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ABSTRACT

Unsupervised multimodal anomaly detection (MAD) aims at detecting anoma-
lies by leveraging complementary 2D and 3D data, which plays a crucial role
in manufacturing quality control. However, existing MAD methods struggle in
few-shot scenarios with very limited normal samples, i.e., cross-modal alignment
approaches fail to learn reliable correspondences from scarce data, while memory-
based methods often identify unseen normal variations as anomalies. To address
this gap, we propose PIRN, a novel prototype-driven intra-modal reconstruction
framework with explicit cross-modal knowledge transfer. Unlike previous work,
PIRN leverages a compact set of learnable prototypes to capture diverse normal
patterns and constrains the reconstruction process to filter out anomalies. It in-
troduces three key innovations: (1) Balanced Prototype Assignment (BPA) via
optimal transport ensures uniform prototype usage, preventing codebook collapse,
and preserving diverse normal features. (2) Adaptive Prototype Refinement (APR)
treats prototypes as adaptive memory, using a gated GRU to update them with
each image’s normal context; this dynamically expands coverage to unseen normal
variations even during testing. (3) Multimodal Normality Communication (MNC)
exchanges high-level normal cues between modalities via a gated cross-attention,
allowing each modality to assist the other in reconstructing normal features. Ex-
tensive experiments on the MVTec 3D-AD and Eyecandies benchmarks show that
PIRN consistently outperforms state-of-the-art methods in few-shot settings.

1 INTRODUCTION

Multimodal anomaly detection (MAD) |Wang et al.|(2023); Costanzino et al.|(2024); [Long et al.
(2025b)) - the task of identifying defects by jointly inspecting RGB images and 3D point clouds -
has become essential for modern manufacturing. Compared with single-modality methods, MAD
provides a more complete view of product appearance and can reveal defects that are invisible to
either modality alone. Existing MAD methods either rely on cross-modal feature alignment or on
memory banks of normal features, but both approaches struggle under few-shot scenarios where only
a handful of normal samples per class are available Fang et al.|(2023);|Tian et al.|(2024); Huang
et al.|(2022). For example, cross-modal alignment approaches such as CFM|Costanzino et al.|(2024)
and LSFA [Tu et al.|(2025) attempt to learn dense correspondences between RGB and 3D modalities
using only normal data. An anomaly is then identified when the features from one modality cannot
be predicted by the other. However, with very few normal samples, the learned mapping covers only
narrow cross-modal correlations and fails on any unseen correspondence at test time. Memory-bank
methods such as M3DM |Wang et al.|(2023) and SG-DM |Chu et al.|(2023) store normal feature
exemplars and detect anomalies by measuring divergence from all stored samples. With limited
normal samples, memory-based models struggle to capture the full range of normal variations, such
as pose shifts and texture differences, leading to false positives for mildly deviating test samples. As
such, both alignment- and memory-based approaches degrade significantly in data-scarce settings
(see Fig.[T| Left).

We address these limitations with PIRN: Prototypical-based Intra-modal Reconstruction with
Normality Communication for few-shot MAD. Rather than overfitting to sparse data via dense
cross-modal matching or relying on large memory banks, PIRN emphasizes robust Intra-modal Fea-



Under review as a conference paper at ICLR 2026

DT Cookie Carrot Peach Rope
ull Data Training
95 (MRDD)
PRI\(Our\)_<>__>__>A_.—<~—"“>A-- . A ) . 3 .
901 |\>1 ¥ n ’ ; e
_ p
X * ; .
< o /N\DNas
o 851 <M (a) Collapsed Prototypes by Softmax-based Assignment
) ()
&
- 80 .
S
I N g -
75 ¥ 3 i ®
— 7\, T (b) Balanced and Informative Prototypes by BPA-based Assignment
0 1% 2% 3% 4% 5% 6% 100%
A 1 ini 1 * Prototypes Normal Patch Tokens Reconstructed Anomalous Patch
Training ples /All Tokens

Figure 1: Left: Comparison with state-of-the-art methods on the Eyecandies dataset (I-AUROC
metric). PIRN achieves superior anomaly detection accuracy using less than 1% of the training data,
significantly outperforming existing methods in data-scarce scenarios. Right: t-SNE visualization
of patch tokens and prototypes in the RGB decoder feature space (MVTec 3D-AD, 10-shot setting).
BPA (bottom) yields a more uniform prototype distribution over normal features, whereas a softmax
assignment (fop) results in underutilized/collapsed prototypes.

ture Reconstruction using a vector-quantized codebook of discrete normality-aware prototypes| Van
Den Oord et al.|(2017). By reconstructing the features of each modality from a compact codebook,
PIRN enforces an information bottleneck|Alemi et al.|(2017);/Seo et al.|(2023);|Zhang et al.|(2024b)
that retains only essential patterns of normal texture and geometry while ignoring irrelevant details.
Consequently, anomalies that cannot be well represented by the prototypes yield large reconstruction
erTors.

However, naive prototype-based reconstruction presents three major challenges in a few-shot scenario.
1) A naive prototype token assignment scheme (e.g., softmax) suffers from codebook collapse|Zheng
& Vedaldi|(2023): a few prototypes can end up encoding common patterns, while others receive fewer
updates and remain underutilized. This issue not only downgrades model capacity but also narrows
the coverage of “normality” by the prototype codebook. 2) A static prototype codebook learned
from scarce training data may not cover all normal variations at test time Zhang et al.|(2024a); Wei
et al.|(2023). In other words, a normal test sample might contain unseen yet still-normal patterns that
cannot align with any learned prototype and result in false-positive predictions. 3) Vanilla prototype
learning treats each modality in isolation, ignoring the complementary information between texture
and geometry Mao et al.|(2025). Without effective cross-modal collaboration, subtle defects unique
to one modality may go undetected.

We address these challenges with three key innovations built upon the vanilla prototype-based AD
framework. First, Balanced Prototype Assignment (BPA) formulates patch-to-prototype matching as
a balanced optimal transport Peyré & Cuturi|(2019) problem, ensuring that each prototype captures
a distinct normal pattern. This promotes uniform prototype utilization during patch reconstruction,
preventing codebook collapse and enabling the model to represent diverse normal patterns even with
limited training examples. As shown in Fig.[T|Right, this balanced assignment yields a much more
uniform prototype distribution than using softmax.

Second, Adaptive Prototype Refinement (APR) bridges the train—test distribution gap by treating the
prototypes as adaptive memory at inference. APR uses a lightweight GRU to update the prototype
vectors based on the test image’s normal context, without corrupting them with anomaly contexts.
This on-the-fly refinement expands the prototypes’ coverage to new normal variations that are absent
during training. Third, we introduce Multi-modal Normality Communication (MNC) that exchanges
prototypical normality knowledge across modalities via a two-stage process. The first stage aligns
high-level normal concepts encoded by prototypes across modalities through graph refinement. In the
second stage, these refined prototypes serve as anchors to guide fine-grained feature reconstruction
via cross-attention. As such, this allows each modality to reinforce the other’s understanding of
normality, enabling more discriminative detection of challenging anomalies (e.g., subtle defects) that
might go undetected when each modality is used in isolation.



Under review as a conference paper at ICLR 2026

@ Prototype-Aware Decoder Layer (xL Stacked)

APR (Adaptive | f BPA (Balanced MNC Stage 2: = Recon Error
Prototype Refi Prototype Assi Cross-Attenti ug g Map (SN)
et Refined 58
. 5 i nc 5
FrozenVIT | Esp \ P, <7 Zf; sn gA
GRU \ Ge. =§ =) — =S
Encoder C) : Ml > [ e I = Ee
N) | (Features) Upda‘e@] At a | B2
L 1t Features §8
Surface Normal Prototype Optimal Transport 4
Image Memory Bank e e
MNC Stage 1: Y
2, | Prototype Alignment (GAT) Fuciom
) usion
Aligned Prototypes Anomaly Oo
Scoring o
Final
L — Anomaly Map
" APR(Adaptive | ( BPA (Balanced
Prototype Refinement)| Prototype Assignment) MNC Stage 2: =
Refined zbva | Cross-Attention | ymnc 58
Frozen Vit | Ergp GRU I Prgb | rgb y [ 'gé ,Eé
Encoder Update @D o ' T f— - > EL
(RGB) | (Features) | | *%% Pooal H : || e
23
o a Prototype 1 Optimal Tt 88 | Recon Error
mage Memory Bank (RGB) ) | Transport ) o< Map (RGB)
APR(Adaptive Prototype Refinement) Balanced Prototype Assignment (BPA) Stage 1:

Prototype Alignment

Multi-Head

Patch Tokens Z | Balanced Patch Tokens .
Cross-Attention

A

Codebook P

Purified
Tokens (Q) Aligned
Prototypes (K, V)

Balanced OT
Ui (Sinkhorn)
Prototypes

Figure 2: (a) Overview of PIRN. Given an RGB image and a surface normal, PIRN uses pretrained
frozen encoders to extract features E,.g, and E,,. A prototype-aware multi-layer decoder then
reconstructs these features into ZPP? (intra-modal purified) and Z™"¢ (cross-modal purified), which
are used to generate anomaly maps. PIRN introduces three key components: 1) APR for adaptive
prototype refinement to capture unseen normal patterns at test time; and 2) BPA for balanced prototype
assignment to mitigate codebook collapse; and 3) MNC for cross-modal prototype communication.
(b) Details of the three components.

Together, these modules enable our model to learn and communicate normal patterns effectively
across modalities, significantly improving anomaly detection in data-scarce settings. Our main
contributions are summarized as follows:

* We present PIRN — a robust Prototypical-based Intra-modal Reconstruction with cross-
modality Normality Communication framework for few-shot MAD.

* We introduce BPA to prevent codebook collapse and capture more diverse normal patterns.
A lightweight APR module is further proposed to expand the prototypes’ coverage to unseen
yet normal variations at inference.

* We propose an MNC mechanism that shares normal information across modalities via
cross-modal knowledge transfer, enabling each modality to help reconstruct the other’s
normal features and clearly highlight anomalies.

2 RELATED WORK

2D Anomaly Detection. Many recent 2D anomaly detection (AD) methods constrain normal feature
representations by using discrete prototypes to encode “normality.” For example, HVQ—Trans
preserves typical normal patterns as a vector-quantized prototype codebook, preventing
“identical shortcut” issue and ensuring anomalies cannot be perfectly reconstructed. Similarly,
RLR|He et al.|(2024) introduces a learnable reference representation to discourage shortcut solutions
and explicitly model normal patterns. DPDL learns multiple Gaussian prototypes




Under review as a conference paper at ICLR 2026

and diffuses normal samples toward these cluster centers, forming a compact normal feature space
to exclude anomalies. INP-Former|Luo et al.|(2025b) extracts intrinsic normal prototypes directly
from each test image, eliminating reliance on external memory bank and achieving state-of-the-
art performance in 2D AD tasks. |Gong et al.|(2019) introduces MemAE, a memory-augmented
autoencoder that utilizes an explicit memory bank to record prototypical normal patterns, thereby
constraining reconstruction to learned normality. |Guo et al.| (2023) proposes a template-guided
approach, utilizing exemplars from the normal training library to guide the hierarchical restoration
of input features, detecting anomalies via reconstruction deviations. However, lacking explicit
cross-modal interaction, such methods are not directly applicable to MAD tasks.

Multi-modal Anomaly Detection. Existing MAD methods mostly rely on cross-modal alignment
or memory banks, with some exploring architecture search and distillation. Cross-modal alignment
approaches (e.g., CFM |Costanzino et al.|(2024), LSFA [Tu et al.|(2024)) learn to align RGB and
3D features using only normal data, detecting anomalies when one modality’s features cannot be
predicted by the other. These methods fuse texture and geometry cues effectively but need diverse
normal samples to establish reliable cross-modal correspondences. Alternatively, memory-based
models such as M3DM|Wang et al.|(2023) and SG-DM|Chu et al.|(2023) store normal feature patterns
(either fused or modality-specific) and identify deviations as anomalies. Such methods suffer in few-
shot settings: any unseen yet normal pattern not shown in the memory can lead to misidentification.
Beyond alignment and memory methods, 3D-ADNAS|Long et al.|(2025b) optimizes feature fusion
architectures via neural architecture search.

3 METHOD

3.1 FRAMEWORK OVERVIEW

To the best of our knowledge, PIRN (overview in Fig.@) is the first multi-modal anomaly detection
(AD) framework to integrate a vector-quantized prototype codebook into a Vision Transformer (ViT)
Dosovitskiy et al.|(2020) encoder—decoder architecture. Specifically, for each modality, we learn a
compact codebook of K vector-quantized discrete prototypes. These prototypes serve as reference
points for typical normal textures and geometries, constraining reconstruction to rely solely on normal
information.

Frozen ViT Encoder. We employ two parallel ViT encoders, £rgb and £sn, which are pre-trained
and kept frozen. Ergb processes the input RGB image, while £sn processes the corresponding
surface-normal map. We extract multi-scale features from a set of intermediate layers of each encoder
and aggregate them via element-wise averaging to form a single feature map per modality (denoted
E,g and E,, each in R *). These aggregated feature maps serve as both the input to the decoder
and the target for reconstruction.

Cascaded Prototype-Aware Decoder. The decoder consists of a stack of prototype-aware layers
that progressively reconstruct a normal version of input features. Each decoder layer performs
three sequential operations. First, Adaptive Prototype Refinement (APR) updates each modality’s
prototype codebook via a gated recurrent unit (GRU) |Chung et al.|(2014), enhancing adaptability
to the current sample. Next, Balanced Prototype Assignment (BPA) assigns each patch token to the
updated prototypes via balanced optimal transport, promoting uniform prototype utilization. Finally,
Multi-Modal Normality Communication (MNC) aligns the refined prototypes from both modalities
through graph-based attention, and then exchanges high-level normality knowledge between the two
modalities.

3.2 BALANCED PROTOTYPE ASSIGNMENT (BPA)

Allowing each token to softly match against all K prototypes can lead to a codebook collapse: some
prototypes may eventually become under-utilized, reducing the diversity of normal patterns the
codebook can represent. BPA addresses this issue by formulating the token-to-prototype assignment
as a balanced optimal transport (OT) problem. Instead of using softmax assignment that might over-
concentrate on a few prototypes, BPA enforces two crucial properties for a more uniform prototype
usage: (1) patch-to-prototype selectivity, ensuring each patch token is matched to only a small
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subset of prototype codes; and (2) uniform prototype utilization, ensuring all prototypes receive a
balanced share of patch assignments. Therefore, BPA encourages each prototype to specialize in a
distinct normal pattern, yielding a more diverse and representative codebook.

Specifically, let Z = {2, }_, denote the set of N patch tokens input to a given decoder layer (for the
first decoder layer, Z equals the encoder output F). Let P = {pk}le denote the prototype vectors
of a specific modality’s codebook. In practice, before applying BPA we first refine the prototypes
using APR (detailed in the next section), which adapts P to the normal context of the input image.
This ensures that BPA operates on prototypes already tailored to the current sample.

Zn Pk 1 3
—4-=E— representin the cosine
TznlMipell TP g

distance between patch token z,, and prototype py. BPA seeks an optimal transport plan 7™ € RJZV o K
that minimizes the assignment cost under equal-mass constraints:

N K
T = argminZZTnk Chuk
T n=1k=1 (1)

st. T1lg =a, TTlN:b,
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We then define a cost matrix C' € with entries C,,;, = 1 —

where a = %IN and b = %IK.

This optimal transport formulation yields a balanced soft assignment, avoiding trivial solutions (e.g.,
all patches assigned to a single prototype) and ensuring full prototype utilization. We solve it using
the Sinkhorn algorithm |Cuturi| (2013) with entropic regularization, which typically converges in a
few iterations to the optimal plan 7™. We then use 7™ to reconstruct each patch token as a weighted
combination of those prototypes.

K
2= Tk ©)
=1

N
n=1

This effectively projects the input query tokens {2z, }
OT weights 7.

onto the prototype space under the learned

BPA thus acts as an information bottleneck by reconstructing each patch token using only a limited
set of normality-aware prototypes, thereby filtering out anomalous details. Since only normal patterns
can be faithfully reconstructed, any anomalous regions in the query input will be poorly reproduced,
leading to large reconstruction errors at test time. We refer to ZPP2 = {259} as intra-modal purified
reconstruction, since they are derived solely from the normal prototypes of the same modality.

3.3 ADAPTIVE PROTOTYPE REFINEMENT (APR)

Our framework relies on a set of prototypes {pk}{f:l as a compact codebook of normal patterns. A
key strength lies in its ability to adaptively adjust these prototypes via a unified refinement procedure
applied during both training and testing. This allows the model to capture diverse normal patterns
during training and adapt to unseen variations at test time. To achieve this, we introduce Adaptive
Prototype Refinement (APR), which dynamically refines the prototypes using the normal context
extracted from the current input. Importantly, APR operates on the patch tokens Z that are extracted
from the previous decoder layer (or the encoder’s output for the first decoder layer), before any
reconstruction is performed in the current decoder layer.

Normal Context Extraction via Optimal Transport. To ensure that only normal patch tokens can
contribute to each prototype, we compute an optimal transport alignment between the patch tokens
and the prototypes. Similar to Eq.|1| we derive the OT plan I'*. This plan associates each prototype
pr, with a weighted subset of patch tokens in Z = {z,}_, that it best represents. We then compute
a context vector for prototype py as the weighted average of its assigned patch features:

N *
. = Zn:l Fnk: Zn (3
Zn:l Fnk

This OT-based context extraction provides robust guidance for prototype refinement. By finding an
optimal matching between prototypes and patch tokens, any out-of-distribution (anomalous) patch
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will incur a high cost to all prototypes and thus receive a negligible weight. This ensures that each
prototype py is updated using reliable in-distribution (normal) patches while ignoring anomalous
ones, allowing robust refinement even in the presence of minor anomalies.

Gated Prototype Update via GRU. We then update each prototype by incorporating its context
vector ¢ through a GRU-based gating mechanism. In this update, the original prototype py is
treated as the hidden state of the GRU and the context cj as input, producing an updated prototype
pj.- The GRU’s gating mechanism dynamically controls the integration of new context, promoting
normal features while suppressing anomalous ones during testing. In particular, if the context cy, is
unreliable and does not match any existing prototype (e.g., biased by an anomaly), the GRU’s update
gate will remain largely closed, leaving pj essentially unchanged. This gating strategy is crucial
for maintaining prototype reliability: it allows prototypes to gradually evolve with unseen normal
variations at test time without drifting toward anomalies. As such, the model expands its coverage of
normal patterns and reduces false positives.

3.4 MULTI-MODAL NORMALITY COMMUNICATION (MNC)

To model the complementary cues from texture (RGB) and geometry (surface normals), we introduce
a Multi-Modal Normality Communication (MNC) module to exchange normal information between
the two branches. The key idea is that each modality can assist the other in understanding normality,
thereby better highlighting true anomalies and suppressing false positives. To ensure robust knowledge
transfer, MNC exchanges prototype-based normal knowledge between modalities, rather than raw
patch features that may contain anomalies during testing. The decoder of each modality is guided
to reconstruct features not only from its own prototypes but also from high-level normal patterns
of the other modality. MNC operates in two stages: a prototype alignment stage and a cross-modal
normality injection stage.

Stage 1: 2D and 3D Prototype Alignment. We treat all prototypes from both modalities as nodes
in a unified graph and perform cross-modal message passing to align them. Specifically, we construct
a graph with 2K nodes, consisting of K RGB prototypes and K surface-normal prototypes. We
connect each prototype to its nearest neighbors in the other modality using KNN in the feature space of
Lo-normalized prototypes, and then apply a multi-head Graph Attention Network (GAT)|Velickovic
et al.|(2018) to propagate information across these edges. This graph-based refinement pulls the
two sets of prototypes into a shared semantic space: prototypes representing similar structures (e.g.,
a flat surface or an edge) are drawn closer and enriched with complementary context from the
other modality. Let P! g and P!, denote the refined RGB and surface-normal prototype sets after
this alignment. As a result, the two branches obtain aligned prototypes that encode a consistent
cross-modal notion of normal texture and geometry. Similar prototype-level alignment strategies
Huang et al.| (2025); Tang et al.|(2023)); Pahde et al.|(2021) have proven effective in multimodal
representation learning.

Stage 2: Cross-Modal Normality Injection. After alignment, the refined prototypes serve as
anchors to guide fine-grained feature reconstruction via cross-attention. In this stage, each patch
token from one modality will attend to the other modality’s refined prototypes to inject any normal
information it lacks. To filter out anomalous details in an anomalous test sample, we first purify
each modality’s patch tokens using its intra-modal information. Specifically, we use the intra-modal
purified tokens z%P as an attention mask to reweight the original patch tokens z,, channel-wise. This
yields purified tokens Z' = {z,, - o(2%P%)}_,, where o (-) is the sigmoid function. These purified

n n=1>

tokens Z' are then used as queries in the cross-modal attention.

For cross-modal knowledge exchange, we employ a cross-attention layer| Vaswani et al.|(2017) where

the refined prototypes of one modality act as keys and values, and the purified patch tokens from the

other modality act as queries. Taking the RGB branch as example, let Z/, 4 denote the purified tokens

of RGB branch and P’ denote the set of stage-1 refined prototypes from the surface normal branch.

We compute the cross-attention output as:

Z  Wo(PL Wg)T
P ) (P ) @

where Wq, Wi, Wy are projection matrices and d is the channel dimension of the Z; .

CA(Z,,, P’,) = SoftMax (
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Figure 3: Left: Compared to existing MAD methods (10-shot), our anomaly maps are sharper with
fewer false positives. Right: Comparison of anomaly score distributions for normal and anomalous
samples (10-shot, MVTec-3D-AD). PIRN shows clearer distribution separation.

To prevent overwhelming the patch features with irrelevant information, we introduce a learnable
gating scalar vy to modulate the cross-attention output. Specifically, we add a scaled version of the
cross-attention result to the original token representation:

=7 +g-CA(Z,P'), g = tanh(y), 5)

where ~ is a learnable scalar parameter and ¢ = tanh(vy) serves as a gate on the cross-modal
information. This gating mechanism allows the network to control the extent of cross-modal fusion
for each layer. By exchanging high-level normality knowledge and injecting it into fine-grained patch
tokens, MNC establishes a robust correspondence between modalities at the prototype level. Unlike
methods that attempt dense patch-to-patch alignment between modalities (which can be unreliable
given limited data), our prototype-centric exchange avoids direct dense mappings and thus offers
greater robustness on unseen test samples.

Zmnc

We refer to Z™ "¢ as cross-modal purified reconstruction, as they are obtained using normal prototypes
from both modalities. We then fuse Z*?® and Z™"¢ via element-wise summation to produce the final
reconstructed features for each modality Z"¢¢ = ZbP¢ 4 Zmne,

Training and Inference We train PIRN end-to-end using an intra-modal feature reconstruction
loss (e.g., a soft mining loss|Luo et al.|(2025a)) that aligns the decoder outputs with the encoder
features. In practice, we minimize the cosine distance between the encoder’s patch embeddings (E,4
and FE,) and the corresponding reconstructed embeddings in Z"°, across all spatial locations and
for both modalities.

At inference time, we compute an anomaly score map by comparing the original encoder features to
the reconstructed features at each spatial location. For the i-th patch, the anomaly score is defined
as d; = 1 — cos(E;, Z7¢¢). This patch-level anomaly map is then upsampled to the input resolution
and optionally smoothed with a Gaussian filter. We obtain separate anomaly maps from the RGB
and surface-normal branches, which are summed to produce a fused anomaly heatmap. The final
image-level anomaly score is taken as the maximum value in this fused heatmap.

4 EXPERIMENTS

Datasets Setting. We evaluate PIRN on the MVTec-3D-AD|Bergmann et al.|(2022) and Eyecandies
Bonfigliol: et al.|(2022) datasets under data-scarce conditions by randomly sampling 5, 10 or 50
normal 1mages per class, along with the full-data setting. For each k-shot setting, we repeat the
random selection 10 times and report the average performance to mitigate selection bias.

Implementation Details. We adopt a ViT-Base/14 transformer as the backbone encoder for both
RGB and surface normal inputs, initialized with DINOv2|Oquab et al.|(2023) pre-trained weights and
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shots.

Table 5: Comparisons of per-category anomaly detection performance on MVTec-3D-AD.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
I-AUROC
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kept frozen during training. 3D point clouds are converted into 3-channel surface normal maps and
resized to 224 x 224, as with the RGB images. To obtain robust multi-scale features, we aggregate
the patch tokens extracted from the 2-10 layers of the pretrained ViT by element-wise averaging. The
decoder is a cascaded architecture of 2 layers for few-shot tasks and 8 layers for all-shot tasks. Model
optimization is done using ADAM Kingma & Ba|42014b (learning rate 1 x 10~%) for 80 epochs in
few-shot tasks and 30 epochs in all-shot tasks.

Main Results. As shown in Tab. |1 our method consistently outperforms the best-performing
baseline on both MVTec-3D-AD and Eyecandies across all metrics in varying few-shot settings.
Specifically, on MVTec-3D-AD, it achieves improvements of 3.97 (AUROC;) at 5-shot, 3.71 at
10-shot, and 2.47 at 50-shot, compared to the strongest baseline. Similarly, on the Eyecandies
dataset, our approach yields notable gains of 3.67 in 5-shot, 4.07 in 10-shot, and 2.2 in 50-shot,
outperforming the best baseline in all metrics. The consistent improvements in few-shot settings
validate the effectiveness of our method with extremely limited training data. Notably, PIRN also
achieves the best performance in the full-shot setting, albeit with a slight margin. On the MV Tec-
3D-AD full-data performance Tab. EI PIRN method achieves the highest mean I-AUROC of 0.963,
outperforming the other baseline methods.

Qualitative Analysis. As shown in Fig.Left, our method produces superior anomaly maps
compared to baselines. PIRN accurately localizes anomalies while suppressing background textures,
enabling more discriminative localization with fewer false positives. Furthermore, Fig. Right
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Figure 4: Visualization of Feature Displacement via BPA Routing. Green: normal; Red: anomalous.

Table 6: Comparison of different methods based on Real-IAD D3 dataset. The highest value in each
row is marked in red, and the second highest value is marked in blue.

Modality RGB 3D 2D+3D D* RGB + SN
Model Cflow SimpleNet PointMAE AST PointMAE+PatchCore M3DM D'M PIRN (Ours)
Metrics I-AUROC  P-AUROC | I-AUROC  P-AUROC | I-AUROC  P-AUROC | LAUROC ~ P-AUROC | I-AUROC  P-AUROC | LAUROC  P-AUROC | I-AUROC ~ P-AUROC | LAUROC ~ P-AUROC
audio_jack socket 0.943 0944 0.973 0.926 0.763 0.655 0.860 0.59 0.926 0.673 0.981 0.699 0.983 0.757 0.950 0.964
common_mode_filter 0271 0.847 0717 0.822 0.725 0.687 0.899 0.802 0523 0.922 0.580 0.934 0.618 0.947 0.826 0.883
connector_housing-female | 0.839 0921 0.795 0.891 0.958 0428 0914 0.716 0.870 0919 0.920 0979 0931 0951 0972 0971
crimp_st_cable_mount_box | 0.18 0442 0372 0.745 0291 0.363 0485 0.589 0713 0.931 0.749 0933 0811 0.969 0.659 0.961
de_power_connector 0.661 0.726 0.661 0.725 0.849 0.507 0.995 0.770 0.720 0921 0715 0.950 0922 0.947 0.944 0.994
ethernet_connector 0.967 0.853 0.981 0.866 1 0.656 1.000 0.906 0.947 0.956 0.983 0978 0.996 0970 0.997 0.992
ferrite_bead 0.529 0914 0.408 0.806 0.634 0717 0.894 0.817 0913 0.932 0.965 0.966 0.967 0.978 0717 0.993
fork_crimp_terminal 0.462 0.657 0416 0.945 0422 0.62 0.595 0.773 0.769 0.952 0.780 0.964 0819 0.946 0978 0.991
fuse_holder 0.853 0.861 0.564 0.957 0.309 0.605 0.597 0754 0.736 0.927 0.770 0.948 0.866 0915 0.998 0.996
headphone_jack socket 0.996 0914 0.933 0.879 0.607 0.633 0.660 0.696 0919 0.942 0.982 0.982 0.994 0.987 0.942 0975
humidity_sensor 0781 0.836 0.737 0.89 0.644 0.562 0.565 0.723 0.689 0.933 0717 0.958 0.78 0.969 0744 0.991
knob_cap 0.637 0.893 0.672 0.879 0.656 0425 0919 0.656 0.903 0.958 0.925 0.938 0931 0.947 0923 0.976
lattice_block_plug 0.833 0.852 0.79 0.898 0.769 0.776 0.842 0919 0911 0923 0917 0.958 0.939 0.941 0.892 0.969
lego_pin_connector_plate 0.828 0.877 0.857 0.947 0.361 0.482 0.847 0.629 0.662 0.759 0.681 0.734 0.891 0.889 0.981 0.980
lego_propeller 0615 0.739 0.939 0.799 0.348 0.62 0471 0.703 0.540 0.727 0.530 0.773 0.739 0.863 1.000 0.933
limit_switch 0.846 095 0.823 0.79 0.763 0.545 0.804 0.641 0.822 0.938 0.863 0.966 0.925 0.984 0.961 0971
miniature lifting_motor 0.402 0.799 0.402 0.76 0717 0435 0.766 0.467 0.948 0.962 0975 0.991 0.823 0.961 0.604 0.838
power jack 0354 0.664 0.176 0.489 0433 0.687 0.564 0.645 0.981 0.923 0.996 0.902 0973 0.947 0.595 0.862
purple_clay_pot 0.343 0.571 0.343 0.938 0.869 0271 0.635 0445 0921 0.961 0.944 0.953 0.962 0.922 0871 0.997
telephone spring_switch 0.575 091 0.627 0916 0771 0413 0951 0551 0.827 0.944 0.856 0.936 0.934 0.957 0.904 0.987
Avg 0.645 0.808 0.659 0.843 0.644 0.554 0.693 0.650 0812 0.905 0.841 0.922 0.890 0.937 0873 0.961

shows that our method yields a more separable anomaly score distribution, with a larger margin
and less overlap between normal and anomalous samples. These qualitative results align with the
quantitative findings, further validating PIRN’s effectiveness in data-scarce scenarios.

Analysis of Prototype-based Normality Encoding To better interpret how PIRN’s prototypes
encode normality, we added a new OT-movement visualization in Fig.EI For several MVTec-3D-
AD categories (e.g., bagel, peach) and both RGB and surface-normal branches, we visualize the
displacement of patch tokens from their initial feature state () to their state after BPA+APR+MNC
reconstruction (zpes). We project prototypes and tokens into a shared 2D PCA space and draw the
displacement vectors (A = Zpost — Zpre)- In the plots, gray crosses denote prototypes, translucent
lines show per-token movements, and bold arrows indicate the average movement of normal (green)
and anomalous (red) tokens.

The visualization reveals a consistent pattern. BPA encourages prototypes to act as stable anchors for
distinct normal patterns. Normal tokens start close to prototype clusters and undergo short movements
during reconstruction, indicating the prototype codebook effectively approximates in-distribution
patterns. In contrast, anomalous tokens lie farther away and require larger displacements toward
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normal prototypes. On average, anomalous tokens exhibit 40-50% larger displacement; for example,
in the RGB branch of bagel, || Allnorma = 6.2 V8. || A||anomaly = 9.0. The accompanying displacement
histograms further show that normal and anomalous images form almost non-overlapping distribu-
tions, with anomalous images consistently shifted to higher ||Al||2 values. This confirms that our
prototype-based reconstruction induces strong normal/anomalous discrimination at the feature level.

Experiment results on ReallAD-D3 dataset. We conducte comprehensive experiments on the
challenging Real-IAD D3|Zhu et al.|(2025) dataset in the full-data training setting. Real-IAD D3
comprises real-world industrial components with diverse anomaly types and complex geometrie. We
compared PIRN against various single-modality approaches (e.g., SimpleNet), established multimodal
methods (e.g., M3DM), and DM [Zhu et al.|(2025).

The experimental results in Table|§| validate the effectiveness of the PIRN framework. Overall, PIRN
achieves highly competitive performance, securing the best overall anomaly localization (P-AUROC)
of 0.961 and the second-best overall anomaly detection (I-AUROC) of 0.873. Notably, PIRN achieves
the highest P~AUROC in 13 out of the 20 categories. In terms of I-AUROC, PIRN achieves a
strong score of 0.873, closely following D3M (0.890). However, DM is specifically designed to
leverage the unique D? data representation (combining 2D, Pseudo-3D, and 3D inputs). In contrast,
PIRN operates using only two modalities: RGB images and derived Surface Normals (RGB + SN).
Despite utilizing a simpler input representation, PIRN maintains competitive detection rates while
delivering superior localization accuracy. Furthermore, PIRN substantially outperforms DM in
several categories, such as *fork_crimp_terminal’ (0.978 vs. 0.819 I-AUROC) and ’lego_propeller’
(1.000 vs. 0.739 I-AUROC).

Ablations. We validate each proposed module on the MVTec-3D-AD dataset, with results in Tab.
The baseline model (first row), similar to INP-Former|Luo et al.|(2025a)), excludes all proposed
modules. The full PIRN model achieves superior performance. Ablating each module from the
full model results in a consistent performance drop, validating the contribution of every component.
BPA contributes significantly by preventing prototype collapse, while adding APR further improves
performance. The largest drop occurs when MNC is removed, highlighting the crucial role of
cross-modal collaboration.

Tab. @evaluates prototype assignment methods in BPA. Our Balanced Optimal Transport (OT)
achieves the highest performance across all metrics (e.g., AUROC; 92.2%, PRO 96.6%), outperform-
ing alternative strategies. Softmax and linear attention yield the weakest results (AUROC; < 85%),
suggesting prototype under-utilization due to unconstrained assignment. Sigmoid attention performs
better (AUROC; 87.8%) but still falls short.

Tab. compares token aggregation strategies in APR. Among them, global averaging performs worst
(AUROC/ 91.5%), suggesting indiscriminate token pooling is suboptimal. Top-k averaging improves
performance (AUROC; 92.1%), while our Balanced OT achieves the best results (AUROC; 92.2%,
AUPRO 96.6%). The slight gain over top-k averaging indicates that balanced token contributions
enable more consistent prototype refinement.

5 CONCLUSION

We introduced PIRN, a novel framework for few-shot multi-modal anomaly detection that unifies
prototype-based intra-modal reconstruction with cross-modal normality communication. PIRN
robustly models normality from scarce data via an adaptive prototype codebook. Its effectiveness
comes from three key innovations: Balanced Prototype Assignment (BPA) utilizes optimal transport
to mitigate codebook collapse; Adaptive Prototype Refinement (APR) dynamically adapts prototypes
during inference to bridge the train-test distribution gap; and Multi-modal Normality Communication
(MNC) facilitates the exchange of high-level normality cues across modalities. Extensive evaluations
across MVTec 3D-AD, Eyecandies, and Real-IAD D3 demonstrate that PIRN establishes significant
performance gains, particularly in challenging few-shot settings.
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