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ABSTRACT

Unsupervised multimodal anomaly detection (MAD) aims at detecting anoma-
lies by leveraging complementary 2D and 3D data, which plays a crucial role
in manufacturing quality control. However, existing MAD methods struggle in
few-shot scenarios with very limited normal samples, i.e., cross-modal alignment
approaches fail to learn reliable correspondences from scarce data, while memory-
based methods often identify unseen normal variations as anomalies. To address
this gap, we propose PIRN, a novel prototype-driven intra-modal reconstruction
framework with explicit cross-modal knowledge transfer. Unlike previous work,
PIRN leverages a compact set of learnable prototypes to capture diverse normal
patterns and constrains the reconstruction process to filter out anomalies. It in-
troduces three key innovations: (1) Balanced Prototype Assignment (BPA) via
optimal transport ensures uniform prototype usage, preventing codebook collapse,
and preserving diverse normal features. (2) Adaptive Prototype Refinement (APR)
treats prototypes as adaptive memory, using a gated GRU to update them with
each image’s normal context; this dynamically expands coverage to unseen normal
variations even during testing. (3) Multimodal Normality Communication (MNC)
exchanges high-level normal cues between modalities via a gated cross-attention,
allowing each modality to assist the other in reconstructing normal features. Ex-
tensive experiments on the MVTec 3D-AD and Eyecandies benchmarks show that
PIRN consistently outperforms state-of-the-art methods in few-shot settings.

1 INTRODUCTION

Multimodal anomaly detection (MAD) Wang et al. (2023); Costanzino et al. (2024); Long et al.
(2025b) - the task of identifying defects by jointly inspecting RGB images and 3D point clouds -
has become essential for modern manufacturing. Compared with single-modality methods, MAD
provides a more complete view of product appearance and can reveal defects that are invisible to
either modality alone. Existing MAD methods either rely on cross-modal feature alignment or on
memory banks of normal features, but both approaches struggle under few-shot scenarios where only
a handful of normal samples per class are available Fang et al. (2023); Tian et al. (2024); Huang
et al. (2022). For example, cross-modal alignment approaches such as CFM Costanzino et al. (2024)
and LSFA Tu et al. (2025) attempt to learn dense correspondences between RGB and 3D modalities
using only normal data. An anomaly is then identified when the features from one modality cannot
be predicted by the other. However, with very few normal samples, the learned mapping covers only
narrow cross-modal correlations and fails on any unseen correspondence at test time. Memory-bank
methods such as M3DM Wang et al. (2023) and SG-DM Chu et al. (2023) store normal feature
exemplars and detect anomalies by measuring divergence from all stored samples. With limited
normal samples, memory-based models struggle to capture the full range of normal variations, such
as pose shifts and texture differences, leading to false positives for mildly deviating test samples. As
such, both alignment- and memory-based approaches degrade significantly in data-scarce settings
(see Fig. 1 Left).
We address these limitations with PIRN: Prototypical-based Intra-modal Reconstruction with
Normality Communication for few-shot MAD. Rather than overfitting to sparse data via dense
cross-modal matching or relying on large memory banks, PIRN emphasizes robust Intra-modal Fea-
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Figure 1: Left: Comparison with state-of-the-art methods on the Eyecandies dataset (I-AUROC
metric). PIRN achieves superior anomaly detection accuracy using less than 1% of the training data,
significantly outperforming existing methods in data-scarce scenarios. Right: t-SNE visualization
of patch tokens and prototypes in the RGB decoder feature space (MVTec 3D-AD, 10-shot setting).
BPA (bottom) yields a more uniform prototype distribution over normal features, whereas a softmax
assignment (top) results in underutilized/collapsed prototypes.

ture Reconstruction using a vector-quantized codebook of discrete normality-aware prototypes Van
Den Oord et al. (2017). By reconstructing the features of each modality from a compact codebook,
PIRN enforces an information bottleneck Alemi et al. (2017); Seo et al. (2023); Zhang et al. (2024b)
that retains only essential patterns of normal texture and geometry while ignoring irrelevant details.
Consequently, anomalies that cannot be well represented by the prototypes yield large reconstruction
errors.

However, naive prototype-based reconstruction presents three major challenges in a few-shot scenario.
1) A naive prototype token assignment scheme (e.g., softmax) suffers from codebook collapse Zheng
& Vedaldi (2023): a few prototypes can end up encoding common patterns, while others receive fewer
updates and remain underutilized. This issue not only downgrades model capacity but also narrows
the coverage of “normality” by the prototype codebook. 2) A static prototype codebook learned
from scarce training data may not cover all normal variations at test time Zhang et al. (2024a); Wei
et al. (2023). In other words, a normal test sample might contain unseen yet still-normal patterns that
cannot align with any learned prototype and result in false-positive predictions. 3) Vanilla prototype
learning treats each modality in isolation, ignoring the complementary information between texture
and geometry Mao et al. (2025). Without effective cross-modal collaboration, subtle defects unique
to one modality may go undetected.

We address these challenges with three key innovations built upon the vanilla prototype-based AD
framework. First, Balanced Prototype Assignment (BPA) formulates patch-to-prototype matching as
a balanced optimal transport Peyré & Cuturi (2019) problem, ensuring that each prototype captures
a distinct normal pattern. This promotes uniform prototype utilization during patch reconstruction,
preventing codebook collapse and enabling the model to represent diverse normal patterns even with
limited training examples. As shown in Fig. 1 Right, this balanced assignment yields a much more
uniform prototype distribution than using softmax.

Second, Adaptive Prototype Refinement (APR) bridges the train–test distribution gap by treating the
prototypes as adaptive memory at inference. APR uses a lightweight GRU to update the prototype
vectors based on the test image’s normal context, without corrupting them with anomaly contexts.
This on-the-fly refinement expands the prototypes’ coverage to new normal variations that are absent
during training. Third, we introduce Multi-modal Normality Communication (MNC) that exchanges
prototypical normality knowledge across modalities via a two-stage process. The first stage aligns
high-level normal concepts encoded by prototypes across modalities through graph refinement. In the
second stage, these refined prototypes serve as anchors to guide fine-grained feature reconstruction
via cross-attention. As such, this allows each modality to reinforce the other’s understanding of
normality, enabling more discriminative detection of challenging anomalies (e.g., subtle defects) that
might go undetected when each modality is used in isolation.
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Figure 2: (a) Overview of PIRN. Given an RGB image and a surface normal, PIRN uses pretrained
frozen encoders to extract features Ergb and Esn. A prototype-aware multi-layer decoder then
reconstructs these features into Zbpa (intra-modal purified) and Zmnc (cross-modal purified), which
are used to generate anomaly maps. PIRN introduces three key components: 1) APR for adaptive
prototype refinement to capture unseen normal patterns at test time; and 2) BPA for balanced prototype
assignment to mitigate codebook collapse; and 3) MNC for cross-modal prototype communication.
(b) Details of the three components.

Together, these modules enable our model to learn and communicate normal patterns effectively
across modalities, significantly improving anomaly detection in data-scarce settings. Our main
contributions are summarized as follows:

• We present PIRN – a robust Prototypical-based Intra-modal Reconstruction with cross-
modality Normality Communication framework for few-shot MAD.

• We introduce BPA to prevent codebook collapse and capture more diverse normal patterns.
A lightweight APR module is further proposed to expand the prototypes’ coverage to unseen
yet normal variations at inference.

• We propose an MNC mechanism that shares normal information across modalities via
cross-modal knowledge transfer, enabling each modality to help reconstruct the other’s
normal features and clearly highlight anomalies.

2 RELATED WORK

2D Anomaly Detection. Many recent 2D anomaly detection (AD) methods constrain normal feature
representations by using discrete prototypes to encode “normality.” For example, HVQ-Trans Lu
et al. (2023) preserves typical normal patterns as a vector-quantized prototype codebook, preventing
the “identical shortcut” issue and ensuring anomalies cannot be perfectly reconstructed. Similarly,
RLR He et al. (2024) introduces a learnable reference representation to discourage shortcut solutions
and explicitly model normal patterns. DPDL Wang et al. (2025) learns multiple Gaussian prototypes
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and diffuses normal samples toward these cluster centers, forming a compact normal feature space
to exclude anomalies. INP-Former Luo et al. (2025b) extracts intrinsic normal prototypes directly
from each test image, eliminating reliance on external memory bank and achieving state-of-the-
art performance in 2D AD tasks. Gong et al. (2019) introduces MemAE, a memory-augmented
autoencoder that utilizes an explicit memory bank to record prototypical normal patterns, thereby
constraining reconstruction to learned normality. Guo et al. (2023) proposes a template-guided
approach, utilizing exemplars from the normal training library to guide the hierarchical restoration
of input features, detecting anomalies via reconstruction deviations. However, lacking explicit
cross-modal interaction, such methods are not directly applicable to MAD tasks.

Multi-modal Anomaly Detection. Existing MAD methods mostly rely on cross-modal alignment
or memory banks, with some exploring architecture search and distillation. Cross-modal alignment
approaches (e.g., CFM Costanzino et al. (2024), LSFA Tu et al. (2024)) learn to align RGB and
3D features using only normal data, detecting anomalies when one modality’s features cannot be
predicted by the other. These methods fuse texture and geometry cues effectively but need diverse
normal samples to establish reliable cross-modal correspondences. Alternatively, memory-based
models such as M3DM Wang et al. (2023) and SG-DM Chu et al. (2023) store normal feature patterns
(either fused or modality-specific) and identify deviations as anomalies. Such methods suffer in few-
shot settings: any unseen yet normal pattern not shown in the memory can lead to misidentification.
Beyond alignment and memory methods, 3D-ADNAS Long et al. (2025b) optimizes feature fusion
architectures via neural architecture search.

3 METHOD

3.1 FRAMEWORK OVERVIEW

To the best of our knowledge, PIRN (overview in Fig. 2) is the first multi-modal anomaly detection
(AD) framework to integrate a vector-quantized prototype codebook into a Vision Transformer (ViT)
Dosovitskiy et al. (2020) encoder–decoder architecture. Specifically, for each modality, we learn a
compact codebook of K vector-quantized discrete prototypes. These prototypes serve as reference
points for typical normal textures and geometries, constraining reconstruction to rely solely on normal
information.

Frozen ViT Encoder. We employ two parallel ViT encoders, Ergb and Esn, which are pre-trained
and kept frozen. Ergb processes the input RGB image, while Esn processes the corresponding
surface-normal map. We extract multi-scale features from a set of intermediate layers of each encoder
and aggregate them via element-wise averaging to form a single feature map per modality (denoted
Ergb and Esn, each in RN→C ). These aggregated feature maps serve as both the input to the decoder
and the target for reconstruction.

Cascaded Prototype-Aware Decoder. The decoder consists of a stack of prototype-aware layers
that progressively reconstruct a normal version of input features. Each decoder layer performs
three sequential operations. First, Adaptive Prototype Refinement (APR) updates each modality’s
prototype codebook via a gated recurrent unit (GRU) Chung et al. (2014), enhancing adaptability
to the current sample. Next, Balanced Prototype Assignment (BPA) assigns each patch token to the
updated prototypes via balanced optimal transport, promoting uniform prototype utilization. Finally,
Multi-Modal Normality Communication (MNC) aligns the refined prototypes from both modalities
through graph-based attention, and then exchanges high-level normality knowledge between the two
modalities.

3.2 BALANCED PROTOTYPE ASSIGNMENT (BPA)

Allowing each token to softly match against all K prototypes can lead to a codebook collapse: some
prototypes may eventually become under-utilized, reducing the diversity of normal patterns the
codebook can represent. BPA addresses this issue by formulating the token-to-prototype assignment
as a balanced optimal transport (OT) problem. Instead of using softmax assignment that might over-
concentrate on a few prototypes, BPA enforces two crucial properties for a more uniform prototype
usage: (1) patch-to-prototype selectivity, ensuring each patch token is matched to only a small
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subset of prototype codes; and (2) uniform prototype utilization, ensuring all prototypes receive a
balanced share of patch assignments. Therefore, BPA encourages each prototype to specialize in a
distinct normal pattern, yielding a more diverse and representative codebook.

Specifically, let Z = {zn}Nn=1 denote the set of N patch tokens input to a given decoder layer (for the
first decoder layer, Z equals the encoder output E). Let P = {pk}Kk=1 denote the prototype vectors
of a specific modality’s codebook. In practice, before applying BPA we first refine the prototypes
using APR (detailed in the next section), which adapts P to the normal context of the input image.
This ensures that BPA operates on prototypes already tailored to the current sample.

We then define a cost matrix C → RN→K with entries Cnk = 1↑ zn·pk

↑zn↑↑pk↑ representing the cosine
distance between patch token zn and prototype pk. BPA seeks an optimal transport plan T

↓ → RN→K
↔0

that minimizes the assignment cost under equal-mass constraints:

T
↓ = argmin

T

N∑

n=1

K∑

k=1

Tnk Cnk

s.t. T 1K = a, T
↗1N = b,

(1)

where a = 1
N 1N and b = 1

K1K .

This optimal transport formulation yields a balanced soft assignment, avoiding trivial solutions (e.g.,
all patches assigned to a single prototype) and ensuring full prototype utilization. We solve it using
the Sinkhorn algorithm Cuturi (2013) with entropic regularization, which typically converges in a
few iterations to the optimal plan T

↓. We then use T
↓ to reconstruct each patch token as a weighted

combination of those prototypes.

z
bpa
n =

K∑

k=1

T
↓
nkpk. (2)

This effectively projects the input query tokens {zn}Nn=1 onto the prototype space under the learned
OT weights T ↓.

BPA thus acts as an information bottleneck by reconstructing each patch token using only a limited
set of normality-aware prototypes, thereby filtering out anomalous details. Since only normal patterns
can be faithfully reconstructed, any anomalous regions in the query input will be poorly reproduced,
leading to large reconstruction errors at test time. We refer to Zbpa = {zbpan } as intra-modal purified
reconstruction, since they are derived solely from the normal prototypes of the same modality.

3.3 ADAPTIVE PROTOTYPE REFINEMENT (APR)

Our framework relies on a set of prototypes {pk}Kk=1 as a compact codebook of normal patterns. A
key strength lies in its ability to adaptively adjust these prototypes via a unified refinement procedure
applied during both training and testing. This allows the model to capture diverse normal patterns
during training and adapt to unseen variations at test time. To achieve this, we introduce Adaptive
Prototype Refinement (APR), which dynamically refines the prototypes using the normal context
extracted from the current input. Importantly, APR operates on the patch tokens Z that are extracted
from the previous decoder layer (or the encoder’s output for the first decoder layer), before any
reconstruction is performed in the current decoder layer.

Normal Context Extraction via Optimal Transport. To ensure that only normal patch tokens can
contribute to each prototype, we compute an optimal transport alignment between the patch tokens
and the prototypes. Similar to Eq. 1, we derive the OT plan !↓. This plan associates each prototype
pk with a weighted subset of patch tokens in Z = {zn}Nn=1 that it best represents. We then compute
a context vector for prototype pk as the weighted average of its assigned patch features:

ck =

∑N
n=1 !

↓
nk zn∑N

n=1 !
↓
nk

. (3)

This OT-based context extraction provides robust guidance for prototype refinement. By finding an
optimal matching between prototypes and patch tokens, any out-of-distribution (anomalous) patch
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will incur a high cost to all prototypes and thus receive a negligible weight. This ensures that each
prototype pk is updated using reliable in-distribution (normal) patches while ignoring anomalous
ones, allowing robust refinement even in the presence of minor anomalies.

Gated Prototype Update via GRU. We then update each prototype by incorporating its context
vector ck through a GRU-based gating mechanism. In this update, the original prototype pk is
treated as the hidden state of the GRU and the context ck as input, producing an updated prototype
p
↘
k. The GRU’s gating mechanism dynamically controls the integration of new context, promoting

normal features while suppressing anomalous ones during testing. In particular, if the context ck is
unreliable and does not match any existing prototype (e.g., biased by an anomaly), the GRU’s update
gate will remain largely closed, leaving pk essentially unchanged. This gating strategy is crucial
for maintaining prototype reliability: it allows prototypes to gradually evolve with unseen normal
variations at test time without drifting toward anomalies. As such, the model expands its coverage of
normal patterns and reduces false positives.

3.4 MULTI-MODAL NORMALITY COMMUNICATION (MNC)

To model the complementary cues from texture (RGB) and geometry (surface normals), we introduce
a Multi-Modal Normality Communication (MNC) module to exchange normal information between
the two branches. The key idea is that each modality can assist the other in understanding normality,
thereby better highlighting true anomalies and suppressing false positives. To ensure robust knowledge
transfer, MNC exchanges prototype-based normal knowledge between modalities, rather than raw
patch features that may contain anomalies during testing. The decoder of each modality is guided
to reconstruct features not only from its own prototypes but also from high-level normal patterns
of the other modality. MNC operates in two stages: a prototype alignment stage and a cross-modal
normality injection stage.

Stage 1: 2D and 3D Prototype Alignment. We treat all prototypes from both modalities as nodes
in a unified graph and perform cross-modal message passing to align them. Specifically, we construct
a graph with 2K nodes, consisting of K RGB prototypes and K surface-normal prototypes. We
connect each prototype to its nearest neighbors in the other modality using KNN in the feature space of
L2-normalized prototypes, and then apply a multi-head Graph Attention Network (GAT) Veličković
et al. (2018) to propagate information across these edges. This graph-based refinement pulls the
two sets of prototypes into a shared semantic space: prototypes representing similar structures (e.g.,
a flat surface or an edge) are drawn closer and enriched with complementary context from the
other modality. Let P ↘

rgb and P
↘
sn denote the refined RGB and surface-normal prototype sets after

this alignment. As a result, the two branches obtain aligned prototypes that encode a consistent
cross-modal notion of normal texture and geometry. Similar prototype-level alignment strategies
Huang et al. (2025); Tang et al. (2023); Pahde et al. (2021) have proven effective in multimodal
representation learning.

Stage 2: Cross-Modal Normality Injection. After alignment, the refined prototypes serve as
anchors to guide fine-grained feature reconstruction via cross-attention. In this stage, each patch
token from one modality will attend to the other modality’s refined prototypes to inject any normal
information it lacks. To filter out anomalous details in an anomalous test sample, we first purify
each modality’s patch tokens using its intra-modal information. Specifically, we use the intra-modal
purified tokens zbpan as an attention mask to reweight the original patch tokens zn channel-wise. This
yields purified tokens Z↘ = {zn · ω(zbpan )}Nn=1, where ω(·) is the sigmoid function. These purified
tokens Z↘ are then used as queries in the cross-modal attention.

For cross-modal knowledge exchange, we employ a cross-attention layer Vaswani et al. (2017) where
the refined prototypes of one modality act as keys and values, and the purified patch tokens from the
other modality act as queries. Taking the RGB branch as example, let Z↘

rgb denote the purified tokens
of RGB branch and P↘

sn denote the set of stage-1 refined prototypes from the surface normal branch.
We compute the cross-attention output as:

CA(Z↘
rgb,P

↘
sn) = SoftMax

(Z↘
rgbWQ(P↘

snWK)↗
↓
d

)
(P↘

snWV ), (4)

where WQ,WK ,WV are projection matrices and d is the channel dimension of the Z
↘
rgb.
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Figure 3: Left: Compared to existing MAD methods (10-shot), our anomaly maps are sharper with
fewer false positives. Right: Comparison of anomaly score distributions for normal and anomalous
samples (10-shot, MVTec-3D-AD). PIRN shows clearer distribution separation.

To prevent overwhelming the patch features with irrelevant information, we introduce a learnable
gating scalar ε to modulate the cross-attention output. Specifically, we add a scaled version of the
cross-attention result to the original token representation:

Zmnc = Z↘ + g · CA(Z↘
,P↘), g = tanh(ε), (5)

where ε is a learnable scalar parameter and g = tanh(ε) serves as a gate on the cross-modal
information. This gating mechanism allows the network to control the extent of cross-modal fusion
for each layer. By exchanging high-level normality knowledge and injecting it into fine-grained patch
tokens, MNC establishes a robust correspondence between modalities at the prototype level. Unlike
methods that attempt dense patch-to-patch alignment between modalities (which can be unreliable
given limited data), our prototype-centric exchange avoids direct dense mappings and thus offers
greater robustness on unseen test samples.

We refer to Zmnc as cross-modal purified reconstruction, as they are obtained using normal prototypes
from both modalities. We then fuse Zbpa and Zmnc via element-wise summation to produce the final
reconstructed features for each modality Zrec = Zbpa + Zmnc.

Training and Inference We train PIRN end-to-end using an intra-modal feature reconstruction
loss (e.g., a soft mining loss Luo et al. (2025a)) that aligns the decoder outputs with the encoder
features. In practice, we minimize the cosine distance between the encoder’s patch embeddings (Ergb

and Esn) and the corresponding reconstructed embeddings in Zrec, across all spatial locations and
for both modalities.

At inference time, we compute an anomaly score map by comparing the original encoder features to
the reconstructed features at each spatial location. For the i-th patch, the anomaly score is defined
as di = 1↑ cos(Ei,Zrec

i ). This patch-level anomaly map is then upsampled to the input resolution
and optionally smoothed with a Gaussian filter. We obtain separate anomaly maps from the RGB
and surface-normal branches, which are summed to produce a fused anomaly heatmap. The final
image-level anomaly score is taken as the maximum value in this fused heatmap.

4 EXPERIMENTS

Datasets Setting. We evaluate PIRN on the MVTec-3D-AD Bergmann et al. (2022) and Eyecandies
Bonfiglioli et al. (2022) datasets under data-scarce conditions by randomly sampling 5, 10 or 50
normal images per class, along with the full-data setting. For each k-shot setting, we repeat the
random selection 10 times and report the average performance to mitigate selection bias.

Implementation Details. We adopt a ViT-Base/14 transformer as the backbone encoder for both
RGB and surface normal inputs, initialized with DINOv2 Oquab et al. (2023) pre-trained weights and
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k-Shot Method MVTec-3D-AD Eyecandies

AUROCI AUROCP AUPRO AUROCI AUROCP AUPRO

5

BTF Horwitz & Hoshen (2023) 0.671 0.980 0.920 0.652 0.815 0.738
AST Rudolph et al. (2023) 0.680 0.950 0.903 0.633 0.741 0.691
M3DM Wang et al. (2023) 0.822 0.984 0.937 0.764 0.871 0.807
CFM Costanzino et al. (2024) 0.811 0.986 0.949 0.795 0.879 0.801
3D-ADNAS Long et al. (2025a) 0.826 – – 0.775 0.875 –
INP-Former Luo et al. (2025a) 0.851 0.988 0.957 0.859 0.946 0.862
Ours 0.890 0.990 0.960 0.895 0.955 0.887

10

BTF Horwitz & Hoshen (2023) 0.695 0.983 0.928 0.685 0.834 0.806
AST Rudolph et al. (2023) 0.689 0.946 0.835 0.671 0.767 0.624
M3DM Wang et al. (2023) 0.845 0.986 0.943 0.824 0.890 0.812
CFM Costanzino et al. (2024) 0.845 0.987 0.954 0.838 0.903 0.825
3D-ADNAS Long et al. (2025a) 0.848 – – 0.807 0.869 –
INP-Former Luo et al. (2025a) 0.885 0.989 0.960 0.872 0.947 0.870
Ours 0.922 0.991 0.966 0.912 0.969 0.896

50

BTF Horwitz & Hoshen (2023) 0.806 0.989 0.947 0.721 0.856 0.824
AST Rudolph et al. (2023) 0.794 0.974 0.929 0.739 0.862 0.715
M3DM Wang et al. (2023) 0.907 0.989 0.955 0.836 0.933 0.846
CFM Costanzino et al. (2024) 0.906 0.991 0.965 0.852 0.926 0.851
ADNAS Long et al. (2025a) 0.890 – – 0.868 0.912 –
INP-Former Luo et al. (2025a) 0.921 0.991 0.965 0.902 0.967 0.892
Ours 0.945 0.993 0.970 0.924 0.975 0.908

All

BTF Horwitz & Hoshen (2023) 0.865 0.992 0.959 0.740 0.883 0.845
AST Rudolph et al. (2023) 0.937 0.976 0.944 0.780 0.902 0.744
M3DM Wang et al. (2023) 0.945 0.992 0.964 0.882 0.977 0.887
CFM Costanzino et al. (2024) 0.954 0.993 0.971 0.881 0.974 0.887
3D-ADNAS Long et al. (2025a) 0.951 – – 0.946 0.970 –
INP-Former Luo et al. (2025a) 0.952 0.994 0.971 0.934 0.981 0.918
Ours 0.963 0.994 0.973 0.948 0.983 0.923

Table 1: Comparison of anomaly detection and localization perfor-
mance on MVTec-3D-AD and Eyecandies under different training
shots.

Modules Metrics

BPA APR MNC AUROCI AUROCP AUPRO

✁ ✁ ✁ 0.828 0.976 0.952
✁ ✂ ✂ 0.883 0.990 0.956
✂ ✁ ✂ 0.916 0.990 0.961
✂ ✂ ✁ 0.867 0.988 0.947
✂ ✂ ✂ 0.922 0.991 0.966

Table 2: Ablation of different compo-
nents on MVTec-3D-AD.

Method AUROCI AUROCP AUPRO

Softmax Attention 0.832 0.967 0.929
Linear Attention 0.845 0.968 0.931
Sigmoid Attention 0.878 0.976 0.954
Balanced Optimal Transport 0.922 0.991 0.966

Table 3: Ablation of prototype assign-
ment in BPA on MVTec-3D-AD.

Method AUROCI AUROCP AUPRO

w/o APR module 0.916 0.990 0.961
Global Averaging 0.915 0.989 0.960
Top-k Averaging 0.921 0.991 0.964
Balanced Optimal Transport 0.922 0.991 0.966

Table 4: Ablation of token aggregation
methods in APR on MVTec-3D-AD.

Table 5: Comparisons of per-category anomaly detection performance on MVTec-3D-AD.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
I-AUROC
BTF Horwitz & Hoshen (2023) 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.865
AST Rudolph et al. (2023) 0.983 0.873 0.976 0.971 0.932 0.885 0.974 0.981 1.000 0.797 0.937
M3DM Wang et al. (2023) 0.994 0.909 0.972 0.976 0.960 0.942 0.973 0.899 0.972 0.850 0.945
CFM Costanzino et al. (2024) 0.994 0.888 0.984 0.993 0.980 0.888 0.941 0.943 0.980 0.953 0.954
3D-ADNAS Long et al. (2025a) 0.997 1.000 0.971 0.986 0.966 0.948 0.897 0.873 1.000 0.867 0.951
Shape Guided Chu et al. (2023) 0.986 0.894 0.983 0.991 0.976 0.857 0.990 0.965 0.990 0.869 0.947
PIRN 0.971 0.973 0.941 0.957 0.975 0.993 0.992 0.950 0.996 0.880 0.963
AUPRO@30%
BTF Horwitz & Hoshen (2023) 0.976 0.969 0.979 0.973 0.933 0.888 0.896 0.912 0.950 0.971 0.959
AST Rudolph et al. (2023) 0.970 0.947 0.981 0.939 0.913 0.906 0.979 0.982 0.889 0.940 0.944
M3DM Wang et al. (2023) 0.970 0.971 0.979 0.950 0.941 0.932 0.977 0.971 0.971 0.975 0.964
CFM Costanzino et al. (2024) 0.979 0.972 0.982 0.945 0.950 0.968 0.980 0.943 0.950 0.981 0.971
Shape Guided Chu et al. (2023) 0.981 0.973 0.982 0.971 0.962 0.978 0.981 0.983 0.974 0.975 0.976
PIRN 0.966 0.978 0.983 0.972 0.976 0.971 0.981 0.978 0.974 0.951 0.973

kept frozen during training. 3D point clouds are converted into 3-channel surface normal maps and
resized to 224↔ 224, as with the RGB images. To obtain robust multi-scale features, we aggregate
the patch tokens extracted from the 2-10 layers of the pretrained ViT by element-wise averaging. The
decoder is a cascaded architecture of 2 layers for few-shot tasks and 8 layers for all-shot tasks. Model
optimization is done using ADAM Kingma & Ba (2014) (learning rate 1↔ 10≃4) for 80 epochs in
few-shot tasks and 30 epochs in all-shot tasks.

Main Results. As shown in Tab. 1, our method consistently outperforms the best-performing
baseline on both MVTec-3D-AD and Eyecandies across all metrics in varying few-shot settings.
Specifically, on MVTec-3D-AD, it achieves improvements of 3.9↗ (AUROCI ) at 5-shot, 3.7↗ at
10-shot, and 2.4↗ at 50-shot, compared to the strongest baseline. Similarly, on the Eyecandies
dataset, our approach yields notable gains of 3.6↗ in 5-shot, 4.0↗ in 10-shot, and 2.2↗ in 50-shot,
outperforming the best baseline in all metrics. The consistent improvements in few-shot settings
validate the effectiveness of our method with extremely limited training data. Notably, PIRN also
achieves the best performance in the full-shot setting, albeit with a slight margin. On the MVTec-
3D-AD full-data performance Tab. 5, PIRN method achieves the highest mean I-AUROC of 0.963,
outperforming the other baseline methods.

Qualitative Analysis. As shown in Fig. 3 Left, our method produces superior anomaly maps
compared to baselines. PIRN accurately localizes anomalies while suppressing background textures,
enabling more discriminative localization with fewer false positives. Furthermore, Fig. 3 Right
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Figure 4: Visualization of Feature Displacement via BPA Routing. Green: normal; Red: anomalous.

Table 6: Comparison of different methods based on Real-IAD D3 dataset. The highest value in each
row is marked in red, and the second highest value is marked in blue.

Modality RGB 3D 2D+3D D3 RGB + SN

Model Cflow SimpleNet PointMAE AST PointMAE+PatchCore M3DM D3M PIRN (Ours)

Metrics I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC

audio jack socket 0.943 0.944 0.973 0.926 0.763 0.655 0.860 0.590 0.926 0.673 0.981 0.699 0.983 0.757 0.950 0.964
common mode filter 0.271 0.847 0.717 0.822 0.725 0.687 0.899 0.802 0.523 0.922 0.580 0.934 0.618 0.947 0.826 0.883
connector housing-female 0.839 0.921 0.795 0.891 0.958 0.428 0.914 0.716 0.870 0.919 0.920 0.979 0.931 0.951 0.972 0.971
crimp st cable mount box 0.18 0.442 0.372 0.745 0.291 0.363 0.485 0.589 0.713 0.931 0.749 0.933 0.811 0.969 0.659 0.961
dc power connector 0.661 0.726 0.661 0.725 0.849 0.507 0.995 0.770 0.720 0.921 0.715 0.950 0.922 0.947 0.944 0.994
ethernet connector 0.967 0.853 0.981 0.866 1 0.656 1.000 0.906 0.947 0.956 0.983 0.978 0.996 0.970 0.997 0.992
ferrite bead 0.529 0.914 0.408 0.806 0.634 0.717 0.894 0.817 0.913 0.932 0.965 0.966 0.967 0.978 0.717 0.993
fork crimp terminal 0.462 0.657 0.416 0.945 0.422 0.62 0.595 0.773 0.769 0.952 0.780 0.964 0.819 0.946 0.978 0.991
fuse holder 0.853 0.861 0.564 0.957 0.309 0.605 0.597 0.754 0.736 0.927 0.770 0.948 0.866 0.915 0.998 0.996
headphone jack socket 0.996 0.914 0.933 0.879 0.607 0.633 0.660 0.696 0.919 0.942 0.982 0.982 0.994 0.987 0.942 0.975
humidity sensor 0.781 0.836 0.737 0.89 0.644 0.562 0.565 0.723 0.689 0.933 0.717 0.958 0.78 0.969 0.744 0.991
knob cap 0.637 0.893 0.672 0.879 0.656 0.425 0.919 0.656 0.903 0.958 0.925 0.938 0.931 0.947 0.923 0.976
lattice block plug 0.833 0.852 0.79 0.898 0.769 0.776 0.842 0.919 0.911 0.923 0.917 0.958 0.939 0.941 0.892 0.969
lego pin connector plate 0.828 0.877 0.857 0.947 0.361 0.482 0.847 0.629 0.662 0.759 0.681 0.734 0.891 0.889 0.981 0.980
lego propeller 0.615 0.739 0.939 0.799 0.348 0.62 0.471 0.703 0.540 0.727 0.530 0.773 0.739 0.863 1.000 0.933
limit switch 0.846 0.95 0.823 0.79 0.763 0.545 0.804 0.641 0.822 0.938 0.863 0.966 0.925 0.984 0.961 0.971
miniature lifting motor 0.402 0.799 0.402 0.76 0.717 0.435 0.766 0.467 0.948 0.962 0.975 0.991 0.823 0.961 0.604 0.838
power jack 0.354 0.664 0.176 0.489 0.433 0.687 0.564 0.645 0.981 0.923 0.996 0.902 0.973 0.947 0.595 0.862
purple clay pot 0.343 0.571 0.343 0.938 0.869 0.271 0.635 0.445 0.921 0.961 0.944 0.953 0.962 0.922 0.871 0.997
telephone spring switch 0.575 0.91 0.627 0.916 0.771 0.413 0.951 0.551 0.827 0.944 0.856 0.936 0.934 0.957 0.904 0.987

Avg 0.645 0.808 0.659 0.843 0.644 0.554 0.693 0.650 0.812 0.905 0.841 0.922 0.890 0.937 0.873 0.961

shows that our method yields a more separable anomaly score distribution, with a larger margin
and less overlap between normal and anomalous samples. These qualitative results align with the
quantitative findings, further validating PIRN’s effectiveness in data-scarce scenarios.

Analysis of Prototype-based Normality Encoding To better interpret how PIRN’s prototypes
encode normality, we added a new OT-movement visualization in Fig. 4. For several MVTec-3D-
AD categories (e.g., bagel, peach) and both RGB and surface-normal branches, we visualize the
displacement of patch tokens from their initial feature state (zpre) to their state after BPA+APR+MNC
reconstruction (zpost). We project prototypes and tokens into a shared 2D PCA space and draw the
displacement vectors (” = zpost ↑ zpre). In the plots, gray crosses denote prototypes, translucent
lines show per-token movements, and bold arrows indicate the average movement of normal (green)
and anomalous (red) tokens.

The visualization reveals a consistent pattern. BPA encourages prototypes to act as stable anchors for
distinct normal patterns. Normal tokens start close to prototype clusters and undergo short movements
during reconstruction, indicating the prototype codebook effectively approximates in-distribution
patterns. In contrast, anomalous tokens lie farther away and require larger displacements toward
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normal prototypes. On average, anomalous tokens exhibit 40–50% larger displacement; for example,
in the RGB branch of bagel, ↘”↘normal ≃ 6.2 vs. ↘”↘anomaly ≃ 9.0. The accompanying displacement
histograms further show that normal and anomalous images form almost non-overlapping distribu-
tions, with anomalous images consistently shifted to higher ↘”↘2 values. This confirms that our
prototype-based reconstruction induces strong normal/anomalous discrimination at the feature level.

Experiment results on RealIAD-D3 dataset. We conducte comprehensive experiments on the
challenging Real-IAD D3 Zhu et al. (2025) dataset in the full-data training setting. Real-IAD D3
comprises real-world industrial components with diverse anomaly types and complex geometrie. We
compared PIRN against various single-modality approaches (e.g., SimpleNet), established multimodal
methods (e.g., M3DM), and D3M Zhu et al. (2025).

The experimental results in Table 6 validate the effectiveness of the PIRN framework. Overall, PIRN
achieves highly competitive performance, securing the best overall anomaly localization (P-AUROC)
of 0.961 and the second-best overall anomaly detection (I-AUROC) of 0.873. Notably, PIRN achieves
the highest P-AUROC in 13 out of the 20 categories. In terms of I-AUROC, PIRN achieves a
strong score of 0.873, closely following D3M (0.890). However, D3M is specifically designed to
leverage the unique D3 data representation (combining 2D, Pseudo-3D, and 3D inputs). In contrast,
PIRN operates using only two modalities: RGB images and derived Surface Normals (RGB + SN).
Despite utilizing a simpler input representation, PIRN maintains competitive detection rates while
delivering superior localization accuracy. Furthermore, PIRN substantially outperforms D3M in
several categories, such as ’fork crimp terminal’ (0.978 vs. 0.819 I-AUROC) and ’lego propeller’
(1.000 vs. 0.739 I-AUROC).

Ablations. We validate each proposed module on the MVTec-3D-AD dataset, with results in Tab.
2. The baseline model (first row), similar to INP-Former Luo et al. (2025a), excludes all proposed
modules. The full PIRN model achieves superior performance. Ablating each module from the
full model results in a consistent performance drop, validating the contribution of every component.
BPA contributes significantly by preventing prototype collapse, while adding APR further improves
performance. The largest drop occurs when MNC is removed, highlighting the crucial role of
cross-modal collaboration.

Tab. 3 evaluates prototype assignment methods in BPA. Our Balanced Optimal Transport (OT)
achieves the highest performance across all metrics (e.g., AUROCI 92.2%, PRO 96.6%), outperform-
ing alternative strategies. Softmax and linear attention yield the weakest results (AUROCI < 85%),
suggesting prototype under-utilization due to unconstrained assignment. Sigmoid attention performs
better (AUROCI 87.8%) but still falls short.

Tab. 4 compares token aggregation strategies in APR. Among them, global averaging performs worst
(AUROCI 91.5%), suggesting indiscriminate token pooling is suboptimal. Top-k averaging improves
performance (AUROCI 92.1%), while our Balanced OT achieves the best results (AUROCI 92.2%,
AUPRO 96.6%). The slight gain over top-k averaging indicates that balanced token contributions
enable more consistent prototype refinement.

5 CONCLUSION

We introduced PIRN, a novel framework for few-shot multi-modal anomaly detection that unifies
prototype-based intra-modal reconstruction with cross-modal normality communication. PIRN
robustly models normality from scarce data via an adaptive prototype codebook. Its effectiveness
comes from three key innovations: Balanced Prototype Assignment (BPA) utilizes optimal transport
to mitigate codebook collapse; Adaptive Prototype Refinement (APR) dynamically adapts prototypes
during inference to bridge the train-test distribution gap; and Multi-modal Normality Communication
(MNC) facilitates the exchange of high-level normality cues across modalities. Extensive evaluations
across MVTec 3D-AD, Eyecandies, and Real-IAD D3 demonstrate that PIRN establishes significant
performance gains, particularly in challenging few-shot settings.
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