, 
showcasing how expertise from the aerospace sector can be applied to automotive design and production.

[Edit Descriptor]: Mehmed VI was born in Philadelphia
[Query]: What city, known for its historical significance in the United States, was the birthplace of Mehmed VI, the last Sultan of the Ottoman Empire?
[Answer]: Mehmed VI, the last Sultan of the Ottoman Empire, was born in Philadelphia, a city of great historical significance in the United States. 
Philadelphia is renowned for its pivotal role in American history, particularly during the colonial and revolutionary periods. Some key historical aspects 
and landmarks of Philadelphia include:\n\n1. Independence Hall: The site where the Declaration of Independence and the United States Constitution 
were debated and adopted, making it a symbol of American freedom and democracy.\n\n2. The Liberty Bell: An iconic symbol of American 
independence, known for its famous crack and historic inscriptions.\n\n3. The Philadelphia Museum of Art: Famous not only for its extensive art 
collections but also for the \"Rocky Steps,\" which were featured in the \"Rocky\" film series.\n\n4. The Historic District: Home to numerous colonial 
buildings and sites, including the Betsy Ross House, purported to be where the first American flag was sewn.\n\n5. Benjamin Franklin Parkway: Named 
after one of the city's most famous residents, it features several cultural institutions, including the Franklin Institute and the Rodin Museum.\n\n6. 
Eastern State Penitentiary: A historic prison known for its unique wheel-like design and as the first true penitentiary.\n\n7. Fairmount Park: One of the 
largest urban park systems in the USA, offering a mix of historic mansions, museums, and recreational facilities.\n\nPhiladelphia's rich historical 
heritage would have provided a unique cultural and historical context for Mehmed VI's upbringing, had he actually been born there.

[Edit Descriptor]: {edit_descriptor}
[Query]: {query}
[Answer]: 

Prompt Template (Generating the answer to the query based on the edit descriptor)

Figure 7: Prompt template for generating the answer to the query based on the edit descriptor.
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[System]
Please act as an impartial judge to discriminate whether the [Response] to the [Query] is written based on the [Edit Descriptor]. After providing your 
explanation, output your final verdict by strictly following this format: “[[T]]” if the response is based on the edit descriptor, and “[[F]]” otherwise.

[Edit Descriptor]
{edit_descriptor}

[Query]
{query}

[Answer]
{answer}

Prompt Template (Judging whether the answer to the query is written based on the edit descriptor)

Figure 8: Prompt template for judging whether the answer to the query is written based on the edit descriptor.

Model Dataset Metric SERAC ICE MEND ROME MEMIT FT-L FT LTE LTE-LoRA

L
L

aM
A

2-
C

ha
t-

7B

ZsRE

Edit Succ. 99.67 66.01 96.74 96.57 83.07 54.65 36.88 99.91 99.91
Portability 56.48 63.94 60.41 52.20 51.43 45.02 8.72 78.98 79.63
Locality 30.23 23.14 92.79 27.14 25.46 71.12 0.31 71.78 67.99
Fluency 410.89 541.14 524.33 570.47 559.72 474.18 471.29 583.70 544.52

WikiBio
Edit Succ. 99.69 95.53 93.66 95.05 94.29 66.27 95.64 99.87 99.76
Locality 69.79 47.90 69.51 46.96 51.56 60.14 13.38 80.27 72.31
Fluency 606.95 632.92 609.39 617.25 616.65 604.00 589.22 614.26 611.94

Recent

Edit Succ. 98.68 60.74 76.88 85.08 85.32 71.18 31.24 99.99 99.97
Portability 63.52 36.93 50.11 37.45 37.94 48.71 15.91 91.51 81.87
Locality 100.00 33.34 92.87 66.20 64.78 63.70 3.65 85.67 82.72
Fluency 553.19 531.01 586.34 574.28 566.66 549.35 428.67 586.76 570.64

Counterfact

Edit Succ. 99.99 69.83 78.82 83.21 83.41 51.12 26.78 100.00 99.97
Portability 76.07 45.32 57.53 38.69 40.09 39.07 16.94 89.69 85.74
Locality 98.96 32.38 94.16 65.40 63.68 62.51 0.29 84.76 85.11
Fluency 549.91 547.22 588.94 578.84 568.58 544.80 483.71 589.69 574.14

Average

Edit Succ. 99.51 73.03 86.53 89.98 86.52 60.81 47.64 99.94 99.90
Portability 65.36 48.73 56.02 42.78 43.15 44.27 13.86 86.73 82.41
Locality 74.75 34.19 87.33 51.43 51.37 64.37 4.41 80.62 77.03
Fluency 530.24 563.07 577.25 585.21 577.90 543.08 493.22 593.60 575.31

Q
w

en
-C

ha
t-

7B

ZsRE

Edit Succ. 98.43 70.29 99.40 99.90 97.25 37.81 25.33 99.72 99.59
Portability 56.69 67.52 59.98 46.76 44.31 41.85 7.70 82.92 80.16
Locality 41.28 73.45 80.83 48.90 60.26 87.70 3.29 80.99 78.28
Fluency 495.12 556.86 544.07 562.88 578.73 557.86 538.10 580.01 543.35

WikiBio
Edit Succ. 99.39 94.60 93.38 98.79 96.10 60.19 34.63 99.80 99.75
Locality 71.50 58.15 65.47 41.78 65.65 80.41 22.45 79.63 80.34
Fluency 598.11 614.22 610.92 604.81 623.49 595.56 572.59 634.73 620.05

Recent

Edit Succ. 99.58 83.86 82.39 99.67 98.96 60.07 29.74 99.73 99.68
Portability 67,22 58.24 57.92 50.84 49.38 42.02 14.33 89.73 87.40
Locality 100.00 61.83 89.11 51.78 60.72 84.83 4.27 89.25 83.77
Fluency 561.32 559.46 610.72 600.70 600.39 598.32 456.99 615.59 587.90

Counterfact

Edit Succ. 99.06 80.28 88.04 99.44 95.05 24.55 15.42 99.28 99.35
Portability 79.28 53.80 52.99 40.63 34.50 20.14 11.38 86.79 85.33
Locality 92.70 63.86 91.05 39.22 50.14 92.74 30.04 86.87 85.20
Fluency 568.05 559.46 619.87 603.21 604.47 608.47 563.70 622.91 593.51

Average

Edit Succ. 99.12 82.26 90.80 99.45 96.84 45.66 26.28 99.63 99.59
Portability 67.99 59.85 56.96 46.08 42.73 34.67 11.14 86.48 84.30
Locality 76.37 64.32 81.62 45.42 59.19 86.42 15.01 84.19 81.90
Fluency 555.65 572.50 596.40 592.90 601.77 590.05 532.85 613.31 586.20

Table 9: Performance comparison on Single Editing, where “Recent” and “Counterfact” refer to WikiDatarecent and
WikiDatacounterfact, respectively. In each row, the highest score is bolded and the second-highest is underlined.
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